Skip to main content

Accelerating Boolean Satisfiability on an FPGA

  • Chapter
  • First Online:
Hardware Acceleration of EDA Algorithms

Abstract

In this chapter, we propose an FPGA-based SAT approach in which the traversal of the implication graph as well as conflict clause generation is performed in hardware, in parallel. In our approach, clause literals are stored in the FPGA slices. In order to solve large SAT instances, we heuristically partition the clauses into a number of ‘bins,’ each of which can fit in the FPGA. This is done in a preprocessing step.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. http://www.cs.chalmers.se/cs/research/formalmethods/minisat/main.html. The MiniSAT Page

  2. Abramovici, M., de Sousa, J., Saab, D.: A massively-parallel easily-scalable satisfiability solver using reconfigurable hardware. In: Proceedings, Design Automation Conference (DAC), pp. 684–690 (1999)

    Google Scholar 

  3. Cook, S.: The complexity of theorem-proving procedures. In: Proceedings, Third ACM Symposium Theory of Computing, pp. 151–158 (1971)

    Google Scholar 

  4. Gulati, K., Paul, S., Khatri, S.P., Patil, S., Jas, A.: FPGA-based hardware acceleration for Boolean satisfiability. ACM Transaction on Design Automation of Electronic Systems 14(2), 1–11 (2009)

    Article  Google Scholar 

  5. Mencer, O., Platzner, M.: Dynamic circuit generation for Boolean satisfiability in an object-oriented design environment. In: HICSS ’99: Proceedings of the Thirty-second Annual Hawaii International Conference on System Sciences-Volume 3, p. 3044. IEEE Computer Society, Washington, DC (1999)

    Google Scholar 

  6. Pagarani, T., Kocan, F., Saab, D., Abraham, J.: Parallel and scalable architecture for solving satisfiability on reconfigurable FPGA. In: Proceedings, IEEE Custom Integrated Circuits Conference (CICC), pp. 147–150 (2000)

    Google Scholar 

  7. Platzner, M., Micheli, G.D.: Acceleration of satisfiability algorithms by reconfigurable hardware. In: FPL ’98: Proceedings of the 8th International Workshop on Field-Programmable Logic and Applications, from FPGAs to Computing Paradigm, pp. 69–78. Springer-Verlag, London (1998)

    Chapter  Google Scholar 

  8. Redekopp, M., Dandalis, A.: A parallel pipelined SAT solver for FPGAs. In: FPL ’00: Proceedings of The Roadmap to Reconfigurable Computing, 10th International Workshop on Field-Programmable Logic and Applications, pp. 462–468. Springer-Verlag, London (2000)

    Chapter  Google Scholar 

  9. Safar, M., El-Kharashi, M., Salem, A.: FPGA-based SAT solver. In: Proceedings, Canadian Conference on Electrical and Computer Engineering, pp. 1901–1904 (2006)

    Google Scholar 

  10. Safar, M., Shalan, M., El-Kharashi, M.W., Salem, A.: Interactive presentation: A shift register based clause evaluator for reconfigurable SAT solver. In: DATE ’07: Proceedings of the Conference on Design, Automation and Test in Europe, pp. 153–158 (2007)

    Google Scholar 

  11. Silva, M., Sakallah, J.: GRASP – a new search algorithm for satisfiability. In: Proceedings of the International Conference on Computer-Aided Design (ICCAD), pp. 220–7 (1996)

    Google Scholar 

  12. Skliarova, I., Ferrari, A.B.: A software/reconfigurable hardware SAT solver. IEEE Transactions on Very Large Scale Integration Systems 12(4), 408–419 (2004)

    Article  Google Scholar 

  13. Suyama, T., Yokoo, M., Sawada, H., Nagoya, A.: Solving satisfiability problems using reconfigurable computing. IEEE Transactions on Very Large Scale Integration (VLSI) Systems 9(1), 109–116 (2001)

    Article  Google Scholar 

  14. Zhao, Y., Malik, S., Wang, A., Moskewicz, M., Madigan, C.: Matching architecture to application via configurable processors: A case study with Boolean satisfiability problem. In: Proceedings, International Conference on Computer Design (ICCD), pp. 447–452 (2001)

    Google Scholar 

  15. Zhong, P., Martonosi, M., Ashar, P.: FPGA-based SAT solver architecture with near-zero synthesis and layout overhead. IEE Proceedings – Computers and Digital Techniques 147(3), 135–141 (2000)

    Article  Google Scholar 

  16. Zhong, P., Martonosi, M., Ashar, P., Malik, S.: Accelerating Boolean Satisfiability with configurable hardware. In: Proceedings, IEEE Symposium on FPGAs for Custom Computing Machines, pp. 186–195 (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kanupriya Gulati .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Gulati, K., Khatri, S.P. (2010). Accelerating Boolean Satisfiability on an FPGA. In: Hardware Acceleration of EDA Algorithms. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-0944-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-0944-2_5

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-0943-5

  • Online ISBN: 978-1-4419-0944-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics