Skip to main content

Computational Modeling of Heart Failure with Application to Cardiac Resynchronization Therapy

  • Chapter
  • First Online:
Computational Cardiovascular Mechanics

Abstract

In recent years, cardiac resynchronization therapy (CRT) has become an effective and popular approach to the treatment of heart failure with a conduction disturbance, but it is unclear why 30% of patients do not respond. With improvements in computer power, diagnostic and therapeutic medical technologies, it is increasingly feasible to apply patient-specific modeling to guide and predict the response to CRT. In this chapter we discuss strategies as to how computational modeling of CRT could be used to try to predict the outcome of this therapy patient-specifically.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. O‘Rourke B, Kass DA, Tomaselli GF, Kääb S, Tunin R, Marbán E. Mechanisms of altered excitation–contraction coupling in canine tachycardia-induced heart failure, I: experimental studies. Circ Res. 1999;84:562–70.

    Article  Google Scholar 

  2. del Monte F, O‘Gara P, Poole-Wilson PA, Yacoub M, Harding SE. Cell geometry and contractile abnormalities of myocytes from failing human left ventricle. Cardiovasc Res. 1995;30:281–90.

    Article  Google Scholar 

  3. Pieske B, Kretschmann B, Meyer M, Holubarsch C, Weirich J, Posival H, Minami K, Just H, Hasenfuss G. Alterations in intracellular calcium handling associated with the inverse force–frequency relation in human dilated cardiomyopathy. Circulation. 1995;92:1169–78.

    Article  Google Scholar 

  4. Kass DA. Cardiac resynchronization therapy. J Cardiovasc Electrophysiol. 2005;16:S35–41.

    Article  Google Scholar 

  5. Kass DA, Chen CH, Curry C, Talbot M, Berger R, Fetics B, Nevo E. Improved left ventricular mechanics from acute VDD pacing in patients with dilated cardiomyopathy and ventricular conduction delay. Circulation. 1999;99:1567–73.

    Article  Google Scholar 

  6. Bax JJ, Abraham T, Barold SS, Breithardt OA, Fung JWH, Garrigue S, Gorcsan J, Hayes DL, Kass DA, Knuuti J, Leclercq C, Linde C, Mark DB, Monaghan MJ, Nihoyannopoulos P, Schalij MJ, Stellbrink C, Yu C-M. Cardiac resynchronization therapy. Part 1 – issues before device implantation. J Am Coll Cardiol. 2005;46:2153–67.

    Article  Google Scholar 

  7. Saxon LA, De Marco T, Schafer J, Chatterjee K, Kumar UN, Foster E. Effects of long-term biventricular stimulation for resynchronization on echocardiographic measures of remodeling. Circulation. 2002;105:1304–10.

    Article  Google Scholar 

  8. Stellbrink C, Breithardt OA, Franke A, Sack S, Bakker P, Auricchio A, Pochet T, Salo R, Kramer A, Spinelli J. Impact of cardiac resynchronization therapy using hemodynamically optimized pacing on left ventricular remodeling in patients with congestive heart failure and ventricular conduction disturbances. J Am Coll Cardiol. 2001;38:1957–65.

    Article  Google Scholar 

  9. Bristow MR, Saxon LA, Boehmer J, Krueger S, Kass DA, De Marco T, Carson P, DiCarlo L, DeMets D, White BG, DeVries DW, Feldman AM. Cardiac-resynchronization therapy with or without an implantable defibrillator in advanced chronic heart failure. New Eng J Med. 2004;350:2140–50.

    Article  Google Scholar 

  10. Cleland JGF, Daubert J, Erdmann E, Freemantle N, Gras D, Kappenberger L, Tavazzi L, Daubert JC, Klein W, Poole-Wilson PA, Ryden L, Wedel H, Wellens HJJ, Uretsky B, Thygesen K, Bocker D, Marijianowski MMH, Calvert MJ, Christ G, Fruhwald F, Hofmann R, Krypta A, Leisch F, Pacher R, Rauscha F, Tavernier R, Thomsen PEB, Boesgaard S, Eiskjaer H, Esperen GT, Haarbo J, Hagemann A, Korup E, Moller M, Mortensen P, Sogaard P, Vesterlund T, Huikuri H, Niemela KI, Toivonen L, Bauer F, Cohen-Solal A, Crocq C, Djiane P, Dubois-Rande JL, de Groote P, Juilliere Y, Kirkorian G, Komajda M, Laperche T, Le Marec H, Leclercq C, Tribouilloy C, Er F, Fleck E, Hoppe UC, Kleber FX, Maisch B, Neuzner J, Reithmann C, Remp T, Schmitt C, Stahl C, Strasser RH, Albanese MC, Bartoloni A, Bocchiardo M, Capucci A, Carboni A, Circo A, Disertori M, del Medico R, Forzani T, Frigerio M, Gavazzi A, Landolina M, Lunati M, Mangiameli S, Piacenti M, Piti A, Ravazzi PA, Raviele A, Santini M, Serio A, Trevi GP, Volterrani M, Zardini M, Bracke F, de Cock CC, Meijer A, Tukkie R, Mediavilla JC, Concha M, Delgado JF, Gonzalez-Garcia A, Munoz-Aguilera R, Ferrer JM, Ridocci F, Andren B, Brandt J, et al. The effect of cardiac resynchronization on morbidity and mortality in heart failure. New Engl J Med. 2005;352:1539–49.

    Article  Google Scholar 

  11. Usyk TP, McCulloch AD. Relationship between regional shortening and asynchronous electrical activation in a three-dimensional model of ventricular electromechanics. J Cardiovasc Electrophysiol. 2003;14:S196–202.

    Article  Google Scholar 

  12. Bleeker GB, Schalij MJ, Molhoek SG, Verwey HF, Holman ER, Boersma E, Steendijk P, Van der Wall EE, Bax JJ. Relationship between QRS duration and left ventricular dyssynchrony in patients with end-stage heart failure. J Cardiovasc Electrophysiol. 2004;15:544–9, doi:10.1046/j.1540-8167.2004.03604.x

    Article  Google Scholar 

  13. Leclercq C, Faris O, Tunin R, Johnson J, Kato R, Evans F, Spinelli J, Halperin H, McVeigh E, Kass DA. Systolic improvement and mechanical resynchronization does not require electrical synchrony in the dilated failing heart with left bundle-branch block. Circulation. 2002;106:1760–3.

    Article  Google Scholar 

  14. Yu C-M, Fung W-H, Lin H, Zhang Q, Sanderson JE, Lau C-P. Predictors of left ventricular reverse remodeling after cardiac resynchronization therapy for heart failure secondary to idiopathic dilated or ischemic cardiomyopathy. Am J Cardiol. 2002;91:684–8.

    Article  Google Scholar 

  15. Jansen AHM, Bracke F, van Dantzig JM, Peels KH, Post JC, van den Bosch HCM, van Gelder B, Meijer A, Korsten HHM, de Vries J, van Hemel NM. The influence of myocardial scar and dyssynchrony on reverse remodeling in cardiac resynchronization therapy. Eur J Echocardiogr. 2008;9:483–8.

    Google Scholar 

  16. Bleeker GB, Holman ER, Steendijk P, Boersma E, van der Wall EE, Schalij MJ, Bax JJ. Cardiac resynchronization therapy in patients with a narrow QRS complex. J Am Coll Cardiol. 2006;48:2243–50, 10.1016/j.jacc.200607.067.

    Article  Google Scholar 

  17. Kerckhoffs RCP, Narayan SM, Omens JH, Mulligan LJ, McCulloch AD. Computational modeling for bedside application. Heart Fail Clin. 2008;4:371–8.

    Article  Google Scholar 

  18. Delp SL, Anderson FC, Arnold AS, Loan P, Habib A, John CT, Guendelman E, Thelen DG. OpenSim: open-source software to create and analyze dynamic simulations of movement. IEEE Trans Biomed Eng. 2007;54:1940–50.

    Article  Google Scholar 

  19. Reinbolt JA, Haftka RT, Chmielewski TL, Fregly BJ. A computational framework to predict post-treatment outcome for gait-related disorders. Med Eng Phys. 2008;30:434–43.

    Article  Google Scholar 

  20. Wilson NM, Arko FR, Taylor CA. Predicting changes in blood flow in patient-specific operative plans for treating aortoiliac occlusive disease. Comput Aided Surg. 2005;10:257–77.

    Google Scholar 

  21. Vetter FJ, McCulloch AD. Three-dimensional analysis of regional cardiac function: a model of rabbit ventricular anatomy. Prog Biophys Mol Biol. 1998;69:157–83.

    Article  Google Scholar 

  22. Helm PA, Younes L, Beg MF, Ennis DB, Leclercq C, Faris OP, McVeigh ER, Kass DA, Miller MI, Winslow RL. Evidence of structural remodeling in the dyssynchronous failing heart. Circ Res. 2006;98:125–132.

    Article  Google Scholar 

  23. Fernandez J, Hunter P. An anatomically based patient-specific finite element model of patella articulation: towards a diagnostic tool. Biomech Model Mechanobiol. 2005;4:20–38.

    Article  Google Scholar 

  24. Henriquez CS. Simulating the electrical behavior of cardiac tissue using the bidomain model. Crit Rev Biomed Eng. 1993;21:1–77.

    MathSciNet  Google Scholar 

  25. Rogers JM, McCulloch AD. A collocation-Galerkin finite-element model of cardiac action-potential propagation. IEEE Trans Biomed Eng. 1994;41:743–57.

    Article  Google Scholar 

  26. Trayanova N. Discrete versus syncytial tissue behavior in a model of cardiac stimulation .1. Mathematical formulation. IEEE Trans Biomed Eng. 1996;43:1129–40.

    Article  Google Scholar 

  27. Trew M, Le Grice I, Smaill B, Pullan A. A finite volume method for modeling discontinuous electrical activation in cardiac tissue. Ann Biomed Eng. 2005;33:590–602.

    Article  Google Scholar 

  28. Yue AM, Franz MR, Roberts PR, Morgan JM. Global endocardial electrical restitution in human right and left ventricles determined by noncontact mapping. J Am Coll Cardiol. 2005;46:1067–75.

    Article  Google Scholar 

  29. Jia P, Ramanathan C, Ghanem RN, Ryu K, Varma N, Rudy Y. Electrocardiographic imaging of cardiac resynchronization therapy in heart failure: observation of variable electrophysiologic responses. Heart Rhythm. 2006;3:296–310.

    Article  Google Scholar 

  30. Ramanathan C, Ghanem RN, Jia P, Ryu K, Rudy Y. Noninvasive electrocardiographic imaging for cardiac electrophysiology and arrhythmia. Nat Med. 2004;10:422–8.

    Article  Google Scholar 

  31. Phillips PJ, Gwathmey JK, Feldman MD, Schoen FJ, Grossman W, Morgan JP. Post-extrasystolic potentiation and the force–frequency relationship: differential augmentation of myocardial contractility in working myocardium from patients with end-stage heart failure. J Mol Cell Cardiol. 1999;22:99–110.

    Article  Google Scholar 

  32. Pieske B, Hasenfuss G, Holubarsch C, Schwinger R, Bohm M, Just H. Alterations of the force–frequency relationship in the failing human heart depend on the underlying cardiac disease. Basic Res Cardiol. 1992;87:213–21.

    Google Scholar 

  33. Costandi PN, Frank LR, McCulloch AD, Omens JH. Role of diastolic properties in the transition to failure in a mouse model of the cardiac dilatation. Am J Physiol Heart Circ Physiol. 2006;291:H2971–9.

    Article  Google Scholar 

  34. Omens JH, Usyk TP, Li Z, McCulloch AD. Muscle LIM protein deficiency leads to alterations in passive ventricular mechanics. Am J Physiol Heart Circ Physiol. 2002;282:H680–7.

    Google Scholar 

  35. Costa KD, Holmes JW, McCulloch AD. Modelling cardiac mechanical properties in three dimensions. Philos Trans R Soc Lond Ser A Math Phys Eng Sci. 2001;359:1233–50.

    Article  MATH  Google Scholar 

  36. Guccione JM, Costa KD, McCulloch AD. Finite-element stress-analysis of left-ventricular mechanics in the beating dog heart. J Biomech. 1995;28:1167–77.

    Article  Google Scholar 

  37. Rice JJ, Wang F, Bers DM, de Tombe PP. Approximate model of cooperative activation and crossbridge cycling in cardiac muscle using ordinary differential equations. Biophys J. 2009;95:2368–2390.

    Google Scholar 

  38. Malm S, Frigstad S, Sagberg E, Larsson H, Skjaerpe T. Accurate and reproducible measurement of left ventricular volume and ejection fraction by contrast echocardiography: a comparison with magnetic resonance imaging. J Am Coll Cardiol. 2004;44:1030–5, 10.1016/j.jacc.2004.05.068.

    Article  Google Scholar 

  39. Klotz S, Hay I, Dickstein ML, Yi G-H, Wang J, Maurer M, Kass DA, Burkhoff D. Single beat estimation of the end-diastolic pressure–volume relationship: a novel method with the potential for noninvasive application. Am J Physiol Heart Circ Physiol. 2006;291:H403– H412.

    Article  Google Scholar 

  40. Chen C-H, Fetics B, Nevo E, Rochitte CE, Chiou K-R, Ding, P-A, Kawaguchi M, Kass DA. Noninvasive single-beat determination of left ventricular end-systolic elastance in humans. J Am Coll Cardiol. 2001;38:2028–34.

    Article  Google Scholar 

  41. Kjorstad KE, Korvald C, Myrmel T. Pressure-volume-based single-beat estimations cannot predict left ventricular contractility in vivo. Am J Physiol Heart Circ Physiol. 2002;282:H1739–50.

    Google Scholar 

  42. Walker JC, Ratcliffe MB, Zhang P, Wallace AW, Fata B, Hsu EW, Saloner D, Guccione JM. MRI-based finite-element analysis of left ventricular aneurysm. Am J Physiol Heart Circ Physiol. 2005;289:H692–700.

    Article  Google Scholar 

  43. Watanabe H, Sugiura S, Kafuku H, Hisada T. Multiphysics simulation of left ventricular filling dynamics using fluid–structure interaction finite element method. Biophys J. 2004;87: 2074–85.

    Article  Google Scholar 

  44. McVeigh ER, Prinzen FW, Wyman BT, Tsitlik JE, Halperin HR, Hunter WC. Imaging asynchronous mechanical activation of the paced heart with tagged MRI. Magn Reson Med. 1998;39:507–13.

    Article  Google Scholar 

  45. Osman NF, Prince JL. Visualizing myocardial function using HARP MRI. Phys Med Biol. 2000;45:1665–82.

    Article  Google Scholar 

  46. Ozturk C, McVeigh ER. Four-dimensional B-spline based motion analysis of tagged MR images: introduction and in vivo validation. Phys Med Biol. 2000;45:1683–702.

    Article  Google Scholar 

  47. Van der Toorn A, Barenbrug P, Snoep G, Van der Veen FH, Delhaas T, Prinzen FW, Maessen J, Arts T. Transmural gradients of cardiac myofiber shortening in aortic valve stenosis patients using MRI tagging. Am J Physiol Heart Circ Physiol. 2002;283:H1609–15.

    Google Scholar 

  48. Wyman BT, Hunter WC, Prinzen FW, McVeigh E. Mapping propagation of mechanical activation in the paced heart with MRI tagging. Am J Physiol Heart Circ Physiol. 1999;276:H881–91.

    Google Scholar 

  49. Gupta KB, Ratcliffe MB, Fallert MA, Edmunds LH Jr, Bogen DK. Changes in passive mechanical stiffness of myocardial tissue with aneurysm formation. Circulation. 1994;89:2315–26.

    Article  Google Scholar 

  50. Ypenburg C, Roes SD, Bleeker GB, Kaandorp TAM, de Roos A, Schalij MJ, van der Wall EE, Bax JJ. Effect of total scar burden on contrast-enhanced magnetic resonance imaging on response to cardiac resynchronization therapy. Am J Cardiol. 2007;99:657–60.

    Article  Google Scholar 

  51. Ypenburg C, Schalij MJ, Bleeker GB, Steendijk P, Boersma E, Dibbets-Schneider P, Stokkel MPM, van der Wall EE, Bax JJ. Impact of viability and scar tissue on response to cardiac resynchronization therapy in ischaemic heart failure patients. Eur Heart J. 2007;28:33–41, 10.1093/eurheartj/ehl379.

    Article  Google Scholar 

  52. Kerckhoffs RCP, McCulloch AD, Omens JH, Mulligan LJ. Effects of biventricular pacing and scar size in a computational model of the failing heart with left bundle branch block. Med Image Anal. 2009;13:362–369.

    Google Scholar 

  53. Kerckhoffs RCP, Neal M, Gu Q, Bassingthwaighte JB, Omens JH, McCulloch AD. Coupling of a 3D finite element model of cardiac ventricular mechanics to lumped systems models of the systemic and pulmonic circulation. Ann Biomed Eng. 2007;35:1–18.

    Article  Google Scholar 

  54. Lu K, Clark JW, Ghorbel FH, Ware DL, Bidani A. A human cardiopulmonary system model applied to the analysis of the Valsalva maneuver. Am J Physiol Heart Circ Physiol. 2001;281:H2661–79.

    Google Scholar 

  55. Olansen JB, Clark JW, Khoury D, Ghorbel F, Bidani A. A closed-loop model of the canine cardiovascular system that includes ventricular interaction. Comput Biomed Res. 2000;33:260–95.

    Article  Google Scholar 

  56. Arts T, Delhaas T, Bovendeerd P, Verbeek X, Prinzen FW. Adaptation to mechanical load determines shape and properties of heart and circulation: the CircAdapt model. Am J Physiol Heart Circ Physiol. 2005;288, H1943–54.

    Article  Google Scholar 

  57. Kerckhoffs RCP, Lumens J, Vernooy K, Omens JH, Mulligan LJ, Delhaas T, Arts T, McCulloch AD, Prinzen FW. Cardiac Resynchronization: insight from experimental and computational models. Prog Biophys Mol Biol. 2008;97:543–61.

    Article  Google Scholar 

  58. Bax JJ, Abraham T, Barold SS, Breithardt OA, Fung JWH, Garrigue S, Gorcsan J III, Hayes DL, Kass DA, Knuuti J, Leclercq C, Linde C, Mark DB, Monaghan MJ, Nihoyannopoulos P, Schalij MJ, Stellbrink C, Yu C-M. Cardiac resynchronization therapy: Part 2 – issues during and after device implantation and unresolved questions. J Am Coll Cardiol. 2005;46:2168–82.

    Article  Google Scholar 

  59. Helm RH, Byrne M, Helm PA, Daya SK, Osman NF, Tunin R, Halperin HR, Berger RD, Kass DA, Lardo AC. Three-dimensional mapping of optimal left ventricular pacing site for cardiac resynchronization. Circulation. 2007;115:953–61.

    Article  Google Scholar 

  60. Helm RH, Leclercq C, Faris OP, Ozturk C, McVeigh E, Lardo AC, Kass DA. Cardiac dyssynchrony analysis using circumferential versus longitudinal strain – Implications for assessing cardiac resynchronization. Circulation. 2005;111:2760–7.

    Article  Google Scholar 

  61. Kerckhoffs RCP, McCulloch AD, Omens JH, Mulligan LJ. Effect of pacing site and infarct location on regional mechanics and global hemodynamics in a model based study of heart failure. Lect Notes Comput Sci. 2007;4466:350–60.

    Article  Google Scholar 

  62. Taber LA. Biomechanics of cardiovascular development. Annu Rev Biomed Eng. 2001;3:1–25.

    Article  Google Scholar 

  63. Pieske B, Sütterlin M, Schmidt-Schweda S, Minami K, Meyer M, Olschewski M, Holubarsch C, Just H, Hasenfuss G. Diminished post-rest potentiation of contractile force in human dilated cardiomyopathy. J Clin Invest. 1996;88:765–76.

    Google Scholar 

Download references

Acknowledgments

This research was supported in part by Medtronic, UC Discovery Grant ITL06-10159, and the National Biomedical Computation Resource (NIH grant P41 RR08605). This investigation was conducted in part using a facility constructed with support from Research Facilities Improvement Program Grant Number C06 RR-017588-01 from the National Center for Research Resources, National Institutes of Health. We thank Drs. Sanjiv Narayan, MD and David Krummen, MD for providing the CT images.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roy C.P. Kerckhoffs .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Kerckhoffs, R.C., Mulligan, L.J. (2010). Computational Modeling of Heart Failure with Application to Cardiac Resynchronization Therapy. In: Guccione, J., Kassab, G., Ratcliffe, M. (eds) Computational Cardiovascular Mechanics. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-0730-1_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-0730-1_15

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-0729-5

  • Online ISBN: 978-1-4419-0730-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics