Skip to main content

Systemic Gene Delivery for Muscle Gene Therapy

  • Chapter
  • First Online:
Muscle Gene Therapy

Abstract

The muscular dystrophies (MDs) are a heterogeneous group of monogenetic disorders that affect striated muscles, often throughout the body. A promising approach to treating the MDs is to use gene therapy to replace, repair, or modify expression of the mutant gene. Accomplishing such a goal requires that gene expression cassettes, which comprise a gene regulatory element driving expression of an effecter DNA sequence and are followed by a transcriptional terminator, be delivered to target cells to counteract the effects of the mutation. For the MDs, this type of therapy will require delivering expression cassettes to all the striated muscles in a patient’s body. Striated muscle forms a significant percentage of total body mass, so the prospects for achieving such large spread delivery had seemed like a remote goal. Recent studies using a variety of vector systems indicate that genes can be delivered to muscles body wide by infusing them into the blood stream under appropriate conditions. The simplest and one of the most promising methods for systemic delivery involves infusion of vectors derived from adeno-associated virus (AAV). These recombinant AAV vectors can target muscles throughout the body of small, adult mammals and may be adaptable to larger animals and humans. Consequently, the use of rAAV vectors has great potential to lead to a therapy for the MDs and other disorders of striated muscle.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alba, R., Bosch, A., and Chillon, M. (2005). Gutless adenovirus: last-generation adenovirus for gene therapy. Gene Ther 12 Suppl 1, S18–27.

    Article  CAS  Google Scholar 

  • Amalfitano, A., Hauser, M.A., Hu, H., Serra, D., Begy, C.R., and Chamberlain, J.S. (1998). Production and characterization of improved adenovirus vectors with the E1, E2b, and E3 genes deleted. J Virol 72, 926–933.

    CAS  PubMed  Google Scholar 

  • Arruda, V.R., Stedman, H.H., Nichols, T.C., Haskins, M.E., Nicholson, M., Herzog, R.W., Couto, L.B., and High, K.A. (2005). Regional intravascular delivery of AAV-2-F.IX to skeletal muscle achieves long-term correction of hemophilia B in a large animal model. Blood 105, 3458–3464.

    Article  CAS  PubMed  Google Scholar 

  • Bartoli, M., Poupiot, J., Vulin, A., Fougerousse, F., Arandel, L., Daniele, N., Roudaut, C., Noulet, F., Garcia, L., Danos, O., et al. (2007). AAV-mediated delivery of a mutated myostatin propeptide ameliorates calpain 3 but not alpha-sarcoglycan deficiency. Gene Ther 14, 733–740.

    Article  CAS  PubMed  Google Scholar 

  • Bish, L.T., Sleeper, M.M., Brainard, B., Cole, S., Russell, N., Withnall, E., Arndt, J., Reynolds, C., Davison, E., Sanmiguel, J., et al. (2008). Percutaneous transendocardial delivery of self-complementary adeno-associated virus 6 achieves global cardiac gene transfer in canines. Mol Ther 16, 1953–1959.

    Article  CAS  PubMed  Google Scholar 

  • Blankinship, M.J., Gregorevic, P., Allen, J.M., Harper, S.Q., Harper, H., Halbert, C.L., Miller, D.A., and Chamberlain, J.S. (2004). Efficient transduction of skeletal muscle using vectors based on adeno-associated virus serotype 6. Mol Ther 10, 671–678.

    Article  CAS  PubMed  Google Scholar 

  • Blankinship, M.J., Gregorevic, P., and Chamberlain, J.S. (2006). Gene therapy strategies for Duchenne muscular dystrophy utilizing recombinant adeno-associated virus vectors. Mol Ther 13, 241–249.

    Article  CAS  PubMed  Google Scholar 

  • Bohl, D., Salvetti, A., Moullier, P., and Heard, J.M. (1998). Control of erythropoietin delivery by doxycycline in mice after intramuscular injection of adeno-associated vector. Blood 92, 1512–1517.

    CAS  PubMed  Google Scholar 

  • Bostick, B., Yue, Y., Lai, Y., Long, C., Li, D., and Duan, D. (2008). Adeno-associated virus serotype-9 microdystrophin gene therapy ameliorates electrocardiographic abnormalities in mdx mice. Hum Gene Ther 19, 851–856.

    Article  CAS  PubMed  Google Scholar 

  • Brunetti-Pierri, N., Palmer, D.J., Beaudet, A.L., Carey, K.D., Finegold, M., and Ng, P. (2004). Acute toxicity after high-dose systemic injection of helper-dependent adenoviral vectors into nonhuman primates. Hum Gene Ther 15, 35–46.

    Article  CAS  PubMed  Google Scholar 

  • Cavazzana-Calvo, M., and Fischer, A. (2007). Gene therapy for severe combined immunodeficiency: are we there yet? J Clin Invest 117, 1456–1465.

    Article  CAS  PubMed  Google Scholar 

  • Chamberlain, J.S. (2002). Gene therapy of muscular dystrophy. Hum Mol Genet 11, 2355–2362.

    Article  CAS  PubMed  Google Scholar 

  • Chamberlain, J.S., and Rando, T.A., eds. (2006). Duchenne Muscular Dystrophy: Advances in Therapeutics (New York, Taylor and Francis).

    Google Scholar 

  • Chamberlain, J.R., Schwarze, U., Wang, P.R., Hirata, R.K., Hankenson, K.D., Pace, J.M., Underwood, R.A., Song, K.M., Sussman, M., Byers, P.H., et al. (2004). Gene targeting in stem cells from individuals with osteogenesis imperfecta. Science 303, 1198–1201.

    Article  CAS  PubMed  Google Scholar 

  • Chao, H., Liu, Y., Rabinowitz, J., Li, C., Samulski, R.J., and Walsh, C.E. (2000). Several log increase in therapeutic transgene delivery by distinct adeno-associated viral serotype vectors. Mol Ther 2, 619–623.

    Article  CAS  PubMed  Google Scholar 

  • Crawford, G.E., Faulkner, J.A., Crosbie, R.H., Campbell, K.P., Froehner, S.C., and Chamberlain, J.S. (2000). Assembly of the dystrophin-associated protein complex does not require the dystrophin COOH-terminal domain. J Cell Biol 150, 1399–1410.

    Article  CAS  PubMed  Google Scholar 

  • Danialou, G., Comtois, A.S., Dudley, R.W., Nalbantoglu, J., Gilbert, R., Karpati, G., Jones, D.H., and Petrof, B.J. (2002). Ultrasound increases plasmid-mediated gene transfer to dystrophic muscles without collateral damage. Mol Ther 6, 687–693.

    Article  CAS  PubMed  Google Scholar 

  • DelloRusso, C., Scott, J.M., Hartigan-O’Connor, D., Salvatori, G., Barjot, C., Robinson, A.S., Crawford, R.W., Brooks, S.V., and Chamberlain, J.S. (2002). Functional correction of adult mdx mouse muscle using gutted adenoviral vectors expressing full-length dystrophin. Proc Natl Acad Sci U S A 99, 12979–12984.

    Article  CAS  PubMed  Google Scholar 

  • Doerfler, W. (1986). Adenovirus DNA, The Viral Genome and Its Expression (Boston, Martinus Nijhoff Publishing).

    Google Scholar 

  • Donsante, A., Miller, D.G., Li, Y., Vogler, C., Brunt, E.M., Russell, D.W., and Sands, M.S. (2007). AAV vector integration sites in mouse hepatocellular carcinoma. Science 317, 477.

    Article  CAS  PubMed  Google Scholar 

  • Duan, D., Yue, Y., Yan, Z., and Engelhardt, J.F. (2000). A new dual-vector approach to enhance recombinant adeno-associated virus-mediated gene expression through intermolecular cis activation. Nat Med 6, 595–598.

    Article  CAS  PubMed  Google Scholar 

  • Duan, D., Yan, Z., Yue, Y., Ding, W., and Engelhardt, J.F. (2001). Enhancement of muscle gene delivery with pseudotyped adeno-associated virus type 5 correlates with myoblast differentiation. J Virol 75, 7662–7671.

    Article  CAS  PubMed  Google Scholar 

  • Dudley, R.W., Lu, Y., Gilbert, R., Matecki, S., Nalbantoglu, J., Petrof, B.J., and Karpati, G. (2004). Sustained improvement of muscle function one year after full-length dystrophin gene transfer into mdx mice by a gutted helper-dependent adenoviral vector. Hum Gene Ther 15, 145–156.

    Article  CAS  PubMed  Google Scholar 

  • Emery, A.E., and Muntoni, F. (2003). Duchenne Muscular Dystrophy, 3rd edn (Oxford, Oxford University Press).

    Google Scholar 

  • Espenlaub, S., Wortmann, A., Engler, T., Corjon, S., Kochanek, S., and Kreppel, F. (2008). Reductive amination as a strategy to reduce adenovirus vector promiscuity by chemical capsid modification with large polysaccharides. J Gene Med 10, 1303–1314.

    Article  CAS  PubMed  Google Scholar 

  • Evans, V., Foster, H., Graham, I.R., Foster, K., Athanasopoulos, T., Simons, J.P., Dickson, G., and Owen, J.S. (2008). Human apolipoprotein E expression from mouse skeletal muscle by electrotransfer of nonviral DNA (plasmid) and pseudotyped recombinant adeno-associated virus (AAV2/7). Hum Gene Ther 19, 569–578.

    Article  CAS  PubMed  Google Scholar 

  • Fisher, K.J., Jooss, K., Alston, J., Yang, Y., Haecker, S.E., High, K., Pathak, R., Raper, S.E., and Wilson, J.M. (1997). Recombinant adeno-associated virus for muscle directed gene therapy. Nat Med 3, 306–312.

    Article  CAS  PubMed  Google Scholar 

  • Gao, G.P., Alvira, M.R., Wang, L., Calcedo, R., Johnston, J., and Wilson, J.M. (2002). Novel adeno-associated viruses from rhesus monkeys as vectors for human gene therapy. Proc Natl Acad Sci U S A 99, 11854–11859.

    Article  CAS  PubMed  Google Scholar 

  • Gao, G., Vandenberghe, L.H., Alvira, M.R., Lu, Y., Calcedo, R., Zhou, X., and Wilson, J.M. (2004). Clades of Adeno-associated viruses are widely disseminated in human tissues. J Virol 78, 6381–6388.

    Article  CAS  PubMed  Google Scholar 

  • Gao, G., Vandenberghe, L.H., and Wilson, J.M. (2005). New recombinant serotypes of AAV vectors. Curr Gene Ther 5, 285–297.

    Article  CAS  PubMed  Google Scholar 

  • Ghosh, A., Yue, Y., Long, C., Bostick, B., and Duan, D. (2007). Efficient whole-body transduction with trans-splicing adeno-associated viral vectors. Mol Ther 15, 750–755.

    Article  CAS  PubMed  Google Scholar 

  • Ghosh, A., Yue, Y., Lai, Y., and Duan, D. (2008). A hybrid vector system expands adeno-associated viral vector packaging capacity in a transgene-independent manner. Mol Ther 16, 124–130.

    Article  CAS  PubMed  Google Scholar 

  • Goehringer, C., Rutschow, D., Bauer, R., Schinkel, S., Weichenhan, D., Bekeredjian, R., Straub, V., Kleinschmidt, J.A., Katus, H.A., and Muller, O.J. (2009). Prevention of cardiomyopathy in {delta}-sarcoglycan knock-out mice after systemic transfer of targeted adeno-associated viral vectors. Cardiovasc Res 82, 404–410.

    Google Scholar 

  • Gonin, P., Arandel, L., Van Wittenberghe, L., Marais, T., Perez, N., and Danos, O. (2005). Femoral intra-arterial injection: a tool to deliver and assess recombinant AAV constructs in rodents whole hind limb. J Gene Med 7, 782–791.

    Article  CAS  PubMed  Google Scholar 

  • Goyenvalle, A., Vulin, A., Fougerousse, F., Leturcq, F., Kaplan, J.C., Garcia, L., and Danos, O. (2004). Rescue of dystrophic muscle through U7 snRNA-mediated exon skipping. Science 306, 1796–1799.

    Article  CAS  PubMed  Google Scholar 

  • Greelish, J.P., Su, L.T., Lankford, E.B., Burkman, J.M., Chen, H., Konig, S.K., Mercier, I.M., Desjardins, P.R., Mitchell, M.A., Zheng, X.G., et al. (1999). Stable restoration of the sarcoglycan complex in dystrophic muscle perfused with histamine and a recombinant adeno-associated viral vector. Nat Med 5, 439–443.

    Article  CAS  PubMed  Google Scholar 

  • Gregorevic, P., Blankinship, M.J., Allen, J.M., Crawford, R.W., Meuse, L., Miller, D.G., Russell, D.W., and Chamberlain, J.S. (2004a). Systemic delivery of genes to striated muscles using adeno-associated viral vectors. Nat Med 10, 828–834.

    Article  CAS  PubMed  Google Scholar 

  • Gregorevic, P., Blankinship, M.J., and Chamberlain, J.S. (2004b). Viral vectors for gene transfer to striated muscle. Curr Opin Mol Ther 6, 491–498.

    CAS  PubMed  Google Scholar 

  • Gregorevic, P., Allen, J.M., Minami, E., Blankinship, M.J., Haraguchi, M., Meuse, L., Finn, E., Adams, M.E., Froehner, S.C., Murry, C.E., et al. (2006). rAAV6-microdystrophin preserves muscle function and extends lifespan in severely dystrophic mice. Nat Med 12, 787–789.

    Article  CAS  PubMed  Google Scholar 

  • Grimm, D., and Kay, M.A. (2003). From virus evolution to vector revolution: use of naturally occuring serotypes of adeno-associated virus (AAV) as novel vectors for human gene therapy. Curr Gene Ther 3, 281–304.

    Google Scholar 

  • Grimm, D., Kay, M.A., and Kleinschmidt, J.A. (2003a). Helper virus-free, optically controllable, and two-plasmid-based production of adeno-associated virus vectors of serotypes 1 to 6. Mol Ther 7, 839–850.

    Article  CAS  PubMed  Google Scholar 

  • Grimm, D., Zhou, S., Nakai, H., Thomas, C.E., Storm, T.A., Fuess, S., Matsushita, T., Allen, J., Surosky, R., Lochrie, M., et al. (2003b). Preclinical in vivo evaluation of pseudotyped adeno-associated virus vectors for liver gene therapy. Blood 102, 2412–2419.

    Article  CAS  PubMed  Google Scholar 

  • Hagstrom, J.E., Hegge, J., Zhang, G., Noble, M., Budker, V., Lewis, D.L., Herweijer, H., and Wolff, J.A. (2004). A facile nonviral method for delivering genes and siRNAs to skeletal muscle of mammalian limbs. Mol Ther 10, 386–398.

    Article  CAS  PubMed  Google Scholar 

  • Hajjar, R.J., and Zsebo, K. (2007). AAV vectors and cardiovascular disease: targeting TNF receptor in the heart: clue to way forward with AAV? Gene Ther 14, 1611–1612.

    Article  CAS  PubMed  Google Scholar 

  • Halbert, C.L., Allen, J.M., and Miller, A.D. (2002). Efficient mouse airway transduction following recombination between AAV vectors carrying parts of a larger gene. Nat Biotechnol 20, 697–701.

    Article  CAS  PubMed  Google Scholar 

  • Halbert, C.L., Miller, A.D., McNamara, S., Emerson, J., Gibson, R.L., Ramsey, B., and Aitken, M.L. (2006). Prevalence of neutralizing antibodies against adeno-associated virus (AAV) types 2, 5, and 6 in cystic fibrosis and normal populations: Implications for gene therapy using AAV vectors. Hum Gene Ther 17, 440–447.

    Google Scholar 

  • Harper, S.Q., Hauser, M.A., DelloRusso, C., Duan, D., Crawford, R.W., Phelps, S.F., Harper, H.A., Robinson, A.S., Engelhardt, J.F., Brooks, S.V., et al. (2002). Modular flexibility of dystrophin: implications for gene therapy of Duchenne muscular dystrophy. Nat Med 8, 253–261.

    Article  CAS  PubMed  Google Scholar 

  • Hartigan-O’Connor, D., Barjot, C., Salvatori, G., and Chamberlain, J.S. (2002). Generation and growth of gutted adenoviral vectors. Methods Enzymol 346, 224–246.

    Article  PubMed  Google Scholar 

  • Hasbrouck, N.C., and High, K.A. (2008). AAV-mediated gene transfer for the treatment of hemophilia B: problems and prospects. Gene Ther 15, 870–875.

    Article  CAS  PubMed  Google Scholar 

  • Hoffman, B.E., Dobrzynski, E., Wang, L., Hirao, L., Mingozzi, F., Cao, O., and Herzog, R.W. (2007). Muscle as a target for supplementary factor IX gene transfer. Hum Gene Ther 18, 603–613.

    Article  CAS  PubMed  Google Scholar 

  • Hofland, H.E., Nagy, D., Liu, J.J., Spratt, K., Lee, Y.L., Danos, O., and Sullivan, S.M. (1997). In vivo gene transfer by intravenous administration of stable cationic lipid/DNA complex. Pharm Res 14, 742–749.

    Article  CAS  PubMed  Google Scholar 

  • Howell, J.M., Fletcher, S., Kakulas, B.A., O’Hara, M., Lochmuller, H., and Karpati, G. (1997). Use of the dog model for Duchenne muscular dystrophy in gene therapy trials. Neuromuscul Disord 7, 325–328.

    Article  CAS  PubMed  Google Scholar 

  • Inagaki, K., Fuess, S., Storm, T.A., Gibson, G.A., McTiernan, C.F., Kay, M.A., and Nakai, H. (2006). Robust systemic transduction with AAV9 vectors in mice: efficient global cardiac gene transfer superior to that of AAV8. Mol Ther 14, 45–53.

    Google Scholar 

  • Inagaki, K., Lewis, S.M., Wu, X., Ma, C., Munroe, D.J., Fuess, S., Storm, T.A., Kay, M.A., and Nakai, H. (2007). DNA palindromes with a modest arm length of greater, similar 20 base pairs are a significant target for recombinant adeno-associated virus vector integration in the liver, muscles, and heart in mice. J Virol 81, 11290–11303.

    Article  CAS  PubMed  Google Scholar 

  • Jiang, Z., Schiedner, G., van Rooijen, N., Liu, C.C., Kochanek, S., and Clemens, P.R. (2004). Sustained muscle expression of dystrophin from a high-capacity adenoviral vector with systemic gene transfer of T cell costimulatory blockade. Mol Ther 10, 688–696.

    Article  CAS  PubMed  Google Scholar 

  • Jooss, K., and Chirmule, N. (2003). Immunity to adenovirus and adeno-associated viral vectors: implications for gene therapy. Gene Ther 10, 955–963.

    Article  CAS  PubMed  Google Scholar 

  • Kawano, R., Ishizaki, M., Maeda, Y., Uchida, Y., Kimura, E., and Uchino, M. (2008). Transduction of full-length dystrophin to multiple skeletal muscles improves motor performance and life span in utrophin/dystrophin double knockout mice. Mol Ther 16, 825–831.

    Article  CAS  PubMed  Google Scholar 

  • Kessler, P.D., Podsakoff, G.M., Chen, X., McQuiston, S.A., Colosi, P.C., Matelis, L.A., Kurtzman, G.J., and Byrne, B.J. (1996). Gene delivery to skeletal muscle results in sustained expression and systemic delivery of a therapeutic protein. Proc Natl Acad Sci U S A 93, 14082–14087.

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi, Y.M., Rader, E.P., Crawford, R.W., Iyengar, N.K., Thedens, D.R., Faulkner, J.A., Parikh, S.V., Weiss, R.M., Chamberlain, J.S., Moore, S.A., et al. (2008). Sarcolemma-localized nNOS is required to maintain activity after mild exercise. Nature 456, 511–515.

    Article  CAS  PubMed  Google Scholar 

  • Koenig, M., Hoffman, E.P., Bertelson, C.J., Monaco, A.P., Feener, C., and Kunkel, L.M. (1987). Complete cloning of the Duchenne muscular dystrophy (DMD) cDNA and preliminary genomic organization of the DMD gene in normal and affected individuals. Cell 50, 509–517.

    Article  CAS  PubMed  Google Scholar 

  • Lai, Y., Yue, Y., Liu, M., Ghosh, A., Engelhardt, J.F., Chamberlain, J.S., and Duan, D. (2005). Efficient in vivo gene expression by trans-splicing adeno-associated viral vectors. Nat Biotechnol 23, 1435–1439.

    Article  CAS  PubMed  Google Scholar 

  • Lai, Y., Thomas, G.D., Yue, Y., Yang, H.T., Li, D., Long, C., Judge, L., Bostick, B., Chamberlain, J.S., Terjung, R.L., et al. (2009). Dystrophins carrying spectrin-like repeats 16 and 17 anchor nNOS to the sarcolemma and enhance exercise performance in a mouse model of muscular dystrophy. J Clin Investig 119, 624–635.

    Google Scholar 

  • Lawrie, A., Brisken, A.F., Francis, S.E., Cumberland, D.C., Crossman, D.C., and Newman, C.M. (2000). Microbubble-enhanced ultrasound for vascular gene delivery. Gene Ther 7, 2023–2027.

    Article  CAS  PubMed  Google Scholar 

  • Lentacker, I., Vandenbroucke, R.E., Lucas, B., Demeester, J., De Smedt, S.C., and Sanders, N.N. (2008). New strategies for nucleic acid delivery to conquer cellular and nuclear membranes. J Control Release 132, 279–288.

    Google Scholar 

  • Li, C., Hirsch, M., Asokan, A., Zeithaml, B., Ma, H., Kafri, T., and Samulski, R.J. (2007). Adeno-associated virus type 2 (AAV2) capsid-specific cytotoxic T lymphocytes eliminate only vector-transduced cells coexpressing the AAV2 capsid in vivo. J Virol 81, 7540–7547.

    Article  CAS  PubMed  Google Scholar 

  • Liu, F., Liang, K.W., and Huang, L. (2001). Systemic administration of naked DNA: gene transfer to skeletal muscle. Mol Interv 1, 168–172.

    CAS  PubMed  Google Scholar 

  • Manno, C.S., Chew, A.J., Hutchison, S., Larson, P.J., Herzog, R.W., Arruda, V.R., Tai, S.J., Ragni, M.V., Thompson, A., Ozelo, M., et al. (2003). AAV-mediated factor IX gene transfer to skeletal muscle in patients with severe hemophilia B. Blood 101, 2963–2972.

    Article  CAS  PubMed  Google Scholar 

  • Manno, C.S., Pierce, G.F., Arruda, V.R., Glader, B., Ragni, M., Rasko, J.J., Ozelo, M.C., Hoots, K., Blatt, P., Konkle, B., et al. (2006). Successful transduction of liver in hemophilia by AAV-Factor IX and limitations imposed by the host immune response. Nat Med 12, 342–347.

    Article  CAS  PubMed  Google Scholar 

  • Merten, O.W., Geny-Fiamma, C., and Douar, A.M. (2005). Current issues in adeno-associated viral vector production. Gene Ther 12 Suppl 1, S51–61.

    Article  CAS  Google Scholar 

  • Mingozzi, F., and High, K.A. (2007). Immune responses to AAV in clinical trials. Curr Gene Ther7, 316–324.

    Article  CAS  PubMed  Google Scholar 

  • Mir, L.M., Bureau, M.F., Gehl, J., Rangara, R., Rouy, D., Caillaud, J.M., Delaere, P., Branellec, D., Schwartz, B., and Scherman, D. (1999). High-efficiency gene transfer into skeletal muscle mediated by electric pulses. Proc Natl Acad Sci U S A 96, 4262–4267.

    Article  CAS  PubMed  Google Scholar 

  • Mori, S., Takeuchi, T., Enomoto, Y., Kondo, K., Sato, K., Ono, F., Iwata, N., Sata, T., and Kanda, T. (2006). Biodistribution of a low dose of intravenously administered AAV-2, 10, and 11 vectors to cynomolgus monkeys. Jpn J Infect Dis 59, 285–293.

    CAS  PubMed  Google Scholar 

  • Morral, N., O’Neal, W., Rice, K., Leland, M., Kaplan, J., Piedra, P.A., Zhou, H., Parks, R.J., Velji, R., Aguilar-Cordova, E., et al. (1999). Administration of helper-dependent adenoviral vectors and sequential delivery of different vector serotype for long-term liver-directed gene transfer in baboons. Proc Natl Acad Sci U S A 96, 12816–12821.

    Article  CAS  PubMed  Google Scholar 

  • Mueller, C., and Flotte, T.R. (2008). Clinical gene therapy using recombinant adeno-associated virus vectors. Gene Ther 15, 858–863.

    Article  CAS  PubMed  Google Scholar 

  • Muzyczka, N. (1992). Use of adeno-associated virus as a general transduction vector for mammalian cells. Curr Top Microbiol Immunol 158, 97–129.

    CAS  PubMed  Google Scholar 

  • Nakai, H., Fuess, S., Storm, T.A., Muramatsu, S., Nara, Y., and Kay, M.A. (2005). Unrestricted hepatocyte transduction with adeno-associated virus serotype 8 vectors in mice. J Virol 79, 214–224.

    Google Scholar 

  • Negrete, A., Yang, L.C., Mendez, A.F., Levy, J.R., and Kotin, R.M. (2007). Economized large-scale production of high yield of rAAV for gene therapy applications exploiting baculovirus expression system. J Gene Med 9, 938–948.

    Article  CAS  PubMed  Google Scholar 

  • Nicklin, S.A., Buening, H., Dishart, K.L., de Alwis, M., Girod, A., Hacker, U., Thrasher, A.J., Ali, R.R., Hallek, M., and Baker, A.H. (2001). Efficient and selective AAV2-mediated gene transfer directed to human vascular endothelial cells. Mol Ther 4, 174–181.

    Article  CAS  PubMed  Google Scholar 

  • Niemeyer, G.P., Herzog, R.W., Mount, J., Arruda, V.R., Tillson, D.M., Hathcock, J., van Ginkel, F.W., High, K.A., and Lothrop, C.D., Jr. (2009). Long-term correction of inhibitor-prone hemophilia B dogs treated with liver-directed AAV2-mediated factor IX gene therapy. Blood 113, 797–806.

    Article  CAS  PubMed  Google Scholar 

  • Odom, G.L., Gregorevic, P., and Chamberlain, J.S. (2007). Viral-mediated gene therapy for the muscular dystrophies: successes, limitations and recent advances. Biochim Biophys Acta 1772, 243–262.

    CAS  PubMed  Google Scholar 

  • Odom, G.L., Gregorevic, P., Allen, J.M., Finn, E., and Chamberlain, J.S. (2008). Microutrophin delivery through rAAV6 increases lifespan and improves muscle function in dystrophic dystrophin/utrophin-deficient mice. Mol Ther 16, 1539–1545.

    Article  CAS  PubMed  Google Scholar 

  • Ohshima, S., Shin, J.H., Yuasa, K., Nishiyama, A., Kira, J., Okada, T., and Takeda, S. (2009). Transduction efficiency and immune response associated with the administration of AAV8 vector into dog skeletal muscle. Mol Ther 17, 73–80.

    Article  CAS  PubMed  Google Scholar 

  • Pampinella, F., Pozzobon, M., Zanetti, E., Gamba, P.G., McLachlan, I., Cantini, M., and Vitiello, L. (2000). Gene transfer in skeletal muscle by systemic injection of DODAC lipopolyplexes Neurol Sci 21(5):S967–969.

    Google Scholar 

  • Patil, S.D., Rhodes, D.G., and Burgess, D.J. (2005). DNA-based therapeutics and DNA delivery systems: a comprehensive review. AAPS J 7, E61–77.

    Article  Google Scholar 

  • Phelps, S.F., Hauser, M.A., Cole, N.M., Rafael, J.A., Hinkle, R.T., Faulkner, J.A., and Chamberlain, J.S. (1995). Expression of full-length and truncated dystrophin mini-genes in transgenic mdx mice. Hum Mol Genet 4, 1251–1258.

    Article  CAS  PubMed  Google Scholar 

  • Prud’homme, G.J., Glinka, Y., Khan, A.S., and Draghia-Akli, R. (2006). Electroporation-enhanced nonviral gene transfer for the prevention or treatment of immunological, endocrine and neoplastic diseases. Curr Gene Ther 6, 243–273.

    Article  PubMed  Google Scholar 

  • Qiao, C., Li, J., Zhu, T., Draviam, R., Watkins, S., Ye, X., Chen, C., Li, J., and Xiao, X. (2005). Amelioration of laminin-alpha2-deficient congenital muscular dystrophy by somatic gene transfer of miniagrin. Proc Natl Acad Sci U S A 102, 11999–12004.

    Article  CAS  PubMed  Google Scholar 

  • Qiao, C., Li, J., Zheng, H., Bogan, J., Yuan, Z., Zhang, C., Bogan, D., Kornegay, J., and Xiao, X. (2008). Hydrodynamic limb vein injection of AAV8 canine myostatin propeptide gene in normal dogs enhances muscle growth. Hum Gene Ther 20, 1–10.

    Google Scholar 

  • Rabinowitz, J.E., Rolling, F., Li, C., Conrath, H., Xiao, W., Xiao, X., and Samulski, R.J. (2002). Cross-packaging of a single adeno-associated virus (AAV) type 2 vector genome into multiple AAV serotypes enables transduction with broad specificity. J Virol 76, 791–801.

    Article  CAS  PubMed  Google Scholar 

  • Raper, S.E., Haskal, Z.J., Ye, X., Pugh, C., Furth, E.E., Gao, G.P., and Wilson, J.M. (1998). Selective gene transfer into the liver of non-human primates with E1-deleted, E2A-defective, or E1-E4 deleted recombinant adenoviruses. Hum Gene Ther 9, 671–679.

    Article  CAS  PubMed  Google Scholar 

  • Raper, S.E., Chirmule, N., Lee, F.S., Wivel, N.A., Bagg, A., Gao, G.P., Wilson, J.M., and Batshaw, M.L. (2003). Fatal systemic inflammatory response syndrome in a ornithine transcarbamylase deficient patient following adenoviral gene transfer. Mol Genet Metab 80, 148–158.

    Article  CAS  PubMed  Google Scholar 

  • Rodino-Klapac, L.R., Janssen, P.M., Montgomery, C.L., Coley, B.D., Chicoine, L.G., Clark, K.R., and Mendell, J.R. (2007). A translational approach for limb vascular delivery of the micro-dystrophin gene without high volume or high pressure for treatment of Duchenne muscular dystrophy. J Transl Med 5, 45.

    Article  PubMed  CAS  Google Scholar 

  • Rodino-Klapac, L.R., Lee, J.S., Mulligan, R.C., Clark, K.R., and Mendell, J.R. (2008). Lack of toxicity of alpha-sarcoglycan overexpression supports clinical gene transfer trial in LGMD2D. Neurology 71, 240–247.

    Article  CAS  PubMed  Google Scholar 

  • Sakamoto, M., Yuasa, K., Yoshimura, M., Yokota, T., Ikemoto, T., Suzuki, M., Dickson, G., Miyagoe-Suzuki, Y., and Takeda, S. (2002). Micro-dystrophin cDNA ameliorates dystrophic phenotypes when introduced into mdx mice as a transgene. Biochem Biophys Res Commun 293, 1265–1272.

    Article  CAS  PubMed  Google Scholar 

  • Salva, M.Z., Himeda, C.L., Tai, P.W., Nishiuchi, E., Gregorevic, P., Allen, J.M., Finn, E.E., Nguyen, Q.G., Blankinship, M.J., Meuse, L., et al. (2007). Design of tissue-specific regulatory cassettes for high-level rAAV-mediated expression in skeletal and cardiac muscle. Mol Ther 15, 320–329.

    Article  CAS  PubMed  Google Scholar 

  • Schagen, F.H., Ossevoort, M., Toes, R.E., and Hoeben, R.C. (2004). Immune responses against adenoviral vectors and their transgene products: a review of strategies for evasion. Crit Rev Oncol Hematol 50, 51–70.

    Article  PubMed  Google Scholar 

  • Schnell, M.A., Zhang, Y., Tazelaar, J., Gao, G.P., Yu, Q.C., Qian, R., Chen, S.J., Varnavski, A.N., LeClair, C., Raper, S.E., et al. (2001). Activation of innate immunity in nonhuman primates following intraportal administration of adenoviral vectors. Mol Ther 3, 708–722.

    Article  CAS  PubMed  Google Scholar 

  • Schultz, B.R., and Chamberlain, J.S. (2008). Recombinant adeno-associated virus transduction and integration. Mol Ther 16, 1189–1199.

    Article  CAS  PubMed  Google Scholar 

  • Snyder, R.O., Spratt, S.K., Lagarde, C., Bohl, D., Kaspar, B., Sloan, B., Cohen, L.K., and Danos, O. (1997). Efficient and stable adeno-associated virus-mediated transduction in the skeletal muscle of adult immunocompetent mice. Hum Gene Ther 8, 1891–1900.

    Article  CAS  PubMed  Google Scholar 

  • Stroes, E.S., Nierman, M.C., Meulenberg, J.J., Franssen, R., Twisk, J., Henny, C.P., Maas, M.M., Zwinderman, A.H., Ross, C., Aronica, E., et al. (2008). Intramuscular administration of AAV1-lipoprotein lipase S447X lowers triglycerides in lipoprotein lipase-deficient patients. Arterioscler Thromb Vasc Biol 28, 2303–2304.

    Article  CAS  PubMed  Google Scholar 

  • Su, L.T., Gopal, K., Wang, Z., Yin, X., Nelson, A., Kozyak, B.W., Burkman, J.M., Mitchell, M.A., Low, D.W., Bridges, C.R., et al. (2005). Uniform scale-independent gene transfer to striated muscle after transvenular extravasation of vector. Circulation 112, 1780–1788.

    Article  CAS  PubMed  Google Scholar 

  • Sun, B., Young, S.P., Brown, T., Salva, M.Z., Bird, A., Yan, Z., Auten, R., Hanschka, S.D., and Koeberl, D.D. (2008). Correction of multiple striated muscles in murine Pompe disease through adeno-associated virus-mediated gene. Mol Ther 16, 1366–1371.

    Google Scholar 

  • Taniyama, Y., Tachibana, K., Hiraoka, K., Aoki, M., Yamamoto, S., Matsumoto, K., Nakamura, T., Ogihara, T., Kaneda, Y., and Morishita, R. (2002). Development of safe and efficient novel nonviral gene transfer using ultrasound: enhancement of transfection efficiency of naked plasmid DNA in skeletal muscle. Gene Ther 9, 372–380.

    Article  CAS  PubMed  Google Scholar 

  • Toumi, H., Hegge, J., Subbotin, V., Noble, M., Herweijer, H., Best, T.M., and Hagstrom, J.E. (2006). Rapid intravascular injection into limb skeletal muscle: a damage assessment study. Mol Ther 13, 229–236.

    Article  CAS  PubMed  Google Scholar 

  • Towbin, J.A., Hejtmancik, J.F., Brink, P., Gelb, B., Zhu, X.M., Chamberlain, J.S., McCabe, E.R.B., and Swift, M. (1993). X-linked dilated cardiomyopathy: molecular genetic evidence of linkage to the Duchenne muscular dystrophy (dystrophin) gene at the Xp21 locus. Circulation 87, 1854–1865.

    CAS  PubMed  Google Scholar 

  • Townsend, D., Blankinship, M.J., Allen, J.M., Gregorevic, P., Chamberlain, J.S., and Metzger, J.M. (2007). Systemic administration of micro-dystrophin restores cardiac geometry and prevents dobutamine-induced cardiac pump failure. Mol Ther 15, 1086–1092.

    CAS  PubMed  Google Scholar 

  • Townsend, D., Yasuda, S., Li, S., Chamberlain, J.S., and Metzger, J.M. (2008). Emergent dilated cardiomyopathy caused by targeted repair of dystrophic skeletal muscle. Mol Ther 16, 832–835.

    Article  CAS  PubMed  Google Scholar 

  • Tripathy, S.K., Black, H.B., Goldwasser, E., and Leiden, J.M. (1996). Immune responses to transgene-encoded proteins limit the stability of gene expression after injection of replication-defective adenovirus vectors. Nat Med 2, 545–550.

    Article  CAS  PubMed  Google Scholar 

  • Wang, B., Li, J., and Xiao, X. (2000). Adeno-associated virus vector carrying human minidystrophin genes effectively ameliorates muscular dystrophy in mdx mouse model. Proc Natl Acad Sci U S A 97, 13714–13719.

    Article  CAS  PubMed  Google Scholar 

  • Wang, Z., Zhu, T., Qiao, C., Zhou, L., Wang, B., Zhang, J., Chen, C., Li, J., and Xiao, X. (2005). Adeno-associated virus serotype 8 efficiently delivers genes to muscle and heart. Nat Biotechnol 23, 321–328.

    Article  CAS  PubMed  Google Scholar 

  • Wang, Z., Allen, J.M., Riddell, S.R., Gregorevic, P., Storb, R., Tapscott, S.J., Chamberlain, J.S., and Kuhr, C.S. (2007a). Immunity to adeno-associated virus-mediated gene transfer in a random-bred canine model of Duchenne muscular dystrophy. Hum Gene Ther 18, 18–26.

    Article  PubMed  CAS  Google Scholar 

  • Wang, Z., Kuhr, C.S., Allen, J.M., Blankinship, M., Gregorevic, P., Chamberlain, J.S., Tapscott, S.J., and Storb, R. (2007b). Sustained AAV-mediated dystrophin expression in a canine model of Duchenne muscular dystrophy with a brief course of immunosuppression. Mol Ther 15, 1160–1166.

    CAS  PubMed  Google Scholar 

  • Wang, B., Wang, L., Zhou, X.B., Liu, Y.M., Wang, M., Qin, H., Wang, C.B., Liu, J., Yu, X.J., and Zang, W.J. (2008). Thrombolysis effect of a novel targeted microbubble with low-frequency ultrasound in vivo. Thromb Haemost 100, 356–361.

    CAS  PubMed  Google Scholar 

  • Warner, L.E., and Chamberlain, J.S. (2002). Mini-genes. In Encyclopedia of the Human Genome, D.N. Cooper, ed. (London, Nature Publishing Company).

    Google Scholar 

  • Watchko, J., O’Day, T., Wang, B., Zhou, L., Tang, Y., Li, J., and Xiao, X. (2002). Adeno-associated virus vector-mediated minidystrophin gene therapy improves dystrophic muscle contractile function in mdx mice. Hum Gene Ther 13, 1451–1460.

    Article  CAS  PubMed  Google Scholar 

  • Wolff, J.A., Malone, R.W., Williams, P., Chong, W., Acsadi, G., Jani, A., and Felgner, P.L. (1990). Direct gene transfer into mouse muscle in vivo. Science 247, 1465–1468.

    Article  CAS  PubMed  Google Scholar 

  • Xiao, X., Li, J., and Samulski, R.J. (1996). Efficient long-term gene transfer into muscle tissue of immunocompetent mice by adeno-associated virus vector. J Virol 70, 8098–8108.

    CAS  PubMed  Google Scholar 

  • Xiao, X., Li, J., and Samulski, R.J. (1998). Production of high-titer recombinant adeno-associated virus vectors in the absence of helper adenovirus. J Virol 72, 2224–2232.

    CAS  PubMed  Google Scholar 

  • Xiao, W., Chirmule, N., Berta, S.C., McCullough, B., Gao, G., and Wilson, J.M. (1999). Gene therapy vectors based on adeno-associated virus type 1. J Virol 73, 3994–4003.

    CAS  PubMed  Google Scholar 

  • Xiong, F., Xiao, S., Peng, F., Zheng, H., Yu, M., Ruan, Y., Li, W., Shang, Y., Zhao, C., Zhou, W., et al. (2007). Herpes simplex virus VP22 enhances adenovirus-mediated microdystrophin gene transfer to skeletal muscles in dystrophin-deficient (mdx) mice. Hum Gene Ther 18, 490–501.

    Article  CAS  PubMed  Google Scholar 

  • Yang, Y., Haecker, S.E., Su, Q., and Wilson, J.M. (1996). Immunology of gene therapy with adenoviral vectors in mouse skeletal muscle. Hum Mol Genet 5, 1703–1712.

    Article  CAS  PubMed  Google Scholar 

  • Yuasa, K., Yoshimura, M., Urasawa, N., Ohshima, S., Howell, J.M., Nakamura, A., Hijikata, T., Miyagoe-Suzuki, Y., and Takeda, S. (2007). Injection of a recombinant AAV serotype 2 into canine skeletal muscles evokes strong immune responses against transgene products. Gene Ther 14, 1249–1260.

    Article  CAS  PubMed  Google Scholar 

  • Yue, Y., Ghosh, A., Long, C., Bostick, B., Smith, B.F., Kornegay, J.N., and Duan, D. (2008). A single intravenous injection of adeno-associated virus serotype-9 leads to whole body skeletal muscle transduction in dogs. Mol Ther 16, 1944–1952.

    Article  CAS  PubMed  Google Scholar 

  • Zhu, T., Zhou, L., Mori, S., Wang, Z., McTiernan, C.F., Qiao, C., Chen, C., Wang, D.W., Li, J., and Xiao, X. (2005). Sustained whole-body functional rescue in congestive heart failure and muscular dystrophy hamsters by systemic gene transfer. Circulation 112, 2650–2659.

    Article  CAS  PubMed  Google Scholar 

  • Zincarelli, C., Soltys, S., Rengo, G., and Rabinowitz, J.E. (2008). Analysis of AAV serotypes 1-9 mediated gene expression and tropism in mice after systemic injection. Mol Ther 16, 1073–1080.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants R37AR040864 and U54HD047175 from the National Institutes for Health and by the Muscular Dystrophy Association (USA). We thank Brian Schultz for helpful suggestions and artwork.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey S. Chamberlain .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Garikipati, D., Chamberlain, J.S. (2010). Systemic Gene Delivery for Muscle Gene Therapy. In: Duan, D. (eds) Muscle Gene Therapy. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-1207-7_10

Download citation

Publish with us

Policies and ethics