Skip to main content

The Role ABCG1 in Cellular Cholesterol Efflux: Relevance to Atherosclerosis and Endothelial Function

  • Chapter
  • First Online:
High Density Lipoproteins, Dyslipidemia, and Coronary Heart Disease
  • 1071 Accesses

Abstract

The ability of HDL to promote the efflux of cholesterol from macrophage foam cells is thought to be central to its antiatherogenic properties. The active transport of cholesterol from macrophage foam cells to plasma HDL or apoA-1 is mediated by ABCG1 or ABCA1, respectively. In most reports, transplantation of ABCG1−/− bone marrow in atherosclerosis-susceptible recipient mice results in unchanged or reduced atherosclerosis, reflecting compensatory upregulation of ABCA1 or increased apoptosis of ABCG1 deficient macrophages. Transplantation of ABCA1−/−ABCG1−/− bone marrow in LDL receptor deficient mice results in dramatic leukocytosis, infiltration of multiple organs with foam cells, and neutrophils and accelerated atherosclerosis. ABCG1 is also highly expressed in endothelial cells and has a major role in efflux of cholesterol and 7-oxysterols. ABCG1−/− mice display markedly impaired endothelium-dependent relaxation, reflecting reduced formation of the active, dimeric form of eNOS. The combined activities of ABCA1 and ABCG1 have important antiatherogenic and anti-inflammatory roles, acting in both macrophage foam cells and endothelium.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tall AR, Yvan-Charvet L, Terasaka N, Pagler T, Wang N (2008) HDL, ABC transporters, and cholesterol efflux: implications for the treatment of atherosclerosis. Cell Metab 7(5):365–375

    Article  CAS  PubMed  Google Scholar 

  2. Tall AR (2008) Cholesterol efflux pathways and other potential mechanisms involved in the athero-protective effect of high density lipoproteins. J Intern Med 263(3):256–273

    Article  CAS  PubMed  Google Scholar 

  3. Duffy D, Rader DJ (2009) Update on strategies to increase HDL quantity and function. Nat Rev Cardiol 6(7):455–463

    Article  PubMed  Google Scholar 

  4. Adorni MP, Zimetti F, Billheimer JT et al (2007) The roles of different pathways in the release of cholesterol from macrophages. J Lipid Res 48(11):2453–2462

    Article  CAS  PubMed  Google Scholar 

  5. Costet P, Luo Y, Wang N, Tall AR (2000) Sterol-dependent transactivation of the ABC1 promoter by the liver X receptor/retinoid X receptor. J Biol Chem 275(36):28240–28245

    CAS  PubMed  Google Scholar 

  6. Kennedy MA, Venkateswaran A, Tarr PT et al (2001) Characterization of the human ABCG1 gene: liver X receptor activates an internal promoter that produces a novel transcript encoding an alternative form of the protein. J Biol Chem 276(42):39438–39447

    Article  CAS  PubMed  Google Scholar 

  7. Wang N, Lan D, Chen W, Matsuura F, Tall AR (2004) ATP-binding cassette transporters G1 and G4 mediate cellular cholesterol efflux to high-density lipoproteins. Proc Natl Acad Sci USA 101(26):9774–9779

    Article  CAS  PubMed  Google Scholar 

  8. Kennedy MA, Barrera GC, Nakamura K et al (2005) ABCG1 has a critical role in mediating cholesterol efflux to HDL and preventing cellular lipid accumulation. Cell Metab 1(2):121–131

    Article  CAS  PubMed  Google Scholar 

  9. Baldan A, Pei L, Lee R et al (2006) Impaired development of atherosclerosis in hyperlipidemic Ldlr-/- and ApoE-/- mice transplanted with Abcg1-/- bone marrow. Arterioscler Thromb Vasc Biol 26(10):2301–2307

    Article  CAS  PubMed  Google Scholar 

  10. Ranalletta M, Wang N, Han S, Yvan-Charvet L, Welch C, Tall AR (2006) Decreased atherosclerosis in low-density lipoprotein receptor knockout mice transplanted with Abcg1-/- bone marrow. Arterioscler Thromb Vasc Biol 26(10):2308–2315

    Article  CAS  PubMed  Google Scholar 

  11. Wang X, Collins HL, Ranalletta M et al (2007) Macrophage ABCA1 and ABCG1, but not SR-BI, promote macrophage reverse cholesterol transport in vivo. J Clin Invest 117(8):2216–2224

    Article  CAS  PubMed  Google Scholar 

  12. Yvan-Charvet L, Ranalletta M, Wang N et al (2007) Combined deficiency of ABCA1 and ABCG1 promotes foam cell accumulation and accelerates atherosclerosis in mice. J Clin Invest 117(12):3900–3908

