Skip to main content

Hardware Platforms

  • Chapter
  • First Online:
Hardware Acceleration of EDA Algorithms
  • 1122 Accesses

Abstract

As discussed in Chapter 1, single-threaded software applications no longer obtain significant gains in performance with the current processor scaling trends. With the growing complexity of VLSI designs, this is a significant problem for the electronic design automation (EDA) community. In addition to multi-core processors, hardware-based accelerators such as custom-designed ICs, reconfigurable hardware such as FPGAs, and streaming processors such as graphics processing units (GPUs) are being investigated as a potential solution to this problem. These platforms allow the CPU to offload compute-intensive portions of an application to the hardware for a faster computation, and the results are transferred back to the CPU upon completion. Different platforms are best suited for different application scenarios and algorithms. The pros and cons of the platforms under consideration are discussed in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. ATI CrossFire. http://ati.amd.com/technology/crossfire/features.html

  2. ATI Stream Computing. http://ati.amd.com/technology/streamcomputing/sdkdwnld.html

  3. CORE Generator System. http://www.xilinx.com/products/design-tools/logic-design/design-entry/coregenerator.htm

  4. CUDA Zone. http://www.nvidia.com/object/cuda.html

  5. FPGA-based hardware acceleration of C/C++ based applications. http://www.pldesignline.com/howto/201800344

  6. Industry’s First GPU with Double-Precision Floating Point. http://ati.amd.com/products/streamprocessor/specs.html

  7. Intel Nehalem (microarchitecture). http://en.wikipedia.org/wiki/Nehalem-CPU-architecture

  8. Intel SSE. http://www.tommesani.com/SSE.html

  9. Mammoth FPGAs Require New Tools. http://www.gaterocket.com/devicenative-verification/bid/7966/Mammoth-FPGAs-Require-New-Tools

  10. NVIDIA CUDA Homepage. http://developer.nvidia.com/object/cuda.html

  11. NVIDIA CUDA Introduction. http://www.beyond3d.com/content/articles/12/1

  12. SLI Technology. http://www.slizone.com/page/slizone.html

  13. Tesla S1070. http://www.nvidia.com/object/product-tesla-s1070-us.html

  14. The Death of the Structured ASIC. http://www.chipdesignmag.com/print.php/articleId/434/issueId/16

  15. Valgrind. http://valgrind.org/

  16. Abdollahi, A., Fallah, F., Massoud, P.: An effective power mode transition technique in MTCMOS circuits. In: Proceedings, IEEE Design Automation Conference, pp. 13–17 (2005)

    Google Scholar 

  17. Bhavnagarwala, A.J., Austin, B.L., Bowman, K.A., Meindl, J.D.: A minimum total power methodology for projecting limits on CMOS GSI. IEEE Transactions Very Large Scale Integration Systems 8(3), 235–251 (2000)

    Article  Google Scholar 

  18. Bhunia, S., Banerjee, N., Chen, Q., Mahmoodi, H., Roy, K.: A novel synthesis approach for active leakage power reduction using dynamic supply gating. In: DAC ’05: Proceedings of the 42nd Annual Conference on Design Automation, pp. 479–484 (2005)

    Google Scholar 

  19. Che, S., Li, J., Sheaffer, J., Skadron, K., Lach, J.: Accelerating compute-intensive applications with GPUs and FPGAs. In: Application Specific Processors, 2008. SASP 2008. Symposium on, pp. 101 – 107 (2008)

    Google Scholar 

  20. Chinnery, D.G., Keutzer, K.: Closing the power gap between ASIC and custom: An ASIC perspective. In: DAC ’05: Proceedings of the 42nd Annual Design Automation Conference, pp. 275–280 (2005)

    Google Scholar 

  21. Chow, P., Seo, S., Rose, J., Chung, K., Paez-Monzon, G., Rahardja, I.: The design of a SRAM-based field-programmable gate array – part II : Circuit design and layout. IEEE Transactions on Very Large Scale Integration (VLSI) Systems 7(3), 321–330 (1999)

    Article  Google Scholar 

  22. Cope, B., Cheung, P., Luk, W., Witt, S.: Have GPUs made FPGAs redundant in the field of video processing? In: Field-Programmable Technology, 2005. Proceedings. 2005 IEEE International Conference on, pp. 111–118 (2005)

    Google Scholar 

  23. Fan, Z., Qiu, F., Kaufman, A., Yoakum-Stover, S.: GPU cluster for high performance computing. In: SC ’04: Proceedings of the 2004 ACM/IEEE Conference on Supercomputing, p. 47 (2004)

    Google Scholar 

  24. Feng, Z., Li, P.: Multigrid on GPU: Tackling power grid analysis on parallel SIMT platforms. In: ICCAD ’08: Proceedings of the 2008 IEEE/ACM International Conference on Computer-Aided Design, pp. 647–654. IEEE Press, Piscataway, NJ (2008)

    Google Scholar 

  25. Gao, F., Hayes, J.: Exact and heuristic approaches to input vector control for leakage power reduction. In: Proceedings, International Conference on Computer-Aided Design, pp. 527–532 (2004)

    Google Scholar 

  26. Graham, P., Nelson, B., Hutchings, B.: Instrumenting bitstreams for debugging FPGA circuits. In: FCCM ’01: Proceedings of the 9th Annual IEEE Symposium on Field-Programmable Custom Computing Machines, pp. 41–50 (2001)

    Google Scholar 

  27. Jain, A.K., Yuan, L., Pari, P.R., Qu, G.: Zero overhead watermarking technique for FPGA designs. In: GLSVLSI ’03: Proceedings of the 13th ACM Great Lakes symposium on VLSI, pp. 147–152 (2003)

    Google Scholar 

  28. Kuon, I., Rose, J.: Measuring the gap between FPGAs and ASICs. In: FPGA ’06: Proceedings of the 2006 ACM/SIGDA 14th International Symposium on Field Programmable Gate Arrays, pp. 21–30 (2006)

    Google Scholar 

  29. Luebke, D., Harris, M., Govindaraju, N., Lefohn, A., Houston, M., Owens, J., Segal, M., Papakipos, M., Buck, I.: GPGPU: General-purpose computation on graphics hardware. In: SC ’06: Proceedings of the 2006 ACM/IEEE Conference on Supercomputing, p. 208 (2006)

    Google Scholar 

  30. Mal, P., Cantin, J., Beyette, F.: The circuit designs of an SRAM based look-up table for high performance FPGA architecture. In: 45th Midwest Symposium on Circuits and Systems (MWCAS), vol. III, pp. 227–230 (2002)

    Google Scholar 

  31. Minana, G., Garnica, O., Hidalgo, J.I., Lanchares, J., Colmenar, J.M.: A power-aware technique for functional units in high-performance processors. In: DSD ’06: Proceedings of the 9th EUROMICRO Conference on Digital System Design, pp. 456–459 (2006)

    Google Scholar 

  32. Molas, G., Bocquet, M., Buckley, J., Grampeix, H., Gély, M., Colonna, J.P., Martin, F., Brianceau, P., Vidal, V., Bongiorno, C., Lombardo, S., Pananakakis, G., Ghibaudo, G., De Salvo, B., Deleonibus, S.: Evaluation of HfAlO high-k materials for control dielectric applications in non-volatile memories. Microelectronic Engineering 85(12), 2393–2399 (2008)

    Article  Google Scholar 

  33. Oliveira, A.L.: Robust techniques for watermarking sequential circuit designs. In: DAC ’99: Proceedings of the 36th ACM/IEEE Conference on Design Automation, pp. 837–842 (1999)

    Google Scholar 

  34. Owens, J.: GPU architecture overview. In: SIGGRAPH ’07: ACM SIGGRAPH 2007 Courses, p. 2 (2007)

    Google Scholar 

  35. Owens, J.D., Houston, M., Luebke, D., Green, S., Stone, J.E., Philips, J.C.: GPU Computing. In: Proceedings of the IEEE, vol. 96, pp. 879–899 (2008)

    Google Scholar 

  36. Raja, T., Agrawal, V.D., Bushnell, M.L.: CMOS circuit design for minimum dynamic power and highest speed. In: VLSID ’04: Proceedings of the 17th International Conference on VLSI Design, p. 1035. IEEE Computer Society, Washington, DC (2004)

    Google Scholar 

  37. Schive, H.Y., Chien, C.H., Wong, S.K., Tsai, Y.C., Chiueh, T.: Graphic-card cluster for astrophysics (GraCCA) – performance tests. In: Submitted to NewAstronomy (2007)

    Google Scholar 

  38. Scrofano, R., G.Govindu, Prasanna, V.: A library of parameterizable floating point cores for FPGAs and their application to scientific computing. In: Proceedings of the 2005 International Conference on Engineering of Reconfigurable Systems and Algorithms, pp. 137–148 (2005)

    Google Scholar 

  39. Wei, L., Chen, Z., Johnson, M., Roy, K., De, V.: Design and optimization of low voltage high performance dual threshold CMOS circuits. In: DAC ’98: Proceedings of the 35th Annual Conference on Design Automation, pp. 489–494 (1998)

    Google Scholar 

  40. Yu, B., Bushnell, M.L.: A novel dynamic power cutoff technique DPCT for active leakage reduction in deep submicron CMOS circuits. In: ISLPED ’06: Proceedings of the 2006 International Symposium on Low Power Electronics and Design, pp. 214–219 (2006)

    Google Scholar 

  41. Yuan, L., Qu, G.: Enhanced leakage reduction technique by gate replacement. In: DAC, pp. 47–50 (2005)

    Google Scholar 

  42. Yuan, L., Qu, G., Ghout, L., Bouridane, A.: VLSI design IP protection: solutions, new challenges, and opportunities. In: AHS ’06: Proceedings of the First NASA/ESA Conference on Adaptive Hardware and Systems, pp. 469–476 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kanupriya Gulati .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Gulati, K., Khatri, S.P. (2010). Hardware Platforms. In: Hardware Acceleration of EDA Algorithms. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-0944-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-0944-2_2

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-0943-5

  • Online ISBN: 978-1-4419-0944-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics