Skip to main content

Disinhibition of Prefrontal Cortex Neurons in Schizophrenia

  • Chapter
  • First Online:
Advances in Schizophrenia Research 2009
  • 1585 Accesses

Abstract

A large body of evidence has implicated abnormal functioning of the prefrontal cortex (PFC) in the pathophysiology of schizophrenia (Robbins 1996; Andreasen et al. 1997; Winterer and Wvneinberger 2004; Lewis and Moghaddam 2006). These abnormalities are found at molecular and functional levels and are thought to be the basis of cognitive deficits in individuals with schizophrenia. However, little is known about the physiological mechanisms that contribute to this malfunction. Here we review some of the literature that points to PFC abnormalities in schizophrenia and recent theories that unify the multimodal functional and postmortem findings in schizophrenia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aalto, S., Hirvonen, J., Kajander, J., Scheinin, H., Nagren, K., Vilkman, H., Gustafsson, L., Syvalahti, E. & Hietala, J. (2002) Ketamine does not decrease striatal dopamine D2 receptor binding in man. Psychopharmacology (Berl) 164:401–406

    Article  CAS  Google Scholar 

  • Abi-Dargham, A., Gil, R., Krystal, J., Baldwin, R. M., Seibyl, J. P., Bowers, M., van Dyck, C. H., Charney, D. S., Innis, R. B. & Laruelle, M. (1998) Increased striatal dopamine transmission in schizophrenia: Confirmation in a second cohort. American Journal of Psychiatry 155: 761–767

    CAS  PubMed  Google Scholar 

  • Abi-Dargham, A., Rodenhiser, J., Printz, D., Zea-Ponce, Y., Gil, R., Kegeles, L., Weiss, R., Cooper, T., Mann, J., Van Heertum, R., Gorman, J. & Laruelle, M. (2000) Increased baseline occupancy of D2 receptors by dopamine in schizophrenia. Proceedings of the National Academy of Sciences of USA 97:8104–8109

    Google Scholar 

  • Adams, B. & Moghaddam, B. (1998) Corticolimbic dopamine neurotransmission is temporally dissociated from the cognitive and locomotor effects of phencyclidine. Journal of Neuroscience 18:5545–5554

    CAS  PubMed  Google Scholar 

  • Adams, B. W., Bradberry, C. W. & Moghaddam, B. (2002) NMDA antagonist effects on striatal dopamine release: microdialysis studies in awake monkeys. Synapse 43:12–18

    Article  CAS  PubMed  Google Scholar 

  • Adler, C. M., Goldberg, T. E., Malhotra, A. K., Pickar, D. & Breier, A. (1998) Effects of ketamine on thought disorder, working memory, and semantic memory in healthy volunteers. Biological Psychiatry 43:811–816

    Article  CAS  PubMed  Google Scholar 

  • Akbarian, S., Kim, J. J., Potkin, S. G., Hagman, J. O., Tafazzoli, A., Bunney, W. E., Jr. & Jones, E. G. (1995) Gene expression for glutamic acid decarboxylase is reduced without loss of neurons in prefrontal cortex of schizophrenics [see comments]. Archives of General Psychiatry 52:258–266

    CAS  PubMed  Google Scholar 

  • Andreasen, N. C., Arndt, S., Swayze, V., II, Cizadlo, T., Flaum, M., O’Leary, D., Erhardt, J. C. & Yuh, W. T. (1994) Thalamic abnormalities in schizophrenia visualized through magnetic resonance image averaging. Science 266:294–298

    Article  CAS  PubMed  Google Scholar 

  • Andreasen, N. C., Nopoulos, P., O’Leary, D. S., Miller, D. D., Wassink, T. & Flaum, M. (1999) Defining the phenotype of schizophrenia: cognitive dysmetria and its neural mechanisms. Biological Psychiatry 46:908–920

    Article  CAS  PubMed  Google Scholar 

  • Andreasen, N. C., O’Leary, D. S., Flaum, M., Nopoulos, P., Watkins, G. L., Boles Ponto, L. L. & Hichwa, R. D. (1997) Hypofrontality in schizophrenia: distributed dysfunctional circuits in neuroleptic-naive patients. Lancet 349:1730–1734

    Article  CAS  PubMed  Google Scholar 

  • Aniline, O. & Pitts, F. N., Jr. (1982) Phencyclidine (PCP): A review and perspectives. Critical Reviews in Toxicology 10:145–177

    Article  CAS  PubMed  Google Scholar 

  • Aradi, I., Santhakumar, V., Chen, K. & Soltesz, I. (2002) Postsynaptic effects of GABAergic synaptic diversity: regulation of neuronal excitability by changes in IPSC variance. Neuropharmacology 43:511–522

    Article  CAS  PubMed  Google Scholar 

  • Arnsten, A. F., Cai, J. X., Murphy, B. L. & Goldman-Rakic, P. S. (1994) Dopamine D1 receptor mechanisms in the cognitive performance of young adult and aged monkeys. Psychopharmacology 116:143–151

    Article  CAS  PubMed  Google Scholar 

  • Bakshi, V. P., Swerdlow, N. R. & Geyer, M. A. (1994) Clozapine antagonizes phencyclidine-induced deficits in sensorimotor gating of the startle response. Journal of Pharmacology & Experimental Therapeutics 271:787–794

    CAS  Google Scholar 

  • Beasley, C. L. & Reynolds, G. P. (1997) Parvalbumin-immunoreactive neurons are reduced in the prefrontal cortex of schizophrenics. Schizophr Res 24:349–355

    Article  CAS  PubMed  Google Scholar 

  • Benes, F. & Berretta, S. (2001) GABAergic interneurons: implications for understanding schizophrenia and bipolar disorder. Neuropsychopharmacology 25:1–27

    Article  CAS  PubMed  Google Scholar 

  • Benes, F. M. & Lange, N. (2001) Two-dimensional versus three-dimensional cell counting: a practical perspective. Trends Neuroscience 24:11–17

    Article  CAS  Google Scholar 

  • Benes, F. M., McSparren, J., Bird, E. D., SanGiovanni, J. P. & Vincent, S. L. (1991) Deficits in small interneurons in prefrontal and cingulate cortices of schizophrenic and schizoaffective patients. Archives of General Psychiatry 48:996–1001

    CAS  PubMed  Google Scholar 

  • Benes, F. M., Vincent, S. L., Alsterberg, G., Bird, E. D. & SanGiovanni, J. P. (1992) Increased GABAA receptor binding in superficial layers of cingulate cortex in schizophrenics. Journal of Neuroscience 12:924–929

    CAS  PubMed  Google Scholar 

  • Benes, F. M., Vincent, S. L., Marie, A. & Khan, Y. (1996) Up-regulation of GABAA receptor binding on neurons of the prefrontal cortex in schizophrenic subjects. Neuroscience 75: 1021–1031

    Article  CAS  PubMed  Google Scholar 

  • Bowyer, J. F., Spuhler, K. P. & Weiner, N. (1984) Effects of phencyclidine, amphetamine and related compounds on dopamine release from and uptake into striatal synaptosomes. Journal of Pharmacology & Experimental Therapeutics 229:671–680

    CAS  Google Scholar 

  • Breier, A., Su, T. P., Saunders, R., Carson, R. E., Kolachana, B. S., de Bartolomeis, A., Weinberger, D. R., Weisenfeld, N., Malhotra, A. K., Eckelman, W. C. & Pickar, D. (1997) Schizophrenia is associated with elevated amphetamine-induced synaptic dopamine concentrations: evidence from a novel positron emission tomography method. Proceedings of the National Academy of Sciences USA 94:2569–2574

    Google Scholar 

  • Calabresi, P., De Murtas, M., Mercuri, N. B. & Bernardi, G. (1992) Chronic neuroleptic treatment: D2 dopamine receptor supersensitivity and striatal glutamatergic transmission. Annals of Neurology 31:366–373

    Article  CAS  PubMed  Google Scholar 

  • Carlsson, A. (1977) Does dopamine play a role in schizophrenia? Psychological Medicine 7: 583–597

    Article  CAS  PubMed  Google Scholar 

  • Carlsson, A., Svensson, A. & Carlsson, M. L. (1993) Future strategies in the discovery of new antipsychotic agents: focus on dopamine–glutamate interactions. In: Brunello, N., Mendlewicz, J. & Racagni, G. (eds.) New Generation of Antipsychotic Drugs: Novel Mechanisms of Action, Karger, Basel, pp. 118–129

    Google Scholar 

  • Carlsson, M. & Carlsson, A. (1990) Interactions between glutamatergic and monoaminergic systems within the basal ganglia – implications for schizophrenia and Parkinson’s disease. Trends in Neurosciences 13:272–276

    Article  CAS  PubMed  Google Scholar 

  • Cepeda, C., Hurst, R. S., Altemus, K. L., Flores-Hernandez, J., Calvert, C. R., Jokel, E. S., Grandy, D. K., Low, M. J., Rubinstein, M., Ariano, M. A. & Levine, M. S. (2001) Facilitated glutamatergic transmission in the striatum of D2 dopamine receptor-deficient mice. Journal of Neurophysiology 85:659–670

    CAS  PubMed  Google Scholar 

  • Chartoff, E. H., Heusner, C. L. & Palmiter, R. D. (2005) Dopamine is not required for the hyperlocomotor response to NMDA receptor antagonists. Neuropsychopharmacology 30:1324–1333

    CAS  PubMed  Google Scholar 

  • Clinton, S. & Meador-Woodruff, J. (2004) Abnormalities of the NMDA receptor and associated intracellular molecules in the thalamus in schizophrenia and bipolar disorder. Neuropsychopharmacology 29:1353–1362

    Article  CAS  PubMed  Google Scholar 

  • Conrad, A., Abebe, T., Ron, A., Forsythe, S. & Scheibel, B. (1991) Hippocampal pyramidal cell disarray in schizophrenia as a bilateral phenomenon. Archives of General Psychiatry 48: 413–417

    CAS  PubMed  Google Scholar 

  • Corbett, R., Camacho, F., Woods, A. T., Kerman, L. L., Fishkin, R. J., Brooks, K. & Dunn, R. W. (1995) Antipsychotic agents antagonize non-competitive N-methyl-d-aspartate antagonist-induced behaviors. Psychopharmacology (Berl) 120:67–74

    Article  CAS  Google Scholar 

  • Creese, I., Burt, D. & Snyder, S. (1976) Dopamine receptor binding predicts clinical and pharmacological potencies of antischizophrenic drugs. Science 192:481–483

    Article  CAS  PubMed  Google Scholar 

  • Cuomo, V., Cagiano, R., Colonna, M., Renna, G. & Racagni, G. (1986) Influence of SCH 23390, a DA1-receptor antagonist, on the behavioural responsiveness to small and large doses of apomorphine in rats. Neuropharmacology 25:1297–1300

    Article  CAS  PubMed  Google Scholar 

  • Daniel, D., Berman, K. & Weinberger, D. (1989) The effect of apomorphine on regional cerebral bloodflow in schizophrenia. Journal of Neuropsychiatry & Clinical Neuroscience 1: 377–384

    CAS  Google Scholar 

  • Daniel, D. G., Weinberger, D. R., Jones, D. W., Zigun, J. R., Cippola, R., Handel, S., Bigelow, L. B., Goldberg, T. E., Berman, K. F. & Kleinman, J. E. (1991) The effect of amphetamine on regional cerebral blood flow during cognitive activation in schizophrenia. Journal of Neuroscience 11:1907–1917

    CAS  PubMed  Google Scholar 

  • Davis, K. L., Kahn, R. S., Ko, G. & Davidson, M. (1991) Dopamine in schizophrenia: a review and reconceptualization. American Journal of Psychiatry 148:1474–1486

    CAS  PubMed  Google Scholar 

  • Durstewitz, D. (2006) A few important points about dopamine’s role in neural network dynamics. Pharmacopsychiatry 39(Suppl 1):S72–S75