    CAS  PubMed  Google Scholar 

  13. Hink U, Li H, Mollnau H et al (2001) Mechanisms underlying endothelial dysfunction in diabetes mellitus. Circ Res 88(2):E14-E22

    CAS  PubMed  Google Scholar 

  14. Gimbrone MA Jr, Topper JN, Nagel T, Anderson KR, Garcia-Cardena G (2000) Endothelial dysfunction, hemodynamic forces, and atherogenesis. Ann N Y Acad Sci 902:230-239, discussion 239–240

    Article  CAS  PubMed  Google Scholar 

  15. Ashfaq S, Abramson JL, Jones DP et al (2008) Endothelial function and aminothiol biomarkers of oxidative stress in healthy adults. Hypertension 52(1):80–85

    Article  CAS  PubMed  Google Scholar 

  16. Cai H, Harrison DG (2000) Endothelial dysfunction in cardiovascular diseases: the role of oxidant stress. Circ Res 87(10):840–844

    CAS  PubMed  Google Scholar 

  17. Kuvin JT, Patel AR, Sidhu M et al (2003) Relation between high-density lipoprotein cholesterol and peripheral vasomotor function. Am J Cardiol 92(3):275–279

    Article  CAS  PubMed  Google Scholar 

  18. O’Connell BJ, Genest J Jr (2001) High-density lipoproteins and endothelial function. Circulation 104(16):1978–1983

    Article  PubMed  Google Scholar 

  19. Drew BG, Fidge NH, Gallon-Beaumier G, Kemp BE, Kingwell BA (2004) High-density lipoprotein and apolipoprotein AI increase endothelial NO synthase activity by protein association and multisite phosphorylation. Proc Natl Acad Sci USA 101(18):6999–7004

    Article  CAS  PubMed  Google Scholar 

  20. Mineo C, Shaul PW (2003) HDL stimulation of endothelial nitric oxide synthase: a novel mechanism of HDL action. Trends Cardiovasc Med 13(6):226–231

    Article  CAS  PubMed  Google Scholar 

  21. Nofer JR, van der Giet M, Tolle M et al (2004) HDL induces NO-dependent vasorelaxation via the lysophospholipid receptor S1P3. J Clin Invest 113(4):569–581

    CAS  PubMed  Google Scholar 

  22. Kuvin JT, Ramet ME, Patel AR, Pandian NG, Mendelsohn ME, Karas RH (2002) A novel mechanism for the beneficial vascular effects of high-density lipoprotein cholesterol: enhanced vasorelaxation and increased endothelial nitric oxide synthase expression. Am Heart J 144(1):165–172

    Article  CAS  PubMed  Google Scholar 

  23. Matsuda Y, Hirata K, Inoue N et al (1993) High density lipoprotein reverses inhibitory effect of oxidized low density lipoprotein on endothelium-dependent arterial relaxation. Circ Res 72(5):1103–1109

    CAS  PubMed  Google Scholar 

  24. Uittenbogaard A, Shaul PW, Yuhanna IS, Blair A, Smart EJ (2000) High density lipoprotein prevents oxidized low density lipoprotein-induced inhibition of endothelial nitric-oxide synthase localization and activation in caveolae. J Biol Chem 275(15):11278–11283

    Article  CAS  PubMed  Google Scholar 

  25. Terasaka N, Yu S, Yvan-Charvet L et al (2008) ABCG1 and HDL protect against endothelial dysfunction in mice fed a high-cholesterol diet. J Clin Invest 118(11):3701–3713

    Article  CAS  PubMed  Google Scholar 

  26. Yuhanna IS, Zhu Y, Cox BE et al (2001) High-density lipoprotein binding to scavenger receptor-BI activates endothelial nitric oxide synthase. Nat Med 7(7):853–857

    Article  CAS  PubMed  Google Scholar 

  27. Gong M, Wilson M, Kelly T et al (2003) HDL-associated estradiol stimulates endothelial NO synthase and vasodilation in an SR-BI-dependent manner. J Clin Invest 111(10):1579–1587

    CAS  PubMed  Google Scholar 

  28. Nicholls SJ, Lundman P, Harmer JA et al (2006) Consumption of saturated fat impairs the anti-inflammatory properties of high-density lipoproteins and endothelial function. J Am Coll Cardiol 48(4):715–720

    Article  CAS  PubMed  Google Scholar 

  29. Cockerill GW, Rye KA, Gamble JR, Vadas MA, Barter PJ (1995) High-density lipoproteins inhibit cytokine-induced expression of endothelial cell adhesion molecules. Arterioscler Thromb Vasc Biol 15(11):1987–1994

    CAS  PubMed  Google Scholar 

  30. Bisoendial RJ, Hovingh GK, Levels JH et al (2003) Restoration of endothelial function by increasing high-density lipoprotein in subjects with isolated low high-density lipoprotein. Circulation 107(23):2944–2948

    Article  PubMed  Google Scholar 

  31. Tso C, Martinic G, Fan WH, Rogers C, Rye KA, Barter PJ (2006) High-density lipoproteins enhance progenitor-mediated endothelium repair in mice. Arterioscler Thromb Vasc Biol 26(5):1144–1149

    Article  CAS  PubMed  Google Scholar 

  32. Navab M, Hama SY, Van Lenten BJ, Drinkwater DC, Laks H, Fogelman AM (1993) A new antiinflammatory compound, leumedin, inhibits modification of low density lipoprotein and the resulting monocyte transmigration into the subendothelial space of cocultures of human aortic wall cells. J Clin Invest 91(3):1225–1230

    Article  CAS  PubMed  Google Scholar 

  33. Dansky HM, Barlow CB, Lominska C et al (2001) Adhesion of monocytes to arterial endothelium and initiation of atherosclerosis are critically dependent on vascular cell adhesion molecule-1 gene dosage. Arterioscler Thromb Vasc Biol 21(10):1662–1667

    Article  CAS  PubMed  Google Scholar 

  34. Deckert V, Lizard G, Duverger N et al (1999) Impairment of endothelium-dependent arterial relaxation by high-fat feeding in ApoE-deficient mice: toward normalization by human ApoA-I expression. Circulation 100(11):1230–1235

    CAS  PubMed  Google Scholar 

  35. Kitayama J, Faraci FM, Lentz SR, Heistad DD (2007) Cerebral vascular dysfunction during hypercholesterolemia. Stroke 38(7):2136–2141

    Article  CAS  PubMed  Google Scholar 

  36. Assanasen C, Mineo C, Seetharam D et al (2005) Cholesterol binding, efflux, and a PDZ-interacting domain of scavenger receptor-BI mediate HDL-initiated signaling. J Clin Invest 115(4):969–977

    CAS  PubMed  Google Scholar 

  37. Shaul PW, Mineo C (2004) HDL action on the vascular wall: is the answer NO? J Clin Invest 113(4):509–513

    CAS  PubMed  Google Scholar 

  38. Zhu M, Fu Y, Hou Y et al (2008) Laminar shear stress regulates liver X receptor in vascular endothelial cells. Arterioscler Thromb Vasc Biol 28(3):527–533

    Article  CAS  PubMed  Google Scholar 

  39. Terasaka N, Wang N, Yvan-Charvet L, Tall AR (2007) High-density lipoprotein protects macrophages from oxidized low-density lipoprotein-induced apoptosis by promoting efflux of 7-ketocholesterol via ABCG1. Proc Natl Acad Sci USA 104(38):15093–15098

    Article  CAS  PubMed  Google Scholar 

  40. Tall AR, Yvan-Charvet L, Wang N (2007) The failure of torcetrapib: was it the molecule or the mechanism? Arterioscler Thromb Vasc Biol 27(2):257–260

    Article  CAS  PubMed  Google Scholar 

  41. Yvan-Charvet L, Matsuura F, Wang N et al (2007) Inhibition of cholesteryl ester transfer protein by torcetrapib modestly increases macrophage cholesterol efflux to HDL. Arterioscler Thromb Vasc Biol 27(5):1132–1138

    Article  CAS  PubMed  Google Scholar 

  42. Matsuura F, Wang N, Chen W, Jiang XC, Tall AR (2006) HDL from CETP-deficient subjects shows enhanced ability to promote cholesterol efflux from macrophages in an apoE- and ABCG1-dependent pathway. J Clin Invest 116(5):1435–1442

    Article  CAS  PubMed  Google Scholar 

  43. Nicholls SJ, Tuzcu EM, Brennan DM, Tardif JC, Nissen SE (2008) Cholesteryl ester transfer protein inhibition, high-density lipoprotein raising, and progression of coronary atherosclerosis: insights from ILLUSTRATE (Investigation of Lipid Level Management Using Coronary Ultrasound to Assess Reduction of Atherosclerosis by CETP Inhibition and HDL Elevation). Circulation 118(24):2506–2514

    Article  CAS  PubMed  Google Scholar 

  44. Krishna R, Anderson MS, Bergman AJ et al (2007) Effect of the cholesteryl ester transfer protein inhibitor, anacetrapib, on lipoproteins in patients with dyslipidaemia and on 24-h ambulatory blood pressure in healthy individuals: two double-blind, randomised placebo-controlled phase I studies. Lancet 370(9603):1907–1914

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan R. Tall .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Tall, A.R. (2010). The Role ABCG1 in Cellular Cholesterol Efflux: Relevance to Atherosclerosis and Endothelial Function. In: Schaefer, E. (eds) High Density Lipoproteins, Dyslipidemia, and Coronary Heart Disease. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-1059-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-1059-2_9

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-1058-5

  • Online ISBN: 978-1-4419-1059-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics