Skip to main content

Regulation of Inhibitory Synapse Function in the Developing Auditory CNS

  • Chapter
  • First Online:
Developmental Plasticity of Inhibitory Circuitry

Abstract

Auditory processing requires a balanced participation of synaptic inhibition and excitation. This balance is achieved during development, in part, through the refinement of inhibitory connections and the regulation of inhibitory functional properties. Here, we make the case that spontaneous and experience-driven activity contributes to these maturational events in the auditory brainstem and cortex. Using brain slice preparations, we selectively assessed the physiology and plasticity of central inhibitory transmission. Together, the results demonstrate that inhibitory synapse function is regulated at every central location examined. The sites of regulation involve presynaptic factors such as transmitter synthesis and release properties, as well as postsynaptic factors such as receptor subunit kinetics, KCC2 function, and long-term depression. We propose that reduced inhibitory strength following disuse is due to delayed development, and this may contribute the enhanced excitability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adelsberger H, Garaschuk O, Konnerth A (2005) Cortical calcium waves in resting newborn mice. Nat Neurosci 8:988–990

    CAS  PubMed  Google Scholar 

  • Aponte JE, Kotak VC, Sanes DH (1996) Decreased synaptic inhibition leads to dendritic hypertrophy prior to the onset of hearing. Auditory Neurosci 2:235–240

    Google Scholar 

  • Argence M, Saez I, Sassu R, Vassias I, Vidal PP, de Waele C (2006) Modulation of inhibitory and excitatory synaptic transmission in rat inferior colliculus after unilateral cochleectomy: an in situ and immunofluorescence study. Neuroscience 141:1193–1207

    CAS  PubMed  Google Scholar 

  • Amin J, Weiss DS (1993) GABAA receptor needs two homologous domains of the beta-subunit for activation by GABA but not by pentobarbital. Nature 366:565–569

    CAS  PubMed  Google Scholar 

  • Asako M, Holt AG, Griffith RD, Buras ED, Altschuler RA (2005) Deafness-related decreases in glycine-immunoreactive labeling in the rat cochlear nucleus. J Neurosci Res 81:102–109

    CAS  PubMed  Google Scholar 

  • Backus KH, Deitmer JW, Friauf E (1998) Glycine-activated currents are changed by coincident membrane depolarization in developing rat auditory brainstem neurones. J Physiol (Lond) 507:783–794

    CAS  Google Scholar 

  • Balakrishnan V, Becker M, Löhrke S, Nothwang HG, Güresir E, Friauf E (2003) Expression and function of chloride transporters during development of inhibitory neurotransmission in the auditory brainstem. J Neurosci 23:4134–4145

    CAS  PubMed  Google Scholar 

  • Banay-Schwartz M, Lajtha A, Palkovits M (1989) Changes with aging in the levels of amino acids in rat CNS structural elements I. Glutamate and related amino acids. Neurochem Res 14:555–562

    CAS  PubMed  Google Scholar 

  • Barnes EM Jr (1996) Use-dependent regulation of GABAA receptors. Int Rev Neurobiol 39:53–76

    CAS  PubMed  Google Scholar 

  • Baumann SW, Baur R, Sigel E (2002) Forced subunit assembly in α1β2γ2 GABAA receptors. J Biol Chem 277:46020–46025

    CAS  PubMed  Google Scholar 

  • Blaesse P, Guillemin I, Schindler J, Schweizer M, Delpire E, Khiroug L, Friauf E, Nothwang HG (2006) Oligomerization of KCC2 correlates with development of inhibitory neurotransmission. J Neurosci 26:10407–10419

    CAS  PubMed  Google Scholar 

  • Bauer CA, Brozoski TJ, Holder TM, Caspary DM (2000) Effects of chronic salicylate on GABAergic activity in rat inferior colliculus. Hear Res 147:175–182

    CAS  PubMed  Google Scholar 

  • Beutner D, Moser T (2001) The presynaptic function of mouse cochlear inner hair cells during development of hearing. J Neurosci 21:4593–4599

    CAS  PubMed  Google Scholar 

  • Bledsoe SC Jr, Nagase S, Miller JM, Altschuler RA (1995) Deafness-induced plasticity in the mature central auditory system. NeuroReport 7:225–229

    PubMed  Google Scholar 

  • Bock GR, Webster WR (1974) Spontaneous activity of single units in the inferior colliculus of anesthetized cats. Brain Res 76:150–154

    CAS  PubMed  Google Scholar 

  • Bormann J, Hamill OP, Sakmann B (1987) Mechanism of anion permeation through channels gated by glycine and γ-aminobutyric acid in mouse cultured spinal neurones. J Physiol (Lond) 385:243–286

    CAS  Google Scholar 

  • Brandt A, Striessnig J, Moser T (2003) CaV1.3 channels are essential for development and presynaptic activity of cochlear inner hair cells. J Neurosci 23:10832–10840

    CAS  PubMed  Google Scholar 

  • Brückner S, Rübsamen R (1995) Binaural response characteristics in isofrequency sheets of the gerbil inferior colliculus. Hear Res 86:1–14

    PubMed  Google Scholar 

  • Buras ED, Holt AG, Griffith RD, Asako M, Altschuler RA (2006) Changes in glycine immunoreactivity in the rat superior olivary complex following deafness. J Comp Neurol 494:179–189

    PubMed  Google Scholar 

  • Burrone J, Murthy VN (2003) Synaptic gain control and homeostatsis. Curr Opinion Neurobiol 13:560–567

    CAS  Google Scholar 

  • Calford MB, Rajan R, Irvine DR (1993) Rapid changes in the frequency tuning of neurons in cat auditory cortex resulting from pure-tone-induced temporary threshold shift. Neuroscience 55:953–964

    CAS  PubMed  Google Scholar 

  • Caspary DM, Raza A, Lawhorn Armour BA, Pippin J, Arneric SP (1990) Immunocytochemical and neurochemical evidence for age-related loss of GABA in the inferior colliculus: implications for neural presbycusis. J Neurosci 10:2363–2372

    CAS  PubMed  Google Scholar 

  • Caspary DM, Holder TM, Hughes LF, Milbrandt JC, McKernan RM, Naritoku DK (1999) Age-related changes in GABA(A) receptor subunit composition and function in rat auditory system. Neuroscience 93:307–312

    CAS  PubMed  Google Scholar 

  • Caspary DM, Schatteman TA, Hughes LF (2005) Age-related changes in the inhibitory response properties of dorsal cochlear nucleus output neurons: role of inhibitory inputs. J Neurosci 25:10952–10959

    CAS  PubMed  Google Scholar 

  • Caspary DM, Milbrandt JC, Helfert RH (1995) Central auditory aging: GABA changes in the inferior colliculus. Exp Gerontol 30:349-360.

    CAS  PubMed  Google Scholar 

  • Caspary DM, Ling L, Turner JG, Hughes LF (2008) Inhibitory neurotransmission, plasticity and aging in the mammalian central auditory system. J Exp Biol 211:1781–1791

    CAS  PubMed  Google Scholar 

  • Chagnac-Amitai Y, Connors BW (1989) Horizontal spread of synchronized activity in neocortex and its control by GABA-mediated inhibition. J Neurophysiol 61:747–758

    CAS  PubMed  Google Scholar 

  • Chandrasekaran AR, Plas DT, Gonzalez E, Crair MC (2005) Evidence for an instructive role of retinal activity in retinotopic map refinement in the superior colliculus of the mouse. J Neurosci 25:6929–6938

    CAS  PubMed  Google Scholar 

  • Chang EH, Kotak VC, Sanes DH (2003) Long-term depression of synaptic inhibition is expressed postsynaptically in the developing auditory system. J Neurophysiol 90:1479–1488

    CAS  PubMed  Google Scholar 

  • Chen QC, Jen PH (2000) Bicuculline application affects discharge patterns, rate-intensity functions, and frequency tuning characteristics of bat auditory cortical neurons. Hear Res 150:161–174

    CAS  PubMed  Google Scholar 

  • Chih B, Engelman H, Scheiffele P (2005) Control of excitatory and inhibitory synapse formation by neuroligins. Science 307:1324–1328

    CAS  PubMed  Google Scholar 

  • Clayton GH, Owens GC, Wolff JS, Smith RL (1998) Ontogeny of cation-Cl− cotransporter expression in rat neocortex. Brain Res Dev Brain Res 109:281–292

    CAS  PubMed  Google Scholar 

  • Connolly CN, Wooltorton JR, Smart TG, Moss SJ (1996) Subcellular localization of gamma-aminobutyric acid type A receptors is determined by receptor beta subunits. Proc Natl Acad Sci USA 93:9899–9904

    CAS  PubMed  Google Scholar 

  • Cook RD, Hung TY, Miller RL, Smith DW, Tucci DL (2002) Effects of conductive hearing loss on auditory nerve activity in gerbil. Hear Res 164:127–137

    PubMed  Google Scholar 

  • Cruikshank SI, Rose HJ, Metherate R (2002) Auditory thalamocrotical synaptic transmission in vitro. J Neurophysiol 87:361–384

    PubMed  Google Scholar 

  • Delpire E, Rauchman MI, Beier DR, Hebert SC, Gullans SR (1994) Molecular cloning and chromosome localization of a putative basolateral Na(+)-K(+)-2Cl(-) cotransporter from mouse inner medullary collecting duct (mIMCD-3) cells. J Biol Chem 269:25677–25683

    CAS  PubMed  Google Scholar 

  • DeFazio RA, Keros S, Quick MW, Hablitz JJ (2000) Potassium-couple chloride cotransport controls intracellular chloride in rat neocortical pyramidal neurons. J Neurosci 20:8069-8076.

    CAS  PubMed  Google Scholar 

  • Ehrlich I, Lohrke S, Friauf E (1999) Shift from depolarizing to hyperpolarizing glycine action in rat auditory neurones is due to age-dependent Cl− regulation. J Physiol 520:121–137

    CAS  PubMed  Google Scholar 

  • Ene FA, Kalmbach A, Kandler K (2007) Metabotropic glutamate receptors in the lateral superior olive activate TRP-like channels: age- and experience-dependent regulation. J Neurophysiol 97:3365–3375

    CAS  PubMed  Google Scholar 

  • Ene FA, Kullmann PH, Gillespie DC, Kandler K (2003) Glutamatergic calcium responses in the developing lateral superior olive: receptor types and their specific activation by synaptic activity patterns. J Neurophysiol 90:2581–2591

    CAS  PubMed  Google Scholar 

  • Farrant M, Kaila K (2007) The cellular, molecular and ionic basis of GABA(A) receptor signalling. Prog Brain Res 160:59–87

    CAS  PubMed  Google Scholar 

  • Firzlaff U, Schuller G (2001) Motion processing in the auditory cortex of the rufous horseshoe bat: role of GABAergic inhibition. Eur J NeuroSci 14:1687–1701

    CAS  PubMed  Google Scholar 

  • Fitzgerald KK, Sanes DH (2001) The development of stimulus coding in the auditory system. In: Jahn E, Santos-Sacchi J (eds) Physiology of the Ear, 2nd edn. San Diego, Singular Publishing

    Google Scholar 

  • Foeller E, Vater M, Kössl M (2001) Laminar analysis of inhibition in the gerbil primary auditory cortex. J Assoc Res Otolaryngol 2:279–296

    CAS  PubMed  Google Scholar 

  • Fritschy JM, Brünig I (2003) Formation and plasticity of GABAergic synapses: physiological mechanisms and pathophysiological implications. Pharmacol Ther 98:299–323

    CAS  PubMed  Google Scholar 

  • Franklin SR, Brunso-Bechtold JK, Henkel CK (2008) Bilateral cochlear ablation in postnatal rat disrupts development of banded pattern of projections from the dorsal nucleus of the lateral lemniscus to the inferior colliculus. Neurosci 154:346–354

    CAS  Google Scholar 

  • Gabriele ML, Brunso-Bechtold JK, Henkel CK (2000a) Development of afferent patterns in the inferior colliculus of the rat: projection from the dorsal nucleus of the lateral lemniscus. J Comp Neur 416:368–382

    CAS  PubMed  Google Scholar 

  • Gabriele ML, Brunso-Bechtold JK, Henkel CK (2000b) Plasticity in the development of afferent patterns in the inferior colliculus of the rat after unilateral cochlear ablation. J Neurosci 20:6939–6949

    CAS  PubMed  Google Scholar 

  • Garaschuk O, Linn J, Eilers J, Konnerth A (2000) Large-scale oscillatory calcium waves in the immature cortex. Nat Neurosci 3:452–9

    CAS  PubMed  Google Scholar 

  • Gillespie DC, Kim G, Kandler K (2005) Inhibitory synapses in the developing auditory system are glutamatergic. Nat Neurosci 8:332–338

    CAS  PubMed  Google Scholar 

  • Gleich O, Hamann I, Klump GM, Kittel M, Strutz J (2003) Boosting GABA improves impaired auditory temporal resolution in the gerbil. NeuroReport 14:1877–1880

    PubMed  Google Scholar 

  • Heynen AJ, Yoon BJ, Liu CH, Chung HJ, Huganir RL, Bear MF (2003) Molecular mechanism for loss of visual cortical responsiveness following brief monocular deprivation. Nat Neurosci 6:854–862

    CAS  PubMed  Google Scholar 

  • Holt AG, Asako M, Lomax CA, MacDonald JW, Tong L, Lomax MI, Altschuler RA (2005) Deafness-related plasticity in the inferior colliculus: gene expression profiling following removal of peripheral activity. J Neurochem 93:1069–1086

    CAS  PubMed  Google Scholar 

  • Horikawa J, Hosokawa Y, Kubota M, Nasu M, Taniguchi I (1996) Optical imaging of spatiotemporal patterns of glutamatergic excitation and GABAergic inhibition in the guinea-pig auditory cortex in vivo. J Physiol 497:629–638

    CAS  PubMed  Google Scholar 

  • Hübner CA, Stein V, Hermans-Borgmeyer I, Meyer T, Ballanyi K, Jentsch TJ (2001) Disruption of KCC2 reveals an essential role of K–Cl cotransport already in early synaptic inhibition. Neuron 30:515–524

    PubMed  Google Scholar 

  • Jones TA, Leake PA, Snyder RL, Stakhovskaya O, Bonham B (2007) Spontaneous discharge patterns in cochlear spiral ganglion cells before the onset of hearing in cats. J Neurophysiol 98:1898–1908

    PubMed  Google Scholar 

  • Kakazu Y, Akaike N, Komiyama S, Nabekura J (1999) Regulation of intracellular chloride by cotransporters in developing lateral superior olive neurons. J Neurosci 19:2843–2851

    CAS  PubMed  Google Scholar 

  • Kanaka C, Ohno K, Okabe A, Kuriyama K, Itoh T, Fukuda A, Sato K (2001) The differential expression patterns of messenger RNAs encoding K-Cl cotransporters (KCC1, 2) and Na-K-2Cl cotransporter (NKCC1) in the rat nervous system. Neuroscience 104:933–946

    CAS  PubMed  Google Scholar 

  • Kandler K, Clause A, Noh J (2009) Tonotopic reorganization of developing auditory brainstem circuits. Nat Neurosci 12:711–717

    CAS  PubMed  Google Scholar 

  • Kapfer C, Seidl AH, Schweizer H, Grothe B (2002) Experience-dependent refinement of inhibitory inputs to auditory coincidence-detector neurons. Nat Neurosci 5:247–253

    CAS  PubMed  Google Scholar 

  • Kazaku I, Akaike N, Komiyama S, Nabekura J (1999) Regulation of intracellular chloride by cotransporters in developing lateral superior olive neurons. J Neurosci 19:2843–2851.

    CAS  PubMed  Google Scholar 

  • Kil J, Kageyama GH, Semple MN, Kitzes LM (1995) Development of ventral cochlear nucleus projections to the superior olivary complex in gerbil. J Comp Neurol 353:317–340

    CAS  PubMed  Google Scholar 

  • Kilman V, van Rossum MC, Turrigiano GG (2002) Activity deprivation reduces miniature IPSC amplitude by decreasing the number of postsynaptic GABAA receptors clustered at neocortical synapses. J Neurosci 22:1328–1337

    CAS  PubMed  Google Scholar 

  • Kim G, Kandler K (2003) Elimination and strengthening of glycinergic/GABAergic connections during tonotopic map formation. Nat Neurosci 6:282–290

    CAS  PubMed  Google Scholar 

  • Kimura M, Eggermont JJ (1999) Effects of acute pure tone induced hearing loss on response properties in three auditory cortical fields in cat. Hear Res 135:146–162

    CAS  PubMed  Google Scholar 

  • Kitzes LM, Kageyama GH, Semple MN, Kil J (1995) Development of ectopic projections from the ventral cochlear nucleus to the superior olivary complex induced by neonatal ablation of the contralateral cochlea. J Comp Neurol 353:341–363

    CAS  PubMed  Google Scholar 

  • Kitzes LM, Semple MN (1985) Single-unit responses in the inferior colliculus: effects of neonatal unilateral cochlear ablation. J Neurophysiol 53:1483–1500

    CAS  PubMed  Google Scholar 

  • Klinke R, Kral A, Heid S, Tillein J, Hartmann R (1999) Recruitment of the auditory cortex in congenitally deaf cats by long-term cochlear electrostimulation. Science 285:1729–1733

    CAS  PubMed  Google Scholar 

  • Koerber KC, Pfeiffer RR, Warr WB, Kiang NY (1966) Spontaneous spike discharges from single units in the cochlear nucleus after destruction of the cochlea. Exp Neurol 16:119–130

    CAS  PubMed  Google Scholar 

  • Komatsu Y (1994) Age-dependent long-term potentiation of inhibitory synaptic transmission in rat visual cortex. J Neurosci 14:6488–6499

    CAS  PubMed  Google Scholar 

  • Korada S, Schwartz IL (1999) Development of GABA, glycine and their receptors in the auditory brainstem of gerbil: a light and electron microscopic study. J Comp Neurol 409:664–681

    CAS  PubMed  Google Scholar 

  • Kotak VC, Sanes DH (1995) Synaptically evoked prolonged depolarizations in the developing auditory system. J Neurophysiol 74:1611–1620

    CAS  PubMed  Google Scholar 

  • Kotak VC, Sanes DH (1996) Developmental influence of glycinergic inhibition: Regulation of NMDA- mediated EPSPs. J Neurosci 16:1836–1843

    CAS  PubMed  Google Scholar 

  • Kotak VC, Korada S, Schwartz IR, Sanes DH (1998) A developmental shift from GABAergic to glycinergic transmission in the central auditory system. J Neurosci 18:4646–4655

    CAS  PubMed  Google Scholar 

  • Kotak VK, Sanes DH (2000) Long-Lasting Inhibitory Synaptic Depression is Age- and Calcium-Dependent. J Neurosci 20:5820–5826

    CAS  PubMed  Google Scholar 

  • Kotak VC, DiMattina C, Sanes DH (2001) GABAB and Trk receptor signaling mediates long-lasting inhibitory synaptic depression. J Neurophysiol 86:536–540

    CAS  PubMed  Google Scholar 

  • Kotak VC, Sanes DH (2002) Postsynaptic kinase signaling underlies inhibitory synaptic plasticity. J Neurobiol 53:36–43

    CAS  PubMed  Google Scholar 

  • Kotak VC, Fujisawa S, Lee FA, Karthikeyan O, Aoki C, Sanes DH (2005) Hearing loss raises excitability in the auditory cortex. J Neurosci 25:3908–3918

    CAS  PubMed  Google Scholar 

  • Kotak VC, Sadahiro M, Fall CP (2007) Developmental expression of endogenous oscillations and waves in the auditory cortex involves calcium, gap junctions, and GABA. Neurosci 146:1629–1639

    CAS  Google Scholar 

  • Kotak VC, Takesian AE, Sanes DH (2008) Hearing loss prevents the maturation of GABAergic transmission in the auditory cortex. Cereb Cortex 18:2098–2108

    PubMed  Google Scholar 

  • Kral A, Hartmann R, Tillein J, Heid S, Klinke R (2000) Congenital auditory deprivation reduces synaptic activity within the auditoy cortex in a layer specific manner. Cereb Cortex 10:714–726

    CAS  PubMed  Google Scholar 

  • Kral A, Tillein J, Peter Hubka P, Schiemann D, Heid S, Hartmann R (2009) Spatiotemporal patterns of cortical activity with bilateral cochlear implants in congenital deafness. J Neurosci 29:811–827

    CAS  PubMed  Google Scholar 

  • Leao RN, Berntson A, Forsythe ID, Walmsley B (2004a) Reduced low-voltage activated K+ conductances and enhanced central excitability in a congenitally deaf (dn/dn) mouse. J Physiol 559:25–33

    CAS  PubMed  Google Scholar 

  • Leao RN, Oleskevich S, Sun H, Bautista M, Fyffe RE, Walmsley B (2004b) Differences in glycinergic mIPSCs in the auditory brain stem of normal and congenitally deaf neonatal mice. J Neurophysiol 91:1006–1012

    CAS  PubMed  Google Scholar 

  • Lee DS, Lee JS, Oh SH, Kim SK, Kim JW, Chung JK, Lee MC, Kim CS (2001) Cross-modal plasticity and cochlear implants. Nature 409:149–150

    CAS  PubMed  Google Scholar 

  • Leventhal AG, Youngchang W, Mingliang Pu, Yifeng Z, Yuanye M (2003) GABA and its agonists improved visual cortical function in senescent monkeys. Science 300:812-815.

    CAS  PubMed  Google Scholar 

  • Levinson JN, Chery N, Huang K, Wong TP, Gerrow K, Kang R, Prange O, Wang YT, El-Husseini A (2005) Neuroligins mediate excitatory and inhibitory synapse formation: involvement of PSD-95 and neurexin-1beta in neuroligin-induced synaptic specificity. J Biol Chem 280:17312–17319

    CAS  PubMed  Google Scholar 

  • Li MX, Jia M, Jiang H, Dunlap V, Nelson PG (2001) Opposing actions of protein kinase A and C mediate Hebbian synaptic plasticity. Nat Neurosci 4:871–872

    CAS  PubMed  Google Scholar 

  • Ling LL, Hughes LF, Caspary DM (2005) Age-related loss of the GABA synthetic enzyme glutamic acid decarboxylase in rat primary auditory cortex. Neuroscience 132:1103–1113

    CAS  PubMed  Google Scholar 

  • Lippe WR (1994) Rhythmic spontaneous activity in the developing avian auditory system. J Neurosci 14:1486–1495

    CAS  PubMed  Google Scholar 

  • Lu J, Karadhed M, Delpire E (1999) Developmental regulation of the neuronal-specific isoform of K–Cl cotranspoter KCC2 in postnatal rat brains. J Neurobiol 39:558–568

    CAS  PubMed  Google Scholar 

  • Maffei A, Nelson SB, Turrigiano GG (2004) Selective reconfiguration of layer 4 visual cortical circuitry by visual deprivation. Nat Neurosci 7:1353–1359

    CAS  PubMed  Google Scholar 

  • Maffei A, Nataraj K, Nelson SB, Turrigiano GG (2006) Potentiation of cortical inhibition by visual deprivation. Nature 443:81–84

    CAS  PubMed  Google Scholar 

  • Marder E, Goaillard JM (2006) Variability, compensation and homeostasis in neuron and network function. Nat Rev Neurosci 7:563–574

    CAS  PubMed  Google Scholar 

  • McCarthy MM, Auger AP, Perrot-Sinal TS (2002) Getting excited about GABA differences in the brain. Trends Neurosci 25:307–312

    CAS  PubMed  Google Scholar 

  • McAlpine D, Martin RL, Mossop JE, Moore DR (1997) Response properties of neurones in the inferior colliculus of the monaurally-deafened ferret to acoustic stimulation of the intact ear. J Neurophysiol 78:767–779

    CAS  PubMed  Google Scholar 

  • McFadden SL, Walsh EJ, McGee J (1996) Onset and development of auditory brainstem responses in the Mongolian gerbil (Meriones unguiculatus). Hear Res 100:68–79

    CAS  PubMed  Google Scholar 

  • McKernan RM, Whiting PJ (1996) Which GABAA-receptor subtypes really occur in the brain? Trends Neuroscience 19:139–143

    CAS  Google Scholar 

  • Milbrandt JC, Albin RL, Caspary DM (1994) Age-related decrease in GABAB receptor binding in the Fischer 344 rat inferior colliculus. Neurobiol Aging 15:699–703

    CAS  PubMed  Google Scholar 

  • Milbrandt JC, Hunter C, Caspary DM (1997) Alterations of GABAA receptor subunit mRNA levels in the aging Fischer 344 rat inferior colliculus. J Comp Neurol 379:455–465

    CAS  PubMed  Google Scholar 

  • Möhler H (2006) GABAA receptor diversity and pharmacology. Cell Tissue Res 326:505–516

    PubMed  Google Scholar 

  • Moore DR (1992) Trophic influences of excitatory and inhibitory synapses on neurones in the auditory brain stem. Neuro Report 3:269–272

    CAS  Google Scholar 

  • Moore MJ, Caspary DM (1983) Strychnine blocks binaural inhibition in lateral superior olivary neurons. J Neurosci 3:237–42

    CAS  PubMed  Google Scholar 

  • Moore CM, Vollmer M, Leake PA, Snyder RL, Rebscher SJ (2002) The effects of chronic intracochlear electrical stimulation on inferior colliculus spatial representation in adult deafened cats. Hear Res 164:82–96

    PubMed  Google Scholar 

  • Morishita W, Sastry BR (1991) Chelation of postsynaptic Ca2+ facilitates long-term potentiation of hippocampal IPSPs. NeuroReport 2:533–6

    CAS  PubMed  Google Scholar 

  • Mossop JE, Wilson MJ, Caspary DM, Moore DR (2000) Down-regulation of inhibition following unilateral deafening. Hear Res 147:183–187

    CAS  PubMed  Google Scholar 

  • Müller CM, Scheich H (1988) Contribution of GABAergic inhibition to the response characteristics of auditory units in the avian forebrain. J Neurophysiol 59:1673–1689

    PubMed  Google Scholar 

  • Nabekura J, Katsurabayashi S, Kakazu Y, Shibata S, Matsubara A, Jinno S, Mizoguchi Y, Sasaki A, Ishibashi H (2004) Developmental switch from GABA to glycine release in single central synaptic terminals. Nat Neurosci 7:17–23

    CAS  PubMed  Google Scholar 

  • Nishimaki T, Jang IS, Ishibashi H, Yamaguchi J, Nabekura J (2007) Reduction of metabotropic glutamate receptor-mediated heterosynaptic inhibition of developing MNTB-LSO inhibitory synapses. Eur J NeuroSci 26:323–330

    PubMed  Google Scholar 

  • Norena AJ, Eggermont JJ (2003) Changes in spontaneous neural activity immediately after an acoustic trauma: implications for neural correlates of tinnitus. Hear Res 183:137–153

    CAS  PubMed  Google Scholar 

  • Norena AJ, Tomita M, Eggermont JJ (2003) Neural changes in cat auditory cortex after a transient pure-tone trauma. J Neurophysiol 90:2387–2401

    PubMed  Google Scholar 

  • Nusser Z, Cull-Candy S, Farrant M (1997) Differences in synaptic GABAA receptor number underlie variation in GABA mini amplitude. Neuron 19:697–709

    CAS  PubMed  Google Scholar 

  • Nusser Z, Hajos N, Somogyi P, Mody I (1998) Increased number of synaptic GABAA receptors underlies potentiation at hippocampal inhibitory synapses. Nature 395:172–177

    CAS  PubMed  Google Scholar 

  • Oda Y, Charpier S, Murayama Y, Suma C, Korn H (1995) Long-term potentiation of glycinergic inhibitory synaptic transmission. J Neurophysiol 74:1056–1074

    CAS  PubMed  Google Scholar 

  • Oda Y, Kawasaki K, Morita M, Korn H, Matsui H (1998) Inhibitory long-term potentiation underlies auditory conditioning of goldfish escape behavior. Nature 394(6689):182–185

    CAS  PubMed  Google Scholar 

  • Oleskevich S, Walmsley B (2002) Synaptic transmission in the auditory brainstem of normal and congenitally deaf mice. J Physiol 540:447–455

    CAS  PubMed  Google Scholar 

  • Oswald AM, Schiff ML, Reyes AD (2006) Synaptic mechanisms underlying auditory processing. Curr Opin Neurobiol 16:371–376

    CAS  PubMed  Google Scholar 

  • Owens DF, Boyce LH, Davis MB, Kriegstein AR (1996) Excitatory GABA responses in embryonic and neonatal cortical slices demonstrated by gramicidin perforated-patch recordings and calcium imaging. J Neurosci 16:6414–6423

    CAS  PubMed  Google Scholar 

  • Payne JA (1997) Functional characterization of the neuronal-specific K–Cl cotransporter: implications for [K+]o regulation. Am J Physiol 273:C1516–C1525

    CAS  PubMed  Google Scholar 

  • Payne JA, Stevenson TJ, Donaldson LF (1996) Molecular characterization of a putative K–Cl cotransporter in rat brain. J Biol Chem 27:16245–16252

    Google Scholar 

  • Payne JA, Rivera C, Voipio J, Kaila K (2003) Cation-chloride co-transporters in neuronal communication, development, and trauma. Trends Neurosci 26:199–206

    CAS  PubMed  Google Scholar 

  • Paysan J, Kossel A, Bolz J, Fritschy JM (1997) Area-specific regulation of gamma-aminobutyric acid type A receptor subtypes by thalamic afferents in developing rat neocortex. Proc Natl Acad Sci 94:6995-7000.

    CAS  PubMed  Google Scholar 

  • Plotkin MD, Snyder EY, Hebert SC, Delpire E (1997) Expression of the Na–K–2Cl cotransporter is developmentally regulated in postnatal rat brains: a possible mechanism underlying GABA’s excitatory role in immature brain. J Neurobiol 33:781–795

    CAS  PubMed  Google Scholar 

  • Pollak GD, Burger RM, Park TJ, Klug A, Bauer EE (2002) Roles of inhibition for transforming binaural properties in the brainstem auditory system. Hear Res 168:60–78

    PubMed  Google Scholar 

  • Pollak GD, Burger RM, Klug A (2003) Dissecting the circuitry of the auditory system. Trends Neurosci 26:33–39

    CAS  PubMed  Google Scholar 

  • Raggio MW, Schreiner CE (1999) Neuronal responses in cat primary auditory cortex to electrical cochlear stimulation. III. Activation patterns in short- and long-term deafness. J Neurophysiol 82:3506–3526

    CAS  PubMed  Google Scholar 

  • Raggio MW, Schreiner CE (2003) Neuronal responses in cat primary auditory cortex to electrical cochlear stimulation: IV. Activation pattern for sinusoidal stimulation. J Neurophysiol 89:3190–3204

    PubMed  Google Scholar 

  • Rajan R (1998) Receptor organ damage causes loss of cortical surround inhibition without topographic map plasticity. Nat Neurosci 1:138–143

    CAS  PubMed  Google Scholar 

  • Rajan R (2001) Plasticity of excitation and inhibition in the receptive field of primary auditory cortical neurons after limited receptor organ damage. Cereb Cortex 11:171–182

    CAS  PubMed  Google Scholar 

  • Rivera C, Voipio J, Payne JA, Ruusuvuori E, Lahtinen H, Lamsa K, Pirvola U, Saarma M, Kaila K (1999) The K+/Cl− cotransporter KCC2 renders GABA hyperpolarizing during neuronal maturation. Nature 397:251–255

    CAS  PubMed  Google Scholar 

  • Romand R (1992) Development of Auditory and Vestibular Systems 2. Elsevier, Amsterdam

    Google Scholar 

  • Russell FA, Moore DR (1995) Afferent reorganisation within the superior olivary complex of the gerbil: development and induction by neonatal, unilateral cochlear removal. J Comp Neurol 352:607–625

    CAS  PubMed  Google Scholar 

  • Salvi RJ, Wang J, Ding D (2000) Auditory plasticity and hyperactivity following cochlear damage. Hear Res 147:261–274

    CAS  PubMed  Google Scholar 

  • Sanes DH, Geary WA, Wooten GF, Rubel EW (1987) Quantitative distribution of the glycine receptor in the auditory brain stem of the gerbil. J Neurosci 7:3793–802

    CAS  PubMed  Google Scholar 

  • Sanes DH, Rubel EW (1988) The ontogeny of inhibition and excitation in the gerbil lateral superior olive. J Neurosci 8:682–700

    CAS  PubMed  Google Scholar 

  • Sanes DH, Siverls V (1991) Development and specificity of inhibitory terminal arborizations in the central nervous system. J Neurobiol 22:837–54

    CAS  PubMed  Google Scholar 

  • Sanes DH, Chokshi P (1992) Glycinergic transmission influences the development of dendritic shape. Neuro Report 3:323–326

    CAS  Google Scholar 

  • Sanes DH, Markowitz S, Bernstein J, Wardlow J (1992) The influence of inhibitory afferents on the development of postsynaptic dendritic arbors. J Comp Neurol 321:637–644

    CAS  PubMed  Google Scholar 

  • Sanes DH (1993) The development of synaptic function and integration in the central auditory system. J Neurosci 13:2627–37

    CAS  PubMed  Google Scholar 

  • Sanes DH, Takács C (1993) Activity-dependent refinement of inhibitory connections. Eur J NeuroSci 5:570–574

    CAS  PubMed  Google Scholar 

  • Sanes DH, Harris WA, Reh TA (2006) Development of the Nervous System, 2nd edn. Academic, San Diego

    Google Scholar 

  • Sarro E, Kotak VC, Sanes DH, Aoki C (2008) Hearing loss alters the subcellular distribution of presynaptic GAD and postsynaptic GABAA receptors in the auditory cortex. Cereb Cortex 18:2855–2867

    PubMed  Google Scholar 

  • Seki S, Eggermont JJ (2003) Changes in spontaneous firing rate and neural synchrony in cat primary auditory cortex after localized tone-induced hearing loss. Hear Res 180:28–38

    PubMed  Google Scholar 

  • Semple MN, Kitzes LM (1985) Single-unit responses in the inferior colliculus: different consequences of contralateral and ipsilateral auditory stimulation. J Neurophysiol 53:1467–1482

    CAS  PubMed  Google Scholar 

  • Shepherd RK, Baxi JH, Hardie NA (1999) Response of inferior colliculus neurons to electrical stimulation of the auditory nerve in neonatally deafened cats. J Neurophysiol 82:1363–1380

    CAS  PubMed  Google Scholar 

  • Snyder RL, Sinex DG, McGee JD, Walsh EW (2000) Acute spiral ganglion lesions change the tuning and tonotopic organziation of cat inferior colliculus neurons. Hear Res 147:200–220

    CAS  PubMed  Google Scholar 

  • Suneja SK, Potashner SJ, Benson CG (1998) Plastic changes in glycine and GABA release and uptake in adult brain stem auditory nuclei after unilateral middle ear ossicle removal and cochlear ablation. Exp Neurol 151:273–288

    CAS  PubMed  Google Scholar 

  • Syka J (2002) Plastic changes in the central auditory system after hearing loss, restoration of function, and during learning. Physiol Rev 82:601-636.

    CAS  PubMed  Google Scholar 

  • Szczepaniak WS, Moller AR (1995) Evidence of decreased GABAergic influence on temporal integration in the inferior colliculus following acute noise exposure: a study of evoked potentials in the rat. Neurosci Let 196:77–80

    CAS  Google Scholar 

  • Takesian AE, Kotak VC, Sanes DH (2007) Sensorineural hearing loss disrupts Inhibitory short-term plasticity in the developing auditory cortex. Assoc Res Otolaryngol 30

    Google Scholar 

  • Tan AY, Zhang LI, Merzenich MM, Schreiner CE (2004) Tone-evoked excitatory and inhibitory synaptic conductances of primary auditory cortex neurons. J Neurophysiol 92:630–643

    PubMed  Google Scholar 

  • Tang AH, Chai Z, Wang SQ (2007) Dark rearing alters the short-term synaptic plasticity in visual cortex. Neurosci Lett 422:49–53

    CAS  PubMed  Google Scholar 

  • Tehrani MH, Barnes EM Jr (1991) Agonist-dependent internalization of gamma-aminobutyric acid A/benzodiazepine receptors in chick cortical neurons. J Neurochem 57:1307–1312

    CAS  PubMed  Google Scholar 

  • Thornton S, Semple MN, Sanes DH (1999) Development of auditory motion processing in the gerbil inferior colliculus. Eur J NeuroSci 11:1414–1420

    Google Scholar 

  • Tollin DJ (2003) The lateral superior olive: a functional role in sound source localization. Neuroscientist 9:127–143

    PubMed  Google Scholar 

  • Tritsch NX, Yi E, Gale JE, Glowatzki E, Bergles DE (2007) The origin of spontaneous activity in the developing auditory system. Nature 450:50–55

    CAS  PubMed  Google Scholar 

  • Tucci DL, Cant NB, Durham D (1999) Conductive hearing loss results in a decrease in central auditory system activity in the young gerbil. Laryngoscope 109:1359–1371

    CAS  PubMed  Google Scholar 

  • Tucci DL, Cant NB, Durham D (2001) Effects of conductive hearing loss on gerbil central auditory system activity in silence. Hear Res 155:124–132

    CAS  PubMed  Google Scholar 

  • Turrigiano G (2007) Homeostatic signaling: the positive side of negative feedback. Curr Opin Neurobiol 17:318–324

    CAS  PubMed  Google Scholar 

  • Vale C, Sanes DH (2000) Afferent regulation of inhibitory synaptic transmission in the developing auditory midbrain. J Neurosci 20:1912–1921

    CAS  PubMed  Google Scholar 

  • Vale C, Sanes DH (2002) The effect of bilateral deafness on excitatory and inhibitory synaptic strength in the inferior colliculus. Eur J NeuroSci 16:2394–2404

    PubMed  Google Scholar 

  • Vale C, Schoorlemmer J, Sanes DH (2003) Deafness disrupts chloride transporter function and inhibitory synaptic transmission. J Neurosci 23:7516–7524

    CAS  PubMed  Google Scholar 

  • Vale C, Juiz J, Moore D, Sanes DH (2004) Unilateral hearing loss produces greater loss of inhibition in the contralateral inferior colliculus. Eur J NeuroSci 20:2133–2140

    PubMed  Google Scholar 

  • Vale C, Caminos E, Martinez-Galán JR, Juiz JM (2005) Expression and developmental regulation of the K+–Cl− cotransporter KCC2 in the cochlear nucleus. Hear Res 206:107–115

    CAS  PubMed  Google Scholar 

  • Wang J, Ding D, Salvi RJ (2002a) Functional reorganization in chinchilla inferior colliculus associated with chronic and acute cochlear damage. Hear Res 168:238–249

    PubMed  Google Scholar 

  • Wang J, McFadden SL, Caspary D, Salvi R (2002b) Gamma-aminobutyric acid circuits shape response properties of auditory cortex neurons. Brain Res 19:219–231

    CAS  Google Scholar 

  • Wang J, Reichling DB, Kyrozis A, MacDermott AB (1994) Developmental loss of GABA- and glycine-induced depolarization and Ca2+ transients in embryonic rat dorsal horn neurons in culture. Eur J NeuroSci 6:1275–1280

    CAS  PubMed  Google Scholar 

  • Wehr M, Zador AM (2003) Balanced inhibition underlies tuning and sharpens spike timing in auditory cortex. Nature 426:442–446

    CAS  PubMed  Google Scholar 

  • Wenthold RJ, Huie D, Altschuler RA, Reeks KA (1987) Glycine immunoreactivity localized in the cochlear nucleus and superior olivary complex. Neurosci 22:897–912

    CAS  Google Scholar 

  • Wenthold RJ, Altschuler RA, Hampson DR (1990) Immunocytochemistry of neurotransmitter receptors. J Electron Microscop Tech 15:81–96

    CAS  Google Scholar 

  • Werthat F, Alexandrova O, Grothe B, Koch U (2008) Experience-dependent refinement of the inhibitory axons projecting to the medial superior olive. Dev Neurobiol 68:1454–1462

    PubMed  Google Scholar 

  • Wiesel TN, Hubel DH (1965) Comparison of the effects of unilateral and bilateral eye closure on cortical unit responses in kittens. J Neurophysiol 28:1029–1040

    CAS  PubMed  Google Scholar 

  • Williams JR, Sharp JW, Kumari VG, Wilson M, Payne JA (1999) The neuron-specific K-Cl cotransporter, KCC2. Antibody development and initial characterization of the protein. J Biol Chem 274:12656–12664

    CAS  PubMed  Google Scholar 

  • Wisden W, Laurie DJ, Monyer H, Seeburg PH (1992) The Distribution of 13 GABA, Receptor Subunit mRNAs in the Rat Brain. I. Telencephalon, Diencephalon, Mesencephalon. J Neurosci 12:1040–1062

    CAS  PubMed  Google Scholar 

  • Woolf NK, Ryan AF (1984) The development of auditory function in the cochlea of the mongolian gerbil. Hear Res 13:277–283

    CAS  PubMed  Google Scholar 

  • Woolf NK, Ryan AF (1985) Ontogeny of neural discharge patterns in the ventral cochlear nucleus of the mongolian gerbil. Dev Brain Res 17:131–147

    Google Scholar 

  • Wu SH, Kelly JB (1994) Physiological evidence for ipsilateral inhibition in the lateral superior olive: synaptic responses in mouse brain slice. Hear Res 73:57–64

    CAS  PubMed  Google Scholar 

  • Wyatt RM, Balice-Gordon RJ (2003) Activity-dependent elimination of neuromuscular synapses. J Neurocytol 32:777–794

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

NIH DC006864 (DHS and VCK), DC008920 (AET), DC009729 (ECS), and NS41091, EY13145, P30 EY13079, DA009618-09 (CA)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dan H. Sanes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Sanes, D.H., Sarro, E.C., Takesian, A.E., Aoki, C., Kotak, V.C. (2010). Regulation of Inhibitory Synapse Function in the Developing Auditory CNS. In: Pallas, S. (eds) Developmental Plasticity of Inhibitory Circuitry. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-1243-5_4

Download citation

Publish with us

Policies and ethics