    Article  CAS  PubMed  Google Scholar 

  • Farde, L., Wiesel, F. A., Halldin, C. & Sedvall, G. (1988) Central D2-dopamine receptor occupancy in schizophrenic patients treated with antipsychotic drugs. Archives of General Psychiatry 45:71–76

    CAS  PubMed  Google Scholar 

  • Geddes, J., Freemantle, N., Harrison, P. & Bebbington, P. (2000) Atypical antipsychotics in the treatment of schizophrenia: systematic overview and meta-regression analysis. BMJ 321: 1371–1376

    Article  CAS  PubMed  Google Scholar 

  • Gemperle, A. Y., Enz, A., Pozza, M. F., Luthi, A. & Olpe, H. R. (2003) Effects of clozapine, haloperidol and iloperidone on neurotransmission and synaptic plasticity in prefrontal cortex and their accumulation in brain tissue: an in vitro study. Neuroscience 117:681–695

    Article  CAS  PubMed  Google Scholar 

  • Geraud, G., Arne-Bes, M., Guell, A. & Bes, A. (1987) Reversibility of hemodynamic hypofrontality in schizophrenia. Journal of Cerebral Blood Flow & Metabolism 7:9–12

    CAS  Google Scholar 

  • Goldman-Rakic, P. S. (1987) Circuitry of primate prefrontal cortex and regulation of behavior by representational memory. In: Plum, F. & Mountcastle, V. (eds.) Handbook of Physiology :The Nervous System, American Physiological Society, Bethesda, MD, pp. 373–417

    Google Scholar 

  • Goldman-Rakic, P. S., Castner, S. A., Svensson, T. H., Siever, L. J. & Williams, G. V. (2004) Targeting the dopamine D1 receptor in schizophrenia: insights for cognitive dysfunction. Psychopharmacology (Berl) 174:3–16

    Article  CAS  Google Scholar 

  • Harrison, P. J., McLaughlin, D. & Kerwin, R. W. (1991) Decreased hippocampal expression of a glutamate receptor gene in schizophrenia. Lancet 337:450–452

    Article  CAS  PubMed  Google Scholar 

  • Harrison, P. J. & Owen, M. J. (2003) Genes for schizophrenia? Recent findings and their pathophysiological implications.[comment]. Lancet 361:417–419

    Article  CAS  PubMed  Google Scholar 

  • Heinz, A., Romero, B., Gallinat, J., Juckel, G. & Weinberger, D. R. (2003) Molecular brain imaging and the neurobiology and genetics of schizophrenia. Pharmacopsychiatry 36(Suppl 3): S152–S157

    CAS  PubMed  Google Scholar 

  • Hiramatsu, M., Cho, A. K. & Nabeshima, T. (1989) Comparison of the behavioral and biochemical effects of the NMDA receptor antagonists, MK-801 and phencyclidine. European Journal of Pharmacology 166:359–366

    Article  CAS  PubMed  Google Scholar 

  • Homayoun, H. & Moghaddam, B. (2008) Orbitofrontal Cortex Neurons as a Common Cellular Target for Different Classes of Antipsychotic Drugs. Society for Neuroscience Abstract, Washington DC

    Google Scholar 

  • Jackson, M., Homayoun, H. & Moghaddam, B. (2004) NMDA receptor hypofunction produces concomitant firing rate potentiation and burst activity reduction in the prefrontal cortex. Proceedings of the National Academy of Sciences of USA 101:6391–6396

    Google Scholar 

  • Jackson, M. E., Frost, A. & Moghaddam, B. (2001) Stimulation of prefrontal cortex at physiologically relevant frequencies inhibits dopamine release in the nucleus accumbens. Journal of Neurochemistry 78:920–923

    Article  CAS  PubMed  Google Scholar 

  • Javitt, D. C. & Zukin, S. R. (1991) Recent advances in the phencyclidine model of schizophrenia. American Journal of Psychiatry 148:1301–1308

    CAS  PubMed  Google Scholar 

  • Jeste, D. & Lohr, J. (1989) Hippocampal pathological findings in schizophrenia. A morphometric study. Archives of General Psychiatry 46:1019–1024

    CAS  PubMed  Google Scholar 

  • Kapur, S., Zipursky, R., Jones, C., Remington, G. & Houle, S. (2000) Relationship between dopamine D(2) occupancy, clinical response, and side effects: a double-blind PET study of first-episode schizophrenia. American Journal of Psychiatry 157:514–520

    Article  CAS  PubMed  Google Scholar 

  • Keefe, R. (2001) Neurocognition. In: Breier, A., Tran, P. V., Herrea, J. M., Tollefson, G. D. & Bymaster, F. P. (eds.) Current Issues in the Psychopharmacology of Schizophrenia, Lippincott Williams & Wilkins, Philadelphia, pp. 209–223

    Google Scholar 

  • Kim, J., Kornhuber, H., Schmid-Burgk, W. & Holzmuller, B. (1980) Low cerebrospinal fluid glutamate in schizophrenic patients and a new hypothesis on schizophrenia. Neuroscience Letters 20:379–382

    Article  CAS  PubMed  Google Scholar 

  • Koga, E. & Momiyama, T. (2000) Presynaptic dopamine D2-like receptors inhibit excitatory transmission onto rat ventral tegmental dopaminergic neurons. Journal of Physiology 523(Pt 1): 163–173

    Article  CAS  PubMed  Google Scholar 

  • Krystal, J. H., D’Souza, D. C., Karper, L. P., Bennett, A., Abi-Dargham, A., Abi-Saab, D., Cassello, K., Bowers M. B., Jr., Vegso, S., Heninger, G. R. & Charney, D. S. (1999) Interactive effects of subanesthetic ketamine and haloperidol in healthy humans. Psychopharmacology 145: 193–204

    Article  CAS  PubMed  Google Scholar 

  • Krystal, J. H., Karper, L. P., Seibyl, J. P., Freeman, G. K., Delaney, R., Bremner, J. D., Heninger, G. R., Bowers, M., Jr. & Charney, D. S. (1994) Subanesthetic effects of the noncompetitive NMDA antagonist, ketamine, in humans: psychotomimetic, perceptual, cognitive, and neuroendocrine responses. Archives of General Psychiatry 51:199–214

    CAS  PubMed  Google Scholar 

  • Kuczenski, R. & Segal, D. S. (1999) Sensitization of amphetamine-induced stereotyped behaviors during the acute response. Journal of Pharmacology and Experimental Therapeutics 288: 699–709

    CAS  PubMed  Google Scholar 

  • Lahti, A. C., Koffel, B., LaPorte, D. & Tamminga, C. A. (1995) Subanesthetic doses of ketamine stimulate psychosis in schizophrenia. Neuropsychopharmacology 13:9–19

    Article  CAS  PubMed  Google Scholar 

  • Laruelle, M., Abi-Dargham, A., van Dyck, C., Gil, R., D’Souza, C., Erdos, J., McCance, E., Rosenblatt, W., Fingado, C., Zoghbi, S., Baldwin, R., Seibyl, J., Krystal, J., Charney, D. & Innis, R. (1996) SPECT imaging of amphetamine-induced dopamine release in drug-free schizophrenic subjects. Proceedings of the National Academy of Sciences USA 93:9235–9340

    Google Scholar 

  • Lavin, A. & Grace, A. (2001) Stimulation of D1-type dopamine receptors enhances excitability in prefrontal cortical pyramidal neurons in a state-dependent manner. Neuroscience 104: 335–346

    Article  CAS  PubMed  Google Scholar 

  • Lewis, D. A., Cho, R. Y., Carter, C. S., Eklund, K., Forster, S., Kelly, M. A. & Montrose, D. (2008) Subunit-selective modulation of GABA type A receptor neurotransmission and cognition in schizophrenia. American Journal of Psychiatry 165:1585–1593

    Article  PubMed  Google Scholar 

  • Lewis, D. A., Hashimoto, T. & Volk, D. W. (2005) Cortical inhibitory neurons and schizophrenia. Nature Reviews Neuroscience 6:312–324

    Article  CAS  PubMed  Google Scholar 

  • Lewis, D. A., Hayes, T. L., Lund, J. S. & Oeth, K. M. (1992) Dopamine and neural circuitry of primate prefrontal cortex: implications for schizophrenia research. Neuropsychopharmacology 6:127–134

    CAS  PubMed  Google Scholar 

  • Lewis, D. A. & Moghaddam, B. (2006) Cognitive dysfunction in schizophrenia: convergence of gamma-aminobutyric acid and glutamate alterations. Archives of Neurology 63: 1372–1376

    Article  PubMed  Google Scholar 

  • Lieberman, J. A. (2007) Effectiveness of antipsychotic drugs in patients with chronic schizophrenia: efficacy, safety and cost outcomes of CATIE and other trials. Journal of Clinical Psychiatry 68:e04

    Article  PubMed  Google Scholar 

  • Luby, E., Cohen, B., Rosenbaum, G., Gottlieb, J. & Kelley, R. (1959) Study of a new schizophrenomimetic drug-sernyl. American Medical Association Archives of Neurology and Psychiatry 81:363–369

    CAS  Google Scholar 

  • Malhotra, A. K., Pinals, D. A., Weingartner, H., Sirocco, K., Missar, C. D., Pickar, D. & Breier, A. (1996) NMDA receptor function and human coginition: the effects of ketamine in healthy volunteers. Neuropsychopharmacology 14:301–307

    Article  CAS  PubMed  Google Scholar 

  • McGaughy, J., Kaiser, T. & Sarter, M. (1996) Behavioral vigilance following infusions of 192 IgG-saporin into the basal forebrain: selectively of the following behavioral impairment and relation to cortical AChE-positive fiber density. Behavioral Neuroscience 110:247–265

    Article  CAS  PubMed  Google Scholar 

  • Moghaddam, B. (2003) Bringing order to the glutamate chaos in schizophrenia. Neuron 40: 881–884

    Article  CAS  PubMed  Google Scholar 

  • Olney, J. & Farber, N. (1995) Glutamate receptor dysfunction and schizophrenia. Archives of General Psychiatry 52:998–1007

    CAS  PubMed  Google Scholar 

  • Patil, S. T., Zhang, L., Martenyi, F., Lowe, S. L., Jackson, K. A., Andreev, B. V., Avedisova, A. S., Bardenstein, L. M., Gurovich, I. Y., Morozova, M. A., Mosolov, S. N., Neznanov, N. G., Reznik, A. M., Smulevich, A. B., Tochilov, V. A., Johnson, B. G., Monn, J. A. & Schoepp, D. D. (2007) Activation of mGlu2/3 receptors as a new approach to treat schizophrenia: a randomized Phase 2 clinical trial. Nature Medicine 13:1102–1107

    Article  CAS  PubMed  Google Scholar 

  • Pierri, J. N., Chaudry, A. S., Woo, T. U. & Lewis, D. A. (1999) Alterations in chandelier neuron axon terminals in the prefrontal cortex of schizophrenic subjects. American Journal of Psychiatry 156:1709–1719

    CAS  PubMed  Google Scholar 

  • Pilowsky, L. S., Bressan, R. A., Stone, J. M., Erlandsson, K., Mulligan, R. S., Krystal, J. H. & Ell, P. J. (2006) First in vivo evidence of an NMDA receptor deficit in medication-free schizophrenic patients. Molecular Psychiatry 11(2):118–119

    Google Scholar 

  • Randrup, A. & Munkvad, I. (1965) Special antagonism of amphetamine-induced abnormal behaviour. Inhibition of stereotyped activity with increase of some normal activities. Psychopharmacologia 7:416–422

    Article  CAS  PubMed  Google Scholar 

  • Rimvall, K., Sheikh, S. N. & Martin, D. L. (1993) Effects of increased gamma-aminobutyric acid levels on GAD67 protein and mRNA levels in rat cerebral cortex. Journal of Neurochemistry 60:714–20

    Article  CAS  PubMed  Google Scholar 

  • Robbins, T. (1996) Dissociating executive functions of the prefrontal cortex. Philosophical Transactions of the Royal Society of London-Series B: Biological Sciences 351:1463–1470

    Article  CAS  PubMed  Google Scholar 

  • Robbins, T. W. (1998) Arousal and attention: psychopharmacological and neuropsychological studies in experimental animals. In: Parasuraman, R. (eds.) The Attentive Brain, MIT Press, Cambridge, MA, pp. 189–220

    Google Scholar 

  • Seamans, J. K. & Yang, C. R. (2004) The principal features and mechanisms of dopamine modulation in the prefrontal cortex. Progress in Neurobiology 74:1–58

    Article  CAS  PubMed  Google Scholar 

  • Seeman, P. & Lee, T. (1975) Antipsychotic drugs: direct correlation between clinical potency and presynaptic action on dopamine neurons. Science 188:1217–1219

    Article  CAS  PubMed  Google Scholar 

  • Sheikh, S. N. & Martin, D. L. (1998) Elevation of brain GABA levels with vigabatrin (gamma-vinylGABA) differentially affects GAD65 and GAD67 expression in various regions of rat brain. Journal of Neuroscience Research 52:736–741

    Article  CAS  PubMed  Google Scholar 

  • Tsai, G., Passani, L. A., Slusher, B. S., Carter, R., Baer, L., Kleinman, J. E. & Coyle, J. T. (1995) Abnormal excitatory neurotransmitter metabolism in schizophrenic brains. Archives of General Psychiatry 52:829–836

    CAS  PubMed  Google Scholar 

  • Verma, A. & Moghaddam, B. (1996) NMDA receptor antagonists impair prefrontal cortex function as assessed via spatial delayed alternation performance in rats: modulation by dopamine. Journal of Neuroscience 16:373–379

    CAS  PubMed  Google Scholar 

  • Volk, D. W., Austin, M. C., Pierri, J. N., Sampson, A. R. & Lewis, D. A. (2000) Decreased glutamic acid decarboxylase67 messenger RNA expression in a subset of prefrontal cortical gamma-aminobutyric acid neurons in subjects with schizophrenia. Archives of General Psychiatry 57:237–245

    Article  CAS  PubMed  Google Scholar 

  • Wang, H. & Pickel, V. M. (2002) Dopamine D2 receptors are present in prefrontal cortical afferents and their targets in patches of the rat caudate-putamen nucleus. Journal of Comparative Neurology 442:392–404

    Article  CAS  PubMed  Google Scholar 

  • Weinberger, D. R. (1987) Implications of normal brain development for the pathogenesis of schizophrenia. Archives of General Psychiatry 44:660–669

    CAS  PubMed  Google Scholar 

  • Weinberger, D. R. & Laruelle, M. (2001) Neurochemical and neuropharmacological imaging in schizophrenia. In: Davis, K. L., Charney D., Coyle J. T. & Nemeroff C. (eds.) Neuropsychopharmacology – The Fifth Generation of Progress, Lippincott Williams & Wilkins, Philadelphia, pp. 833–855

    Google Scholar 

  • Winterer, G. & Weinberger, D. (2004) Genes, dopamine and cortical signal-to-noise ratio in schizophrenia. Trends in Neurosciences 27:683–690

    Article  CAS  PubMed  Google Scholar 

  • Wolf, M., Deutch, A. & Roth, R.H. (1987) The neuropharmacology of dopamine. In: F.A. Henn, F.A. & DeLisi, L.E. (eds.) Handbook of Schizophrenia Vol. 2 Neurochemistry and Neuropharmacology, Elsevier Science Publishers, Amsterdam, pp. 101–147

    Google Scholar 

  • Woo, T. U., Whitehead, R. E., Melchitzky, D. S. & Lewis, D. A. (1998) A subclass of prefrontal gamma-aminobutyric acid axon terminals are selectively altered in schizophrenia. Proceedings of the National Academy of Sciences of USA 95:5341–5346

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Moghaddam .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Moghaddam, B., Pehrson, A. (2010). Disinhibition of Prefrontal Cortex Neurons in Schizophrenia. In: Gattaz, W., Busatto, G. (eds) Advances in Schizophrenia Research 2009. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-0913-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-0913-8_5

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-0912-1

  • Online ISBN: 978-1-4419-0913-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics