Skip to main content

Brain MRI Segmentation

  • Chapter
  • First Online:
Computational Surgery and Dual Training

Abstract

Segmentation is an important step for quantitative analysis of brain images and for the study of many brain disorders. Indeed, structural changes in the brain can be due to some brain disorders. The quantification of these changes, by measuring volumes of structures of interest, can be used to characterize disease severity or evolution. For instance, in morphometry, brain tissue segmentation enables to compare tissue volumes and to follow the evolution of some brain disorders. Before these measurements can be carried out, the labeling process must be performed. In this approach, the tissue types of interest are white matter (WM), gray matter (GM), and cerebrospinal fluid (CSF), but other approaches classify voxels according to their anatomical structure. As most studies involve large amounts of data, manual tracing of cerebral structures in MR images by a human expert is obviously a time-consuming process. Moreover, these manual segmentations are prone to large intra- and interobserver variability, which deteriorates the significance of the resulting segmentation analysis.

Thus, due to different artifacts appearing on MR images, segmentation is not obvious and remains a challenging task. The first point deals with spatial regularization required to overcome the disturbance added during the MRI formation. The second artifact that appears in MR images is the corruption by a bias field. The third important issue in MR segmentation is the partial volume effect (PVE). Due to the limited resolution of acquisition system, voxels along the boundaries are composed of two or more tissues. Therefore, it is necessary to consider this partial volume effect in order to achieve an accurate segmentation of brain tissues. In fact, hard segmentation (WM, GM, CSF) ignores this problem and therefore loses information concerning the tissue structure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://www.fil.ion.ucl.ac.uk/spm.

  2. 2.

    http://www.medicalimagecomputing.com/EMS/.

References

  1. Aït-Ali L, Prima S, Hellier P, Carsin B, Edan G, Barillot C (2005) STREM: a robust multidimensional parametric method to segment MS lesions in MRI. In: Duncan J, Gerig G (eds) 8th international conference on medical image computing and computer-assisted intervention, MICCAI’2005, Springer, Palm Springs, Lecture Notes in Computer Science, vol 3749, pp 409–416

    Google Scholar 

  2. Al-Zubi S, Toennies K, Bodammer N, Hinrichs H (2002) Fusing Markov random fields with anatomical knowledge and shape based analysis to segment multiple sclerosis white matter lesions in magnetic resonance images of the brain. Bildverarbeitung für die Medizin pp 185–188

    Google Scholar 

  3. Ashburner J, Friston K (1997) Multimodal image coregistration and partitioning – a unified framework. NeuroImage 6(3):209–217

    Article  Google Scholar 

  4. Ashburner J, Friston K (2000) Voxel-based morphometry – the methods. NeuroImage 11: 805–821

    Article  Google Scholar 

  5. Ashburner J, Friston K (2005) Unified segmentation. NeuroImage 26:839–857

    Article  Google Scholar 

  6. Bandoh Y, Kamata A (1999) An address generator for a 3-dimensional pseudo-Hilbert scan in a cuboid region. ICIP 496–500

    Google Scholar 

  7. Belaroussi B, Milles J, Carme S, Zhu YM, Benoit-Cattin H (2006) Intensity non-uniformity correction in MRI: existing method and their validation. Med Image Anal 10(2):234–246

    Article  Google Scholar 

  8. Bosc M, Heitz F, Armspach JP (2003) Statistical atlas-based sub-voxel segmentation of 3D brain MRI. In: IEEE international conference on image processing (ICIP), Barcelone, Espagne, pp 1077–1080

    Google Scholar 

  9. Bovik A (2000) Handbook of image and video processing. Academic, San Diego

    MATH  Google Scholar 

  10. Bricq S, Collet C, Armspach JP (2008) Lesions detection on 3D brain MRI using trimmed likelihood estimator and probabilistic atlas. In: 5th IEEE international symposium on biomedical imaging ISBI’08, Paris, France

    Google Scholar 

  11. Bricq S, Collet C, Armspach JP (2008) Markovian segmentation of 3D brain MRI to detect multiple sclerosis lesions. In: IEEE international conference on image processing ICIP’08, San Diego, CA

    Google Scholar 

  12. Bricq S, Collet C, Armspach JP (2008) Unifying framework for multimodal brain MRI segmentation based on hidden Markov chains. Med Image Anal 12(6):639–652

    Article  Google Scholar 

  13. Choi HS, Haynor DR, Kim YM (1991) Partial volume tissue classification of multichannel magnetic resonance images – a mixel model. IEEE Trans Med Images 10:395–407

    Article  Google Scholar 

  14. C̆íz̆ek P (2002) Robust estimation in nonlinear regression and limited dependent variable models. EconPapers

    Google Scholar 

  15. Delyon G, Galland F, Réfrégier P (2006) Minimal stochastic complexity image partitioning with unknown noise model. IEEE Trans Image Process 15(10):3207–3212

    Article  Google Scholar 

  16. Dempster A, Laird N, Rubin D (1977) Maximum likelihood from incomplete data via the EM algorithm. J R Stat Soc B 39:1–38

    MATH  MathSciNet  Google Scholar 

  17. Dimova R, Neykov N (2004) Generalized D-fullness techniques for breakdown point study of the trimmed likelihood estimator with applications. In: Hubert M, Pison G, Struyf A, Van Aelst S (eds) Theory and applications of recent robust methods. Birkhauser, Basel, pp 83–91

    Google Scholar 

  18. Dugas-Phocion G, González Ballester MA, Malandain G, Lebrun C, Ayache N (2004) Improved EM-based tissue segmentation and partial volume effect quantification in multi-sequence brain MRI. In: Proceedings of MICCAI’04, Springer, Saint-Malo, France, Lecture Notes in Computer Science

    Google Scholar 

  19. Galland F (2004) Partition d’images par minimisation de la complexité stochastique et grille active: application à la segmentation d’images de radar à ouverture synthétique. PhD Thesis, Université d’Aix-Marseille III

    Google Scholar 

  20. Galland F, Bertaux N, Réfrégier P (2003) Minimum description length synthetic aperture radar image segmentation. IEEE Trans Image Process 12(9):995–1006

    Article  Google Scholar 

  21. Gelman A, Carlin J, Stern H, Rubin D (2005) Bayesian data analysis. Chapman and Hall, New York

    Google Scholar 

  22. Guillemaud R, Brady M (1997) Estimating the bias field of MR images. IEEE Trans Med Imaging 16(3):238–251

    Article  Google Scholar 

  23. Hadi A, Luceno A (1997) Maximum trimmed likelihood estimators: a unified approach, examples, and algorithms. Comput Stat Data Anal 25:251–272

    Article  MATH  MathSciNet  Google Scholar 

  24. Hoppe H (1996) Progressive meshes. In: ACM SIGGRAPH ’96, pp 99–108

    Google Scholar 

  25. Lorensen WE, Cline HE (1987) Marching cubes: a high resolution 3D surface construction algorithm. Comput Graph 21(3):163–169

    Google Scholar 

  26. Marroquin J, Vemuri B, Botelo S et al (2002) An accurate and efficient Bayesian method for automatic segmentation of brain MRI. IEEE Trans Med Imaging 21(8):934–945

    Article  Google Scholar 

  27. Martin P, Réfrégier P, Galland F, Guérault F (2006) Nonparametric statistical snake based on the minimum stochastic complexity. IEEE Trans Image Process 15(9):2762–2770

    Article  MathSciNet  Google Scholar 

  28. Neykov N, Müller C (2003) Breakdown point and computation of trimmed likelihood estimators in generalized linear models. In: Dutter R, Filzmoser P, Gatter U, Rousseeuw P (eds) Developments in robust statistics, Physica-Verlag, Heidelberg, pp 277–286

    Google Scholar 

  29. Neykov N, Neytchev P (1990) A robust alternative of the MLE. Compstat’90, pp 99–100

    Google Scholar 

  30. Noblet V, Heinrich C, Heitz F, Armspach JP (2005) 3-D deformable image registration: a topology preservation scheme based on hierarchical deformation models and interval analysis optimization. IEEE Trans Image Process 14(5):553–566

    Article  MathSciNet  Google Scholar 

  31. Pieczynski W (1992) Statistical image segmentation. Mach Graph Vis 1(2):261–268

    Google Scholar 

  32. Rissanen J (1989) Stochastic complexity in statistical inquiry. World Scientific, Singapore

    MATH  Google Scholar 

  33. Rousseeuw P, Leroy A (1987) Robust regression and outlier detection. Wiley, New York

    Book  MATH  Google Scholar 

  34. Ruan S, Jaggi C, Fadili J, Bloyet D (2000) Brain tissue classification of magnetic resonance images using partial volume modeling. IEEE Trans Med Imaging 19(12):1179–1187

    Article  Google Scholar 

  35. Ruan S, Moretti B, Fadili J, Bloyet D (2002) Fuzzy Markovian segmentation in application of magnetic resonance images. Comput Vis Image Underst 85:54–69

    Article  MATH  Google Scholar 

  36. Shannon CE (1948) A mathematical theory of communication. Bell Syst Tech J 27:379–423

    MATH  MathSciNet  Google Scholar 

  37. Shattuck DW, Sandor-Leahy SR, Schaper KA, Rottenberg DA, Leahy RM (2001) Magnetic resonance image tissue classification using a partial volume model. NeuroImage 13:856–876

    Article  Google Scholar 

  38. Sled JG, Zijdenbos AP (1998) A nonparametric method for automatic correction of intensity nonuniformity in MRI data. IEEE Trans Med Imaging 17(1):87–97

    Article  Google Scholar 

  39. Smith S (2002) Fast robust automated brain extraction. Hum Brain Mapp 17:143–155

    Article  Google Scholar 

  40. Styner M, Brechbuhler C, Szekely G, Gerig G (2000) Parametric estimate of intensity inhomogeneities applied to MRI. IEEE Trans Med Imaging 19(3):153–165

    Article  Google Scholar 

  41. Tanner M (1993) Tools for statistical inference : methods for the exploration of posterior distributions and likelihood functions. Springer, Berlin

    MATH  Google Scholar 

  42. Tohka J, Zijdenbos A, Evans A (2004) Fast and robust parameter estimation for statistical partial volume models in brain MRI. NeuroImage 23(1):84–97

    Article  Google Scholar 

  43. Van Leemput K, Maes F, Vandermeulen D, Suetens P (1999) Automated model-based bias field correction of MR images of the brain. IEEE Trans Med Imaging 18(10):885–896

    Article  Google Scholar 

  44. Van Leemput K, Maes F, Vandermeulen D, Suetens P (1999) Automated model-based tissue classification of MR images of the brain. IEEE Trans Med Imaging 18(10):897–908

    Article  Google Scholar 

  45. Van Leemput K, Maes F, Vandermeulen D, Suetens P (2003) A unifying framework for partial volume segmentation of brain MR images. IEEE Trans Med Imaging 22(1):10–113

    Google Scholar 

  46. Vandev D, Neykov N (1993) Robust maximum likelihood in the Gaussian case. In: New Directions in Data Analysis and Robustness, Birkhäuser Verlag Basel, Switzerland, pp 259–264

    Google Scholar 

  47. Wells WM, Grimson WEL, Kikinis R, Jolesz FA (1996) Adaptative segmentation of MRI data. IEEE Trans Med Imaging 15(4):429–442

    Article  Google Scholar 

  48. Zorin D, Schröder P, Sweldens W (1996) Interpolating subdivision for meshes with arbitrary topology. In: SIGGRAPH ’96: Proceedings of the 23rd annual conference on Computer graphics and interactive techniques, ACM, New York, pp 189–192

    Google Scholar 

Download references

Acknowledgements

We thank the Alsace Region and the CNRS for funding this research. We thank the Computational Geometry and Computer Graphics team of the LSIIT for their graphic modeling platform.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christophe Collet .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Bricq, S., Collet, C., Armspach, JP. (2010). Brain MRI Segmentation. In: Garbey, M., Bass, B., Collet, C., Mathelin, M., Tran-Son-Tay, R. (eds) Computational Surgery and Dual Training. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-1123-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-1123-0_3

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-1122-3

  • Online ISBN: 978-1-4419-1123-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics