Skip to main content

Neuroscientific Approaches to the Study of Individual Differences in Cognition and Personality

  • Chapter
  • First Online:
Handbook of Individual Differences in Cognition

Part of the book series: The Springer Series on Human Exceptionality ((SSHE))

Abstract

In the particular field of the psychology of individual differences, the one that deals with cognitive performance probably has the longest and maybe the most comprehensive research tradition. Individual differences in cognitive ability, viz. intelligence, now span more than 100 years of research tradition, if we start from Francis Galton’s (1883) notion of intelligence as an inherited feature of an efficiently functioning central nervous system (CNS). While it is mostly known that his approach to measure CNS efficiency by using simple sensory and motor tasks (that he correlated with indices of success and accomplishment) was not particularly successful, later on his approach received extensive attention. Basically starting with Erwin Roth’s (1964) study on “Die Geschwindigkeit der Informationsverarbeitung und ihr Zusammenhang mit Intelligenz” (The relationship of speed of information processing to intelligence), considerable evidence on the relationship between basic information processing characteristics of individuals and their measured cognitive ability (now using psychometric intelligence tests) has been collected. Some of the most highly visible intelligence researchers who deal with this line of research, recently provided excellent reviews (Deary, 2000; Jensen, 2006) showing that there is an overwhelming evidence for a positive relationship between speed of information processing and psychometric intelligence. Proponents of this line of research often refer to the basic quality of such elementary cognitive tasks (ECTs), assuming that they measure relatively close to fundamental processes of the brain. Recently, a second important elementary cognitive approach to human intelligence has collected a considerable body of evidence for a relationship of working memory and central executive functioning with psychometric intelligence (e.g., Collette & van der Linden, 2002; Conway, Cowen, Bunting, Therriault, & Minkoff, 2002; Engle, Tuholski, Laughlin, & Conway, 1999; Smith & Jonides, 2003).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Amabile, T. M. (1982). Social psychology of creativity: A consensual assessment technique. Journal of Personality and Social Psychology, 43, 997–1013.

    Article  Google Scholar 

  • Andreasen, N. C., O’Leary, D. S., Arndt, S., Cizadlo, T., Rezai, K., Watkins, G. L., et al. (1995). PET Studies of memory: Novel and practiced free recall of complex narratives. NeuroImage, 2, 284–295.

    Article  PubMed  Google Scholar 

  • Bechtereva, N. P., Korotkov, A. D., Pakhomov, S. V., Roudas, M. S., Starchenko, M. G., & Medvedev, S. V. (2004). PET study of brain maintenance of verbal creative activity. International Journal of Psychophysiology, 53, 11–20.

    Article  PubMed  Google Scholar 

  • Canli, T. (2004). Functional brain mapping of extraversion and neuroticism: Learning from individual differences in emotion processing. Journal of Personality, 72, 1105–1132.

    Article  PubMed  Google Scholar 

  • Charlot, V., Tzourio, N., Zilbovicius, M., Mazoyer, B., & Denis, M. (1992). Different mental imagery abilities result in different regional cerebral blood flow activation patterns during cognitive tasks. Neuropsychologia, 30, 565–580.

    Article  PubMed  Google Scholar 

  • Chavanon, M.-L., Wacker, J., Leue, A., & Stemmler, G. (2007). Evidence for a dopaminergic link between working memory and agentic extraversion: An analysis for load-related changes in EEG alpha 1 activity. Biological Psychology, 74, 46–59.

    Article  PubMed  Google Scholar 

  • Collette, F., & Van der Linden, M. (2002). Brain imaging of the central executive component of working memory. Neuroscience and Biobehavioral Reviews, 26, 105–125.

    Article  PubMed  Google Scholar 

  • Conway, A. R. A., Cowen, N., Bunting, M. F., Therriault, D. J., & Minkoff, S. R. B. (2002). A latent variable analysis of working memory capacity, short-term memory capacity, processing speed, and general fluid intelligence. Intelligence, 30, 163–183.

    Article  Google Scholar 

  • Coull, J. T. (1998). Neural correlates of attention and arousal: Insights from electrophysiology, functional neuroimaging and psychopharmacology. Progress in Neurobiology, 55, 343–361.

    Article  PubMed  Google Scholar 

  • Deary, I. J. (2000). Looking down on human intelligence: From psychometrics to the brain. Oxford, NY: Oxford University Press.

    Book  Google Scholar 

  • Dietrich, A. (2004). The cognitive neuroscience of creativity. Psychonomic Bulletin & Review, 11, 1011–1026.

    Article  Google Scholar 

  • Doppelmayr, M., Klimesch, W., Hödlmoser, K., Sauseng, P., & Gruber, W. (2005). Intelligence related upper alpha desynchronization in a semantic memory task. Brain Research Bulletin, 66, 171–177.

    Article  PubMed  Google Scholar 

  • Engle, R. W., Tuholski, S. W., Laughlin, J. E., & Conway, A. R. A. (1999). Working memory, short-term memory, and general fluid intelligence: A latent-variable approach. Journal of Experimental Psychology: General, 128, 309–331.

    Article  Google Scholar 

  • Ertl, J., & Schafer, E. (1969). Brain response correlates of psychometric intelligence. Nature, 223, 421–422.

    Article  PubMed  Google Scholar 

  • Eysenck, H. J. (1967). The biological basis of personality. Springfield, IL: Charles C. Thomas.

    Google Scholar 

  • Eysenck, M. W. (1982). Attention and arousal. New York: Springer.

    Book  Google Scholar 

  • Fink, A. (2005). Event-related desynchronization in the EEG during emotional and cognitive information processing: Differential effects of extraversion. Biological Psychology, 70, 152–160.

    Article  PubMed  Google Scholar 

  • Fink, A., Benedek, M., Grabner, R. H., Staudt, B., & Neubauer, A. C. (2007). Creativity meets neuroscience: Experimental tasks for the neuroscientific study of creative thinking. Methods, 42, 68–76.

    Article  PubMed  Google Scholar 

  • Fink, A., Grabner, R. H., Benedek, M., Reishofer, G., Hauswirth, V., Fally, M., et al. (2009). The creative brain: Investigation of brain activity during creative problem solving by means of EEG and fMRI. Human Brain Mapping, 30(3), 734–748.

    Article  PubMed  Google Scholar 

  • Fink, A., Grabner, R. H., Neuper, C., & Neubauer, A. C. (2005). Extraversion and cortical activation during memory performance. International Journal of Psychophysiology, 56, 129–141.

    Article  PubMed  Google Scholar 

  • Fink, A., & Neubauer, A. C. (2004). Extraversion and cortical activation: Effects of task complexity. Personality and Individual Differences, 36, 333–347.

    Article  Google Scholar 

  • Fink, A., & Neubauer, A. C. (2006). EEG alpha oscillations during the performance of verbal creativity tasks: Differential effects of sex and verbal intelligence. International Journal of Psychophysiology, 62, 46–53.

    Article  PubMed  Google Scholar 

  • Fink, A., & Neubauer, A. C. (2008). Eysenck meets Martindale: The relationship between extraversion and creativity from a neuroscientific perspective. Personality and Individual Differences, 44, 299–310.

    Article  Google Scholar 

  • Fink, A., Schrausser, D. G., & Neubauer, A. C. (2002). The moderating influence of extraversion on the relationship between IQ and cortical activation. Personality and Individual Differences, 33, 311–326.

    Article  Google Scholar 

  • Gale, A. (1983). Electroencephalographic studies of extraversion-introversion: A case study in the psychophysiology of individual differences. Personality and Individual Differences, 4, 371–380.

    Article  Google Scholar 

  • Gale, A., Edwards, J., Morris, P., Moore, R., & Forrester, D. (2001). Extraversion-introversion, neuroticism-stability, and EEG indicators of positive and negative emphatic mood. Personality and Individual Differences, 30, 449–461.

    Google Scholar 

  • Galton, F. (1883). Inquiries into human faculty and its development. London: Macmillan.

    Google Scholar 

  • Gevins, A., & Smith, M. E. (2000). Neurophysiological measures of working memory and individual differences in cognitive ability and cognitive style. Cerebral Cortex, 10, 829–839.

    Article  PubMed  Google Scholar 

  • Grabner, R. H., Fink, A., Stipacek, A., Neuper, C., & Neubauer, A. C. (2004). Intelligence and working memory systems: Evidence of neural efficiency in alpha band ERD. Cognitive Brain Research, 20, 212–225.

    Article  PubMed  Google Scholar 

  • Gray, J. R., Burgess, G. C., Schaefer, A., Yarkoni, T., Larsen, R. J., & Braver, T. S. (2005). Affective personality differences in neural processing efficiency confirmed using fMRI. Cognitive, Affective & Behavioral Neuroscience, 5, 182–190.

    Article  Google Scholar 

  • Gray, J. R., Chabris, C. F., & Braver, T. S. (2003). Neural mechanisms of general fluid intelligence. Nature Neuroscience, 6, 316–322.

    Article  PubMed  Google Scholar 

  • Gray, J. R., & Thompson, P. M. (2004). Neurobiology of intelligence: Science and ethics. Nature Reviews Neuroscience, 5, 471–482.

    Article  PubMed  Google Scholar 

  • Guilford, J. P. (1950). Creativity. The American Psychologist, 5, 444–454.

    Article  PubMed  Google Scholar 

  • Guilford, J. P. (1967). The nature of human intelligence. New York: McGraw-Hill.

    Google Scholar 

  • Hagemann, D., Naumann, E., Lurken, A., Becker, G., Maier, S., & Bartussek, D. (1999). EEG asymmetry, dispositional mood and personality. Personality and Individual Differences, 27, 541–568.

    Article  Google Scholar 

  • Haier, R., & Benbow, C. P. (1995). Sex differences and lateralization in temporal lobe glucose metabolism during mathematical reasoning. Developmental Neuropsychology, 11, 405–414.

    Article  Google Scholar 

  • Haier, R. J., Siegel, B. V., Nuechterlein, K. H., Hazlett, E., Wu, J. C., Paek, J., et al. (1988). Cortical glucose metabolic rate correlates of abstract reasoning and attention studied with positron emission tomography. Intelligence, 12, 199–217.

    Article  Google Scholar 

  • Haier, R. J., Siegel, B., Tang, C., Abel, L., & Buchsbaum, M. S. (1992). Intelligence and changes in regional cerebral glucose metabolic rate following learning. Intelligence, 16, 415–426.

    Article  Google Scholar 

  • Jaušovec, N. (1998). Are gifted individuals less chaotic thinkers? Personality and Individual Differences, 25, 253–267.

    Article  Google Scholar 

  • Jaušovec, N. (2000). Differences in cognitive processes between gifted, intelligent, creative, and average individuals while solving complex problems: An EEG study. Intelligence, 28, 213–237.

    Article  Google Scholar 

  • Jaušovec, N., & Jaušovec, K. (2000). EEG activity during the performance of complex mental problems. International Journal of Psychophysiology, 36, 73–88.

    Article  PubMed  Google Scholar 

  • Jaušovec, N., & Jaušovec, K. (2004). Differences in induced brain activity during the performance of learning and working-memory tasks related to intelligence. Brain and Cognition, 54, 65–74.

    Article  PubMed  Google Scholar 

  • Jaušovec, N., & Jaušovec, K. (2005). Differences in induced gamma and upper alpha oscillations in the human brain related to verbal/performance and emotional intelligence. International Journal of Psychophysiology, 56, 223–235.

    Article  PubMed  Google Scholar 

  • Jensen, A. R. (2006). Clocking the mind: Mental chronometry and individual differences. Oxford: Elsevier.

    Google Scholar 

  • Jung, R. E., & Haier, R. J. (2007). The parieto-frontal integration theory (P-FIT) of intelligence: Converging neuroimaging evidence. Behavioral and Brain Sciences, 30, 135–154.

    Article  PubMed  Google Scholar 

  • Jung-Beeman, M., Bowden, E. M., Haberman, J., Frymiare, J. L., Arambel-Liu, S., Greenblatt, R., et al. (2004). Neural activity when people solve verbal problems with insight. PLoS Biology, 2, 500–510.

    Article  Google Scholar 

  • Klimesch, W. (1999). EEG alpha and theta oscillations reflect cognitive and memory performance: A review and analysis. Brain Research Reviews, 29, 169–195.

    Article  PubMed  Google Scholar 

  • Klimesch, W., Doppelmayr, M., & Hanslmayr, S. (2006). Upper alpha ERD and absolute power: Their meaning for memory performance. In C. Neuper & W. Klimesch (Eds.), Progress in brain research: Vol. 159 Event-related dynamics of brain oscillations (pp. 151–165). Amsterdam: Elsevier.

    Chapter  Google Scholar 

  • Klimesch, W., Doppelmayr, M., Pachinger, T., & Russegger, H. (1997). Event-related desynchronization in the alpha band and the processing of semantic information. Cognitive Brain Research, 6, 83–94.

    Article  PubMed  Google Scholar 

  • Klimesch, W., Doppelmayr, M., Schwaiger, J., Auinger, P., & Winkler, T. (1999). “Paradoxical” alpha synchronization in a memory task. Cognitive Brain Research, 7, 493–501.

    Article  PubMed  Google Scholar 

  • Klimesch, W., Sauseng, P., & Hanslmayr, S. (2007). EEG alpha oscillations: The inhibition timing hypothesis. Brain Research Reviews, 53, 63–88.

    Article  PubMed  Google Scholar 

  • Klimesch, W., Schimke, H., Doppelmayr, M., Ripper, B., Schwaiger, J., & Pfurtscheller, G. (1996). Event-related desynchronization (ERD) and the Dm-effect: Does alpha desynchronization during encoding predict later recall performance? International Journal of Psychophysiology, 24, 47–60.

    Article  PubMed  Google Scholar 

  • Kris, E. (1952). Psychoanalytic explorations in art. New York: International Universities Press.

    Google Scholar 

  • Kucharska-Pietura, K., Phillips, M. L., Gernand, W., & David, A. S. (2003). Perception of emotions from faces and voices following unilateral brain damage. Neuropsychologia, 41, 1082–1090.

    Article  PubMed  Google Scholar 

  • Kumari, V., Ffytche, D. H., Williams, S. C., & Gray, J. A. (2004). Personality predicts brain responses to cognitive demands. Journal of Neuroscience, 24, 10636–10641.

    Article  PubMed  Google Scholar 

  • Kyllonen, P. C., & Christal, R. E. (1990). Reasoning ability is (little more than) working memory capacity?! Intelligence, 14, 389–433.

    Article  Google Scholar 

  • Lee, K. H., Choi, Y. Y., Gray, J. R., Cho, S. H., Chae, J.-H., Lee, S., et al. (2006). Neural correlates of superior intelligence: Stronger recruitment of posterior parietal cortex. NeuroImage, 29, 578–586.

    Article  PubMed  Google Scholar 

  • Martindale, C. (1999). Biological bases of creativity. In R. Sternberg (Ed.), Handbook of creativity (pp. 137–152). Cambridge, UK: Cambridge University Press.

    Google Scholar 

  • Martindale, C., & Hasenfus, N. (1978). EEG differences as a function of creativity, stage of the creative process, and effort to be original. Biological Psychology, 6, 157–167.

    Article  PubMed  Google Scholar 

  • Martindale, C., & Hines, D. (1975). Creativity and cortical activation during creative, intellectual, and EEG feedback tasks. Biological Psychology, 3, 71–80.

    Article  Google Scholar 

  • Matthews, G., & Gilliland, K. (1999). The personality theories of H. J. Eysenck and J. A. Gray: A comparative review. Personality and Individual Differences, 26, 583–626.

    Article  Google Scholar 

  • Mednick, S. A. (1962). The associative basis of the creative process. Psychological Review, 69, 220–232.

    Article  PubMed  Google Scholar 

  • Mendelsohn, G. A. (1976). Associative and attentional processes in creative performance. Journal of Personality, 44, 341–369.

    Article  Google Scholar 

  • Mölle, M., Marshall, L., Wolf, B., Fehm, H. L., & Born, J. (1999). EEG complexity and performance measures of creative thinking. Psychophysiology, 36, 95–104.

    Article  PubMed  Google Scholar 

  • Neubauer, A. C., & Fink, A. (2003). Fluid intelligence and neural efficiency: Effects of task complexity and sex. Personality and Individual Differences, 35, 811–827.

    Article  Google Scholar 

  • Neubauer, A. C., & Fink, A. (2009). Intelligence and Neural efficiency. Neuroscience & Biobehavioral Reviews, 33, 1004–1023.

    Google Scholar 

  • Neubauer, A. C., Fink, A., & Schrausser, D. G. (2002). Intelligence and neural efficiency: The influence of task content and sex on the brain-IQ relationship. Intelligence, 30, 515–536.

    Article  Google Scholar 

  • Neubauer, A. C., Grabner, R. H., Fink, A., & Neuper, C. (2005). Intelligence and neural efficiency: Further evidence of the influence of task content and sex on the brain-IQ relationship. Cognitive Brain Research, 25, 217–225.

    Article  PubMed  Google Scholar 

  • Neubauer, A. C., Sange, G., & Pfurtscheller, G. (1999). Psychometric intelligence and event-related desynchronisation during performance of a letter matching task. In G. Pfurtscheller & F. H. Lopes da Silva (Eds.), Event-Related Desynchronization (ERD) and Related Oscillatory EEG-phenomena of the awake brain (pp. 219–231). Amsterdam: Elsevier.

    Google Scholar 

  • Posner, M. I., & Mitchell, R. F. (1967). Chronometric analysis of classification. Psychological Review, 74, 392–409.

    Article  PubMed  Google Scholar 

  • Posner, M. I., & Petersen, S. E. (1990). The attention system of the human brain. Annual Review of Neuroscience, 13, 25–42.

    Article  PubMed  Google Scholar 

  • Razoumnikova, O. M. (2000). Functional organization of different brain areas during convergent and divergent thinking: An EEG investigation. Cognitive Brain Research, 10, 11–18.

    Article  PubMed  Google Scholar 

  • Razoumnikova, O. M. (2004). Gender differences in hemispheric organization during divergent thinking: An EEG investigation in human subjects. Neuroscience Letters, 362, 193–195.

    Article  Google Scholar 

  • Razoumnikova, O. M. (2007). Creativity related cortex activity in the remote associates task. Brain Research Bulletin, 73, 96–102.

    Article  Google Scholar 

  • Roth, E. (1964). Die Geschwindigkeit der Verarbeitung von Information und ihr Zusammenhang mit Intelligenz [The relationship of speed of information processing to intelligence]. Zeitschrift für Experimentelle und Angewandte Psychologie, 11, 616–622.

    Google Scholar 

  • Ruff, C. C., Knauff, M., Fangmeier, T., & Spreer, J. (2003). Reasoning and working memory: Common and distinct neural processes. Neuropsychologia, 41, 1241–1253.

    Article  PubMed  Google Scholar 

  • Runco, M. A. (1999). Divergent thinking. In M. A. Runco & S. R. Pritzker (Eds.), Encyclopedia of creativity (pp. 577–582). San Diego, CA: Academic Press.

    Google Scholar 

  • Rypma, B., Berger, J. S., Prabhakaran, V., Bly, B. M., Kimberg, D. Y., Biswal, B. B., et al. (2006). Neural correlates of cognitive efficiency. NeuroImage, 33, 969–979.

    Article  PubMed  Google Scholar 

  • Schmidtke, J. I., & Heller, W. (2004). Personality, affect and EEG: Predicting patterns of regional brain activity related to extraversion and neuroticism. Personality and Individual Differences, 36, 717–732.

    Article  Google Scholar 

  • Smith, E. E., & Jonides, J. (2003). Executive control and thought. In L. Squire (Ed.), Fundamentals of neuroscience (pp. 1377–1394). New York: Academic Press.

    Google Scholar 

  • Stankov, L. (2000). Complexity, metacognition, and intelligence. Intelligence, 28, 121–143.

    Article  Google Scholar 

  • Stein, M. I. (1953). Creativity and culture. Journal of Psychology, 36, 311–322.

    Article  Google Scholar 

  • Sternberg, R. J., & Lubart, T. (1996). Investing in creativity. The American Psychologist, 51(7), 677–688.

    Article  Google Scholar 

  • Tran, Y., Craig, A., & McIsaac, P. (2001). Extraversion-introversion and 8–13 Hz waves in frontal cortical regions. Personality and Individual Differences, 30, 205–215.

    Article  Google Scholar 

  • Vernon, P. A., & Mori, M. (1992). Intelligence, reaction times, and peripheral nerve conduction velocity. Intelligence, 16, 273–288.

    Article  Google Scholar 

  • Vernon, P. A., Wickett, J. C., Bazana, P. G., & Stelmack, R. M. (2000). The neuropsychology and psychophysiology of human intelligence. In R. J. Sternberg (Ed.), Handbook of intelligence (pp. 245–264). New York: Cambridge University Press.

    Chapter  Google Scholar 

  • Vitouch, O., Bauer, H., Gittler, G., Leodolter, M., & Leodolter, U. (1997). Cortical activity of good and poor spatial test performers during spatial and verbal processing studied with slow potential topography. International Journal of Psychophysiology, 27, 183–199.

    Article  PubMed  Google Scholar 

  • Wickett, J. C., & Vernon, P. A. (1994). Peripheral nerve conduction velocity, reaction time, and intelligence: An attempt to replicate Vernon and Mori (1992). Intelligence, 18, 127–131.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aljoscha C. Neubauer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Neubauer, A.C., Fink, A. (2010). Neuroscientific Approaches to the Study of Individual Differences in Cognition and Personality. In: Gruszka, A., Matthews, G., Szymura, B. (eds) Handbook of Individual Differences in Cognition. The Springer Series on Human Exceptionality. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-1210-7_5

Download citation

Publish with us

Policies and ethics