Skip to main content

Knowledge-Driven Recognition and Segmentation of Internal Brain Structures in 3D MRI

  • Chapter
  • First Online:
Computational Surgery and Dual Training
  • 532 Accesses

Abstract

The complexity of the human body and of its understanding through medical imaging techniques requires the development of image processing and interpretation methods that cope with this complexity. Recently, significant advances both in image acquisition techniques and in image processing have been performed. In particular, advanced and sophisticated image processing methods find in medical imaging a privileged field of applications. The major objectives concern help to diagnosis, therapy planning, surgical planning, patient’s follow-up, morphometry, variability assessment, modeling, support for neuroscience applications, etc. This covers both clinical and research applications. Toward these aims, methods have to be developed to improve image quality, to perform segmentation and recognition of organs, pathologies, etc., to provide quantitative measures, to fuse multimodal image data, to provide numerical models, and to improve 3D visualization.

In this chapter, we summarize some of the work of our group on brain image interpretation, focusing on knowledge representation and its use to guide recognition and segmentation of internal brain structures in 3D MRI data. Instead of using shape models [1–3] or digital anatomical atlases [4–6], we rely on an explicit representation of structural information expressed as spatial relations between brain structures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cootes TF, Edwards GJ, Taylor CJ (2001) Active appearance models. IEEE Trans Pattern Anal Mach Intell 23(6):681–685

    Article  Google Scholar 

  2. Cootes TF, Taylor CJ, Cooper DH, Graham J (1995) Active shape models-their training and application. Comput Vis Image Underst 61(1):38–59

    Article  Google Scholar 

  3. Leventon ME, Grimson WEL, Faugeras O (2000) Statistical shape influence in geodesic active contours. In: IEEE conference on computer vision and pattern recognition, CVPR, vol 1. pp 316–323

    Google Scholar 

  4. Broit C (1981) Optimal registration of deformed images. PhD thesis, University of Pennsylvania, Philadelphia, PA

    Google Scholar 

  5. Dawant BM, Hartmann SL, Thirion JP, Maes F, Vandermeulen D, Demaerel P (1999) Automatic 3-D segmentation of internal structures of the head in MR images using a combination of similarity and free-form transformations. I. Methodology and validation on normal subjects. IEEE Trans Med Imaging 18(10):909–916

    Google Scholar 

  6. Iosifescu DV, Shenton ME, Warfield SK, Kikinis R, Dengler J, Jolesz FA, Mc-Carley RW (1997) An automated registration algorithm for measuring MRI subcortical brain structures. Neuroimage 6(1):13–25

    Article  Google Scholar 

  7. Waxman SG (2000) Correlative neuroanatomy, 24th edn. McGraw-Hill, New York

    Google Scholar 

  8. Rosse C, Mejino JLV (2003) A reference ontology for bioinformatics: The foundational model of anatomy. J Biomed Inf 36:478–500

    Article  Google Scholar 

  9. Bloch I (1999) Fuzzy relative position between objects in image processing: a morphological approach. IEEE Trans Pattern Anal Mach Intell 21(7):657–664

    Article  Google Scholar 

  10. Bloch I (1999) On Fuzzy distances and their use in image processing under imprecision. Pattern Recognit 32(11):1873–1895

    Article  Google Scholar 

  11. Bloch I (2005) Fuzzy spatial relationships for image processing and interpretation: A review. Image Vis Comput 23(2):89–110

    Article  Google Scholar 

  12. Bloch I, Colliot O, Cesar R (2006) On the ternary spatial relation between. IEEE Trans Syst Man Cybern SMC-B 36(2):312–327

    Article  Google Scholar 

  13. Bloch I, Maître H, Anvari M (1997) Fuzzy adjacency between image objects. Int J Uncertain, Fuzziness Knowl-Based Syst 5(6):615–653

    Article  Google Scholar 

  14. Colliot O, Tuzikov A, Cesar R, Bloch I (2004) Approximate reflectional symmetries of fuzzy objects with an application in model-based object recognition. Fuzzy Sets Syst 147:141–163

    Article  MATH  MathSciNet  Google Scholar 

  15. Bloch I, Colliot O, Camara O, Géraud T (2005) Fusion of spatial relationships for guiding recognition. example of brain structure recognition in 3D MRI. Pattern Recognit Lett 26: 449–457

    Article  Google Scholar 

  16. Bloch I, Géraud T, Maître H (2003) Representation and fusion of heterogeneous fuzzy information in the 3d space for model-based structural recognition – application to 3D brain imaging. Artif Intell 148:141–175

    Article  MATH  Google Scholar 

  17. Colliot O, Camara O, Bloch I (2006) Integration of Fuzzy spatial relations in deformable models – application to brain MRI segmentation. Pattern Recognit 39:1401–1414

    Article  Google Scholar 

  18. Bloch I, Maître H (1995) Fuzzy mathematical morphologies: a comparative study. Pattern Recognit 28(9):1341–1387

    Article  Google Scholar 

  19. Atif J, Hudelot C, Fouquier G, Bloch I, Angelini E. From generic knowledge to specific reasoning for medical image interpretation using graph-based representations. In: International joint conference on artificial intelligence IJCAI’07, Hyderabad, India, January 2007, pp 224–229

    Google Scholar 

  20. Hudelot C, Atif J, Bloch I (2008) Fuzzy spatial relation ontology for image interpretation. Fuzzy Sets Syst 159:1929–1951

    Article  MathSciNet  Google Scholar 

  21. Hudelot C, Atif J, Nempont O, Batrancourt B, Angelini E, Bloch I (2006) GRAFIP: a framework for the representation of healthy and pathological anatomical and functional cerebral information. In: Human brain mapping, Florence, Italy, June 2006

    Google Scholar 

  22. Dubois D, Prade H (1985) A review of fuzzy set aggregation connectives. Inf Sci 36:85–121

    Article  MATH  MathSciNet  Google Scholar 

  23. Yager RR (1991) Connectives and quantifiers in fuzzy sets. Fuzzy Sets Syst 40:39–75

    Article  MATH  MathSciNet  Google Scholar 

  24. Bloch I (1996) Information combination operators for data fusion: A comparative review with classification. IEEE Trans Syst Man Cybern 26(1):52–67

    Article  Google Scholar 

  25. Bloch I, Aurdal L, Bijno D, Muller J (1997) Estimation of class membership functions for grey-level based image fusion. In: ICIP’97, vol III. Santa Barbara, CA, October 1997, pp 268–271

    Google Scholar 

  26. Sandberg B, Chan TF (2005) A logic framework for active contours on multi-channel images. J Vis Commun Image Represent 16:333–358

    Article  Google Scholar 

  27. Vese LA, Chan TF (2002) A multiphase level set framework for image segmentation using the Mumford and Shah model. Int J Comput Vis 50:271–293

    Google Scholar 

  28. Israel-Jost V, Breton E, Angelini E, Choquet P, Bloch I, Constantinesco A (2008) Vectorial multi-phase mouse brain tumor segmentation in T1-T2 MRI. In: IEEE international symposium on biomedical imaging (ISBI), Paris, France, May 2008, pp 5–8

    Google Scholar 

  29. Israel-Jost V, Daron J, Angelini E, Bloch I. Multi-phase and multi-channel region segmentation and application in brain MRI. Technical report, UCLA, CAM08–75, November 2008

    Google Scholar 

  30. Nempont O, Atif J, Angelini E, Bloch I. Structure segmentation and recognition in images guided by structural constraint propagation. In: European conference on artificial intelligence ECAI, Patras, Greece, July 2008, pp 621–625

    Google Scholar 

  31. Bloch I (2006) Spatial reasoning under Imprecision using fuzzy set theory, formal logics and mathematical morphology. Int J Approx Reason 41:77–95

    Article  MATH  MathSciNet  Google Scholar 

  32. Bouchon-Meunier B, Rifqi M, Bothorel S (1996) Towards general measures of comparison of objects. Fuzzy Sets Syst84(2):143–153

    Google Scholar 

  33. Perchant A, Bloch I (2002) Fuzzy morphisms between graphs. Fuzzy Sets Syst 128(2):149–168

    Article  MATH  MathSciNet  Google Scholar 

  34. Bengoetxea E, Larranaga P, Bloch I, Perchant A, Boeres C (2002) Inexact graph matching by means of estimation of distribution algorithms. Pattern Recognit 35:2867–2880

    Article  MATH  Google Scholar 

  35. Cesar R, Bengoetxea E, Bloch I (2002) Inexact graph matching using stochastic optimization techniques for facial feature recognition. In: International conference on pattern recognition ICPR 2002, vol 2. Quebec, August 2002, pp 465–468

    Google Scholar 

  36. Perchant A, Boeres C, Bloch I, Roux M, Ribeiro C (1999) Model-based scene recognition using graph fuzzy homomorphism solved by genetic algorithm. In: GbR’99 2nd international workshop on graph-based representations in pattern recognition, Castle of Haindorf, Austria, pp 61–70

    Google Scholar 

  37. Fouquier G, Atif J, Bloch I (2007) Local reasoning in Fuzzy attributes graphs for optimizing sequential segmentation. In 6th IAPR-TC15 workshop on graph-based representations in pattern recognition, GbR’07, vol LNCS 4538. Alicante, Spain, June 2007, pp 138–147

    Google Scholar 

  38. Fouquier G, Atif J, Bloch I (2008) Sequential spatial reasoning in images based on pre-attention mechanisms and fuzzy attribute graphs. In: European conference on artificial intelligence ECAI, Patras, Greece, July 2008, pp 611–615

    Google Scholar 

  39. Nempont O, Atif J, Angelini E, Bloch I. Combining radiometric and spatial structural information in a new metric for minimal surface segmentation. In: Information processing in medical imaging (IPMI 2007), vol LNCS 4584. Kerkrade, The Netherlands, July 2007, pp 283–295

    Google Scholar 

  40. Khotanlou H, Atif J, Angelini E, Duffau H, Bloch I. Adaptive segmentation of internal brain structures in pathological MR images depending on tumor types. In: IEEE international symposium on biomedical imaging (ISBI), Washington, DC, April 2007, pp 588–591

    Google Scholar 

  41. Khotanlou H, Colliot O, Atif J, Bloch I (2009) 3D brain tumor segmentation in MRI using fuzzy classification, symmetry analysis and spatially constrained deformable models. Fuzzy Sets Syst 160:1457–1473

    Article  Google Scholar 

  42. Nempont O Modèles structurels flous et propagation de contraintes pour la segmentation et la reconnaissance d’objets dans les images. Application aux structures nor-males et pathologiques du cerveau en IRM. PhD thesis, Ecole Nationale Supérieure des Télécommunications, March 2009

    Google Scholar 

  43. Colliot O (2003) Représentation, évaluation et utilisation de relations spatiales pour l’interprétation d’images. Application à la reconnaissance de structures anatomiques en imagerie mé dicale. PhD thesis, Ecole Nationale Supérieure des Télécommunications, ENST 2003E036, September 2003

    Google Scholar 

  44. Géraud T. Segmentation des structures internes du cerveau en imagerie par résonance magnétique tridimensionnelle. PhD thesis, École Nationale Supérieure des Télécommunications, ENST 98E012, June 1998

    Google Scholar 

  45. Khotanlou H. Segmentation 3D de tumeurs et de structures internes du cerveau en IRM. PhD thesis, École Nationale Supérieure des Télécommunications ENST2008E005, February 2008

    Google Scholar 

  46. Perchant A Morphisme de graphes d’attributs flous pour la reconnaissance structurelle de scènes. PhD thesis, École Nationale Supérieure des Télécommunications, ENST00E046, November 2000

    Google Scholar 

Download references

Acknowledgements

The work described in this chapter is mostly joint work with several colleagues, including Elsa Angelini, Jamal Atif, Bénédicte Batrancourt, Olivier Colliot [43], Geoffroy Fouquier, Thierry Géraud [44], Céline Hudelot, Vincent Israel-Jost, Hassan Khotanlou [45], Olivier Nempont [42], Aymeric Perchant [46], Nathalie Richard. It has been performed in collaboration with several hospitals in Paris (Pitié-Salpétriére, Sainte-Anne, Saint Vincent de Paul) and laboratories (LENA-CNRS, LIMSI-CNRS, ENST Bretagne, IFR 49, universities of Sao Paulo, Bogota, Columbia…). It benefited from funding from Région Ile-de-France, ParisTech, INCA, ANR, Institut TELECOM

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isabelle Bloch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Bloch, I. (2010). Knowledge-Driven Recognition and Segmentation of Internal Brain Structures in 3D MRI. In: Garbey, M., Bass, B., Collet, C., Mathelin, M., Tran-Son-Tay, R. (eds) Computational Surgery and Dual Training. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-1123-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-1123-0_4

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-1122-3

  • Online ISBN: 978-1-4419-1123-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics