Skip to main content

Image-Guided Interventions and Robotics

  • Chapter
  • First Online:
Computational Surgery and Dual Training

Abstract

Interventional radiology (IR) is a branch of medicine in which radiologists perform diagnoses or treatments with needles, catheters, or probes, guided by one or several imaging modalities [1]. In many cases, these procedures offer a minimally invasive alternative to traditional surgery. The long list of indications for IR procedures justifies the interest it has aroused in recent years [2].

Vascular interventions are performed with catheters directly introduced by endovenous or endoarterial approach. There are two main categories of treatments: embolization (occlusion) or angioplasty (opening). Embolizations can be performed to stop bleeding, to inject therapeutic drugs, or to provoke tumor ischemia, for example. In angioplasty, narrowed or obstructed vessels are released by inflating balloons located at the tip of a catheter.

Nonvascular interventions are fast-developing procedures. They are performed with needles or needle-shaped tools. They can be used for diagnosis, as the biopsies that consist in the removal of tissue samples for analysis purpose. They can also be used for therapy by guiding tools directly into the target, for instance, to perform tumor ablation. Radiofrequency ablation is an example of such a procedure, performed with a needle-like probe placed into the tumor and used to cook cancer cells. IR also improves the repairing process of fractured vertebra. Using a percutaneous guide inserted in the vertebra under radiography control, bone cement is injected to consolidate the vertebra, which offers an alternative to open orthopedic surgery with less trauma.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kaufman JA, Lee MJ (2004) Vascular and interventional radiology – The requesites. Mosby

    Google Scholar 

  2. Society of interventional radiology (2008) http://www.scvir.org

  3. Zeego. (2008) The artis zeego multi-axis system. http://www.medical.siemens. com

  4. ACR-RNSA. (2008) Radiology info. http://www.radiologyinfo.org

  5. Stoianovici D, Cleary K, Patriciu A, Mazilu D, Stanimir A, Craciunoiu N, Watson V, Kavoussi L (2003) Acubot: a robot for radiological interventions. IEEE Trans Robot Automat 19:927–930

    Article  Google Scholar 

  6. Piccin O, Barbé L, Bayle B, de Mathelin M, Gangi A (2009) Force feedback teleoperated needle insertion device for percutaneous procedures. Int J Rob Res 28(9):1154–1168

    Article  Google Scholar 

  7. Tsekos NV, Chrisotoforou E, Ozcan A (2008) A general-purpose MR-compatible robotic system. IEEE Eng Med Biol Mag 27:51–58

    Article  Google Scholar 

  8. Melzer A, Gutmann B, Remmle T, Wolf R, Luboscheck A, Block M, Barden-heuer H, Fischer H (2008) INNOMOTION for percutaneous image-guided interventions. IEEE Eng Med Biol Mag 27:66–73

    Article  Google Scholar 

  9. Zemiti N, Bricault I, Fouard C, Sanchez B, Cinquin P (2008) LPR: A CT and MR-compatible puncture robot to enhance accuracy and safety of image-guided interventions. IEEE/ASME Trans Mechatron 13:306–315

    Article  Google Scholar 

  10. Ahrar J, Javadi S, Valenzuela Y, Gupta S, Stafford R, Ahrar K (2008) MRI-guided biopsy using a high field strength magnet: Initial experience with 95 patients. In 94th Scientific Assembly and Annual Meeting of the Radiological Society of North America, Chicago, USA

    Google Scholar 

  11. Shah S, Kapoor A, Ding J, Guion P, Petrisor D, Karanian J, Pritchard WF, Stoianovici D, Wood B, Cleary K (2008) Robotically assisted needle driver: evaluation of safety release, force profiles, and needle spin in a swine abdominal model. Int J Comput Assist Radiol Surg 3: 173–179

    Article  Google Scholar 

  12. Barrett J, Keat N (2003) Artefacts in ct: recognition and avoidance. ImPACT, London, UK. http://www.impactscan.org/slides/rsna2003/ctartefacts.pdf

  13. Maurin B, Bayle B, Piccin O, Gangloff J, de Mathelin M, Doignon C, Zanne P, Gangi A (2008) A patient-mounted robotic platform for CT-scan guided procedures. IEEE Transact Biomed Eng 55:2417–2425

    Article  Google Scholar 

  14. Stoianovici D, Cadeddu J, Demaree R, Basile H, Taylor R, Whitcomb L, Kavoussi L (1997) A novel mechanical transmission applied to percutaneous renal access. Proceedings of the ASME Dynamic Systems and Control Division 61:401–406

    Google Scholar 

  15. Webster RJ, Kim JS, Cowan NJ, Chirikjian GS, Okamura AM (2006) Nonholo-nomic modeling of needle steering. Int J Robot Res 25:509–525

    Article  Google Scholar 

  16. Chinzei K, Kikinis R, Jolesz F (1999) MR compatibility of mechatronic devices: Design criteria. Med Image Comput Comput Assist Interv 1679:1020–1031

    Article  Google Scholar 

  17. Bricault I, Jauniaux E, Zemiti N, Fouard C, Taillant E, Dorandeu F, Cinquin P (2008) LPR: a light puncture robot for CT and MRI interventions. IEEE Eng Med Biol Magzine 27:42–50

    Article  Google Scholar 

  18. Tada M, Kanade T (2005) Design of an MR-compatible three-axis force sensor. IEEE/RSJ International Conference on Intelligent Robots and Systems, Edmonton, Canada, 2618–2623

    Google Scholar 

  19. Fischer G, Iordachita I, Csoma C, Tokuda J, DiMaio S, Tempany C, Hata N, Fichtinger G (2008) MRI-compatible pneumatic robot for transperineal prostate needle placement. IEEE/ ASME Trans Mechatron 13:295–305

    Article  Google Scholar 

  20. Stoianovici D, Patriciu A, Petrisor D, Mazilu D, Kavoussi L (2007) A new type of motor: pneumatic step motor. IEEE/ASME Trans Mechatron 12:98–106

    Article  Google Scholar 

  21. Ganesh G, Gassert R, Burdet E, Bleuler H (2004) Dynamics and control of an MRI compatible master-slave system with hydrostatic transmission. IEEE International Conference on Robotics and Automation, New-Orleans, USA, 1288–1294

    Google Scholar 

  22. Okayasu H, Okamoto J, Fujie M, Umezu M, Iseki H (2003) Development of a hydraulic-driven flexible manipulator for neurosurgery. CARS 1256:607–613

    Google Scholar 

  23. Tadakuma K, DeVita L, Plante J, Shaoze Y, Dubowsky S (2005) The experimental study of a precision parallel manipulator with binary actuation: with application to MRI cancer treatment. IEEE International Conference on Robotics and Automation, Pasadena, USA, 2503–2508

    Google Scholar 

  24. Carpi F, Khanicheh A, Mavroidis C, DeRossi D (2008) MRI compatibilityof silicone-made contractile dielectric elastomer actuators. IEEE/ASME Trans Mechatron 13:370–374

    Article  Google Scholar 

  25. Beekley (2009) http://www.beekley.com

  26. Robin medical (2009) http://www.robinmedical.com

  27. Chapuis D, Gassert R, Sache L, Burdet E, Bleuler H (2004) Design of a simple MRI/fMRI compatible force/torque sensor. IEEE/RSJ International Conference on Intelligent Robots and Systems, Sendai, Japan, 2593–2599

    Google Scholar 

  28. Stoianovici D, Whitcomb L, Anderson J, Taylor R, Kavoussi L (1998) A modular surgical robotic system for image guided percutaneous procedures. Medical Image Computing and Computer-Assisted Intervention, Cambridge, USA

    Google Scholar 

  29. Muntener M, Patriciu A, Petrisor D, Mazilu D, Bagga H, Kavoussi L, Cleary K, Stoianovici D (2006) Magnetic resonance imaging compatible robotic system for fully automated brachytherapy seed placement. Urology 68:1313–1317

    Article  Google Scholar 

  30. Muntener M, Patriciu A, Petrisor D, Schar M, Ursu D, Song D, Stoianovici D (2008) Transperineal prostate intervention: robot for fully automated MR imaging–system description and proof of principle in a canine model. Radiology 247:543–549

    Article  Google Scholar 

  31. Cleary K, Melzer A, Watson V, Kronreif G, Stoianovici D (2006) Interventional robotic systems: applications and technology state-of-the-art. Minim Invasive Ther Allied Technol 15:101–113

    Article  Google Scholar 

  32. Hempel E, Fischer H, Gumb L, Hohn T, Krause H, Voges U, Breitwieser H, Gutmann B, Durke J, Bock M, Melzer A (2003) An MRI-compatible surgical robot for precise radiological interventions. Comput Aided Surg 8:180–191

    Article  Google Scholar 

  33. Taillant E, Avila-Vilchis J-C, Bricault I, Cinquin P (2004) CT and MR compatible light puncture robot: architectural design and first experiments. Medical Image Computing and Computer-Assisted Intervention, Saint-Malo, France, 145–152

    Google Scholar 

  34. Barbé L, Bayle B, Piccin O, Gangloff J, de Mathelin M (2007) Design and evaluation of a linear haptic device. In IEEE Conference on Robotics and Automation, Roma, Italy

    Google Scholar 

  35. Barbé L, Bayle B, de Mathelin M, Gangi A (2007) In vivo model estimation and haptic characterization of needle insertions. Int J Robot Res 26:1283–1301

    Article  Google Scholar 

  36. Kronreif G, Fürst M Ptacek W, Kornfeld M, Kettenbach J (2006) Robotic system for image guided therapy – B-robii. International Workshop on Robotics in Alpe-Adira-Danube Region, Balatonfüred Lake Balaton, Hungary

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernard Bayle .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Bayle, B., Piccin, O., Barbé, L., Renaud, P., de Mathelin, M. (2010). Image-Guided Interventions and Robotics. In: Garbey, M., Bass, B., Collet, C., Mathelin, M., Tran-Son-Tay, R. (eds) Computational Surgery and Dual Training. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-1123-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-1123-0_11

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-1122-3

  • Online ISBN: 978-1-4419-1123-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics