Skip to main content

Regions of Attraction

  • Chapter
  • First Online:
Control of Complex Systems

Abstract

In dealing with nonlinear systems whose equilibria are locally stable, it is critically important to have a reliable method for estimating the region of attraction. Developing efficient algorithms for this purpose is not an easy task, particularly when the system is large. One of the main challenges in this context is to keep the overall computation time and the associated memory requirements within acceptable limits. An additional (and equally important) objective is to enlarge the size of the estimate by an appropriate choice of feedback. In the case of large-scale systems, this choice is usually restricted to some form of decentralized control, since state information is available only locally.

Most of the existing methods for estimating the region of attraction are based on Lyapunov’s theory and its various extensions (such as La Salle’s invariance principle, for example). The main difficulty with this approach lies in its conservativeness, which is reflected by the fact that the obtained estimates usually represent only a subset of the exact region. This problem has been the subject of extensive research over the past few decades, and a number of possible improvements have been proposed (see e.g., Weissenberger, 1973; Šiljak, 1978; Genesio et al., 1985; Zaborszky et al., 1988; Levin, 1994; Chiang and Fekih- Ahmed, 1996; Rodrigues et al., 2000; Khalil, 2001; Gruyitch, et al., 2003; Tan and Packard, 2008; Chesi, 2009).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bakhtiari, R. and M. Yazdan Panah (2005). Designing a linear controller for polynomial systems with the largest domain of attraction via LMIs. Proceedings of the 5th International Conference on Control and Automation, Budapest, Hungary, 449–453.

    Google Scholar 

  • Cai, H., Z. Qu and J. Dorsey (1996). Robust decentralized excitation control for large scale power systems. Proceedings of the 13th IFAC Congress, San Francisco, CA, 217–222.

    Google Scholar 

  • Chapman, J., M. Ilić, D. King, C. Eng and H. Kaufman (1993). Stabilizing a multimachine power system via decentralized feedback linearizing excitation control. IEEE Transactions on Power Systems, 8, 830–839.

    Article  Google Scholar 

  • Chesi, G. (2004a). Computing output feedback controllers to enlarge the domain of attraction in polynomial systems. IEEE Transactions on Automatic Control, 49, 1846–1850.

    Article  MathSciNet  Google Scholar 

  • Chesi, G. (2004b). Estimating the domain of attraction for uncertain polynomial systems. Automatica, 40, 1981–1986.

    Article  MATH  MathSciNet  Google Scholar 

  • Chesi, G. (2009). Estimating the domain of attraction for non-polynomial systems via LMI optimizations. Automatica, 45, 1536–1541.

    Article  MATH  Google Scholar 

  • Chesi, G., A. Garulli, A. Tesi and A. Vicino (2004). Robust analysis of LFR systems through homogeneous polynomial Lyapunov functions. IEEE Transactions on Automatic Control, 49, 1211–1216.

    Article  MathSciNet  Google Scholar 

  • Chiang, H-D. and J. S. Thorp (1989). The closest unstable equilibrium point method for power system dynamic security assessment. IEEE Transactions on Circuits and Systems I, 36, 1187–1200.

    Google Scholar 

  • Chiang, H-D. and L. Fekih-Ahmed (1996). Quasi-stability regions of nonlinear dynamical systems: Optimal estimations. IEEE Transactions on Circuits and Systems I, 43, 636–643.

    Google Scholar 

  • Cruck, E., R. Moitie and N. Suebe (2001). Estimation of basins of attraction for uncertain systems with affine and Lipschitz dynamics. Dynamics and Control, 11, 211–227.

    Article  MATH  MathSciNet  Google Scholar 

  • Genesio, R., M. Tartaglia and A. Vicino (1985). On the estimation of asymptotic stability regions: State of the art and new proposals. IEEE Transactions on Automatic Control, 30, 747–755.

    Article  MATH  MathSciNet  Google Scholar 

  • Gomes da Silva, J. M. and S. Tarbouriech (2003). Anti-windup design with guaranteed regions of stability: An LMI-based approach. Proceedings of the 42nd IEEE Conference on Decision and Control, Maui, HI, 4451–4456.

    Google Scholar 

  • Gruyitch, L. T., J-P. Richard, P. Borne and J-C. Gentina (2003). Stability Domains. CRC Press, Boca Raton, FL.

    Google Scholar 

  • Guo, G., Y. Wang and D. Hill (2000). Nonlinear output stabilization control for multimachine power systems. IEEE Transactions on Circuits and Systems, 47, 46–53.

    Article  Google Scholar 

  • Henrion, D., S. Tarbouriech and G. Garcia (1999). Output feedback stabilization of uncertain linear systems with saturating controls: An LMI approach. IEEE Transactions on Automatic Control, 44, 2230–2237.

    Article  MATH  MathSciNet  Google Scholar 

  • Hu, T. and Z. Lin (2005). Convex analysis of invariant sets for a class of nonlinear systems. Systems and Control Letters, 54, 729–737.

    Article  MATH  MathSciNet  Google Scholar 

  • Ilić, M. and J. Zaborszky (2000). Dynamics and Control of Large Electric Power Systems. Wiley, New York.

    Google Scholar 

  • Jain, S. and F. Khorrami (1997). Robust decentralized control of power system utilizing only swing angle measurements. International Journal of Control, 66, 581–601.

    Article  MATH  MathSciNet  Google Scholar 

  • Jiang, H., H. Cai, J. Dorsey and Z. Qu (1997). Toward a globally robust decentralized control for large-scale power systems. IEEE Transactions on Control System Technology, 5, 309–319.

    Article  Google Scholar 

  • Johansen, T. A. (2000). Computation of Lyapunov functions for smooth nonlinear systems using convex optimization. Automatica, 36, 1617–1626.

    Article  MATH  MathSciNet  Google Scholar 

  • Khalil, H. K. (2001). Nonlinear Systems. Prentice-Hall, Upper Saddle River, NJ.

    Google Scholar 

  • King, C., J. Chapman and M. Ilić (1994). Feedback linearizing excitation control on a full-scale power system model. IEEE Transactions on Power Systems, 9, 1102–1109.

    Article  Google Scholar 

  • Levin, A. (1994). An analytical method of estimating the domain of attraction for polynomial differential equations. IEEE Transactions on Automatic Control, 39, 2471–2475.

    Article  MATH  Google Scholar 

  • Pai, M. A. (1989). Energy Function Analysis for Power System Stability. Kluwer, Boston, MA.

    Google Scholar 

  • Rodrigues, H. M., L. F. C. Alberto and N. G. Bretas (2000). On the invariance principle: Generalizations and applications to synchronization. IEEE Transactions on Circuits and Systems I, 47, 730–739.

    Google Scholar 

  • Rodrigues, H. M., L. F. C. Alberto and N. G. Bretas (2001). Uniform invariance principle and synchronization. Robustness with respect to parameter variation. Journal of Differential Equations, 169, 228–254.

    Google Scholar 

  • Saad, Y. (2003). Iterative Methods for Sparse Linear Systems. 2nd Edition, SIAM, Philadelphia, PA.

    MATH  Google Scholar 

  • Sauer P. W. and M. A. Pai (1998). Power System Dynamics and Stability. Prentice-Hall, Upper Saddle River, NJ.

    Google Scholar 

  • Shim, H. and J. H. Seo (2000). Non-linear output feedback stabilization on a bounded region of attraction. International Journal of Control, 73, 416–426.

    Article  MATH  MathSciNet  Google Scholar 

  • Šiljak, D. D. (1978). Large-Scale Dynamic Systems: Stability and Structure. North-Holland, New York.

    MATH  Google Scholar 

  • Šiljak, D. D., D. M. Stipanović and A. I. Zečević (2002). Robust decentralized turbine/governor control using linear matrix inequalities. IEEE Transactions on Power Systems,17, 715–722.

    Google Scholar 

  • Tan, W. and A. Packard (2008). Stability region analysis using polynomial and composite polynomial Lyapunov functions and sum-of-squares programming. IEEE Transactions on Automatic Control, 53, 565–571.

    Article  MathSciNet  Google Scholar 

  • Trofino, A. (2000). Robust stability and domain of attraction of uncertain nonlinear systems. Proceedings of the American Control Conference, Chicago, IL, 3707–3711.

    Google Scholar 

  • Qu, Z., J. Dorsey, J. Bond and J. McCalley (1992). Application of robust control to sustained oscillations in power systems. IEEE Transactions on Circuits and Systems, 39, 470–476.

    Article  Google Scholar 

  • Wang, Y., D. Hill and G. Guo (1998). Robust decentralized control for multimachine power systems. IEEE Transactions on Circuits and Systems, 45, 271–279.

    Article  Google Scholar 

  • Weissenberger, S. (1973). Stability regions of large-scale systems. Automatica, 9, 653–663.

    Article  MATH  MathSciNet  Google Scholar 

  • Xie, S., L. Xie, Y. Wang and G. Guo (2000). Decentralized control of multimachine power systems with guaranteed performance. IEE Proceedings: Control Theory and Applications, 147, 355–365.

    Article  Google Scholar 

  • Zaborszky, J., G. Huang, B. Zheng and T. -C. Leung (1988). On the phase portrait of a class of large nonlinear dynamic systems such as the power system. IEEE Transactions on Automatic Control, 33, 4–15.

    Article  MATH  MathSciNet  Google Scholar 

  • Zečević, A. I., G. Nešković and D. D. Šiljak (2004). Robust decentralized exciter control with linear feedback. IEEE Transactions on Power Systems, 19, 1096–1103.

    Article  Google Scholar 

  • Zečević, A. I. and D. D. Šiljak (2010). Estimating the region of attraction for large-scale systems with uncertainties. Automatica (to appear).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aleksandar I. Zečević .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Zečević, A.I., Šiljak, D.D. (2010). Regions of Attraction. In: Control of Complex Systems. Communications and Control Engineering. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-1216-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-1216-9_4

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-1215-2

  • Online ISBN: 978-1-4419-1216-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics