Skip to main content

The Epigenetics of Age-Related Cancers

  • Chapter
Epigenetics of Aging

Abstract

Individuals of all ages can be detrimentally affected by cancer, albeit the disease is more prevalent in aging individuals. Epigenetic modulation is essential for normal development and becomes altered in cancer and aging. The most well-studied epigenetic elements include DNA methylation, histone modifications, miRNAs, and the binding of co-regulatory proteins such as Polycomb group and Trithorax proteins. Each of these “contributors” to the epigenetic landscape is subjected to aberrant events that are associated with aging and with cancer. We discuss the types of epigenetic modifications that are associated with cancers that affect the young and those that affect adults. It is known that erroneous DNA damage repair, inflammation, and proinflammatory signaling occur frequently in the elderly and that these processes can also result in aberrant epigenetic modifications. Acute lymphoblastic leukemia is one type of cancer that spans the entire lifetime from birth to the aged and demonstrates a number of age-related differences in clinical behavior. Therefore, ALL provides an excellent model to begin to decipher age-related epigenetic impacts on the disease. Finally, mechanistic scenarios are given which may explain the relationship between aging and the development of cancer, and future directions which will augment the elucidation of the complex relationship between cancer and aging are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alaminos, M., Davalos, V., Cheung, N. K., Gerald, W. L., and Esteller, M. 2004. Clustering of gene hypermethylation associated with clinical risk groups in neuroblastoma. J. Natl. Cancer Inst. 96:1208–1219.

    Article  PubMed  CAS  Google Scholar 

  • Anway, M. D., Cupp, A. S., Uzumcu, M., and Skinner, M. K. 2005. Epigenetic transgenerational actions of endocrine disruptors and male fertility. Science 308:1466–1469.

    Article  PubMed  CAS  Google Scholar 

  • Anway, M. D., Leathers, C., and Skinner, M. K. 2006. Endocrine disruptor vinclozolin induced epigenetic transgenerational adult-onset disease. Endocrinology 147:5515–5523.

    Article  PubMed  CAS  Google Scholar 

  • Anway, M. D., Memon, M. A., Uzumcu, M., and Skinner, M. K. 2006. Transgenerational effect of the endocrine disruptor vinclozolin on male spermatogenesis. J. Androl 27:868–879.

    Article  PubMed  CAS  Google Scholar 

  • Anway, M. D., Rekow, S. S., and Skinner, M. K. 2008. Transgenerational epigenetic programming of the embryonic testis transcriptome. Genomics 91:30–40.

    Article  PubMed  CAS  Google Scholar 

  • Anway, M. D. and Skinner, M. K. 2006. Epigenetic transgenerational actions of endocrine disruptors. Endocrinology 147:S43–S49.

    Article  PubMed  CAS  Google Scholar 

  • Anway, M. D. and Skinner, M. K. 2008a. Epigenetic programming of the germ line: effects of endocrine disruptors on the development of transgenerational disease. Reprod. Biomed. Online. 16:23–25.

    Article  PubMed  Google Scholar 

  • Anway, M. D. and Skinner, M. K. 2008b. Transgenerational effects of the endocrine disruptor vinclozolin on the prostate transcriptome and adult onset disease. Prostate 68:517–529.

    Article  PubMed  CAS  Google Scholar 

  • Baur, A. S., Shaw, P., Burri, N., Delacretaz, F., Bosman, F. T., and Chaubert, P. 1999. Frequent methylation silencing of p15(INK4b) (MTS2) and p16(INK4a) (MTS1) in B-cell and T-cell lymphomas. Blood 94:1773–1781.

    PubMed  CAS  Google Scholar 

  • Bernstein, B. E., Meissner, A., and Lander, E. S. 2007. The mammalian epigenome. Cell 128: 669–681.

    Article  PubMed  CAS  Google Scholar 

  • Bjornsson, H. T., Fallin, M. D., and Feinberg, A. P. 2004. An integrated epigenetic and genetic approach to common human disease. Trends Genet. 20:350–358.

    Article  PubMed  CAS  Google Scholar 

  • Bock, C. and Lengauer, T. 2008. Computational epigenetics. Bioinformatics. 24:1–10.

    Article  PubMed  CAS  Google Scholar 

  • Bracken, A. P., Pasini, D., Capra, M., Prosperini, E., Colli, E., and Helin, K. 2003. EZH2 is downstream of the pRB-E2F pathway, essential for proliferation and amplified in cancer. EMBO J. 22:5323–5335.

    Article  PubMed  CAS  Google Scholar 

  • Cai, S., Lee, C. C., and Kohwi-Shigematsu, T. 2006. SATB1 packages densely looped, transcriptionally active chromatin for coordinated expression of cytokine genes. Nat. Genet. 38: 1278–1288.

    Article  PubMed  CAS  Google Scholar 

  • Calin, G. A. and Croce, C. M. 2006. MicroRNA signatures in human cancers. Nat. Rev. Cancer 6:857–866.

    Article  PubMed  CAS  Google Scholar 

  • Calin, G. A. and Croce, C. M. 2007. Investigation of microRNA alterations in leukemias and lymphomas. Methods Enzymol. 427:193–213.

    PubMed  CAS  Google Scholar 

  • Chim, C., Fung, T., Wong, K., Lau, J., Law, M., and Liang, R. 2006. Methylation of INK4 and CIP/KIP families of cyclin-dependent kinase inhibitor (CKI) in Chronic Lymphocytic Leukemia (CLL) in Chinese. J. Clin. Pathol. 59(9):921–926.

    Google Scholar 

  • Ching, T. T., Maunakea, A. K., Jun, P., Hong, C., Zardo, G., Pinkel, D., Albertson, D. G., Fridlyand, J., Mao, J. H., Shchors, K., Weiss, W. A., and Costello, J. F. 2005. Epigenome analyses using BAC microarrays identify evolutionary conservation of tissue-specific methylation of SHANK3. Nat. Genet. 37:645–651.

    Article  PubMed  CAS  Google Scholar 

  • Cohen, Y., Merhavi-Shoham, E., Avraham, R. B., Frenkel, S., Pe’er, J., and Goldenberg-Cohen, N. 2008. Hypermethylation of CpG island loci of multiple tumor suppressor genes in retinoblastoma. Exp. Eye Res. 86:201–206.

    Article  PubMed  CAS  Google Scholar 

  • Croce, C. M. and Calin, G. A. 2005. miRNAs, cancer, and stem cell division. Cell 122:6–7.

    Article  PubMed  CAS  Google Scholar 

  • Das, R., Dimitrova, N., Xuan, Z., Rollins, R. A., Haghighi, F., Edwards, J. R., Ju, J., Bestor, T. H., and Zhang, M. Q. 2006. Computational prediction of methylation status in human genomic sequences. Proc. Natl. Acad. Sci. USA 103:10713–10716.

    Article  PubMed  CAS  Google Scholar 

  • Deligezer, U., Erten, N., Akisik, E. E., and Dalay, N. 2005. Circulating fragmented nucleosomal DNA and caspase-3 mRNA in patients with lymphoma and myeloma. Exp. Mol. Pathol. 80(1):72–76.

    Google Scholar 

  • Deruiter, M. C., Alkemade, F. E., Gittenberger-de Groot, A. C., Poelmann, R. E., Havekes, L. M., and van Dijk, K. W. 2008. Maternal transmission of risk for atherosclerosis. Curr. Opin. Lipidol. 19:333–337.

    Article  PubMed  CAS  Google Scholar 

  • Dopazo, J. 2006. Bioinformatics and cancer: an essential alliance. Clin. Transl. Oncol. 8:409–415.

    Article  PubMed  CAS  Google Scholar 

  • Dukers, D. F., van Galen, J. C., Giroth, C., Jansen, P., Sewalt, R. G., Otte, A. P., Kluin-Nelemans, H. C., Meijer, C. J., and Raaphorst, F. M. 2004. Unique polycomb gene expression pattern in Hodgkin’s lymphoma and Hodgkin’s lymphoma-derived cell lines. Am. J. Pathol. 164: 873–881.

    PubMed  CAS  Google Scholar 

  • Estecio, M. R., Yan, P. S., Ibrahim, A. E., Tellez, C. S., Shen, L., Huang, T. H., and Issa, J. P. 2007. High-throughput methylation profiling by MCA coupled to CpG island microarray. Genome Res. 17:1529–1536.

    Article  PubMed  CAS  Google Scholar 

  • Esteller, M. 2003. Profiling aberrant DNA methylation in hematologic neoplasms: a view from the tip of the iceberg. Clin. Immunol. 109:80–88.

    Article  PubMed  CAS  Google Scholar 

  • Esteller, M. 2007. Cancer epigenomics: DNA methylomes and histone-modification maps. Nat. Rev. Genet.

    Google Scholar 

  • Esteller, M., Gaidano, G., Goodman, S. N., Zagonel, V., Capello, D., Botto, B., Rossi, D., Gloghini, A., Vitolo, U., Carbone, A., Baylin, S. B., and Herman, J. G. 2002. Hypermethylation of the DNA repair gene O(6)-methylguanine DNA methyltransferase and survival of patients with diffuse large B-cell lymphoma. J. Natl. Cancer Inst. 94:26–32.

    PubMed  CAS  Google Scholar 

  • Esteller, M., Hamilton, S. R., Burger, P. C., Baylin, S. B., and Herman, J. G. 1999. Inactivation of the DNA repair gene O6-methylguanine-DNA methyltransferase by promoter hypermethylation is a common event in primary human neoplasia. Cancer Res. 59:793–797.

    PubMed  CAS  Google Scholar 

  • Feinberg, A. P. 2008. Epigenetics at the epicenter of modern medicine. JAMA 299:1345–1350.

    Article  PubMed  CAS  Google Scholar 

  • Feinberg, A. P., Ohlsson, R., and Henikoff, S. 2006. The epigenetic progenitor origin of human cancer. Nat. Rev. Genet. 7:21–33.

    Article  PubMed  CAS  Google Scholar 

  • Fraga, M. F., Agrelo, R., and Esteller, M. 2007. Cross-talk between aging and cancer: the epigenetic language. Ann. NY. Acad. Sci. 1100:60–74.

    Article  PubMed  CAS  Google Scholar 

  • Fraga, M. F. and Esteller, M. 2007. Epigenetics and aging: the targets and the marks. Trends Genet. 23:413–418.

    Article  PubMed  CAS  Google Scholar 

  • Frigola, J., Song, J., Stirzaker, C., Hinshelwood, R. A., Peinado, M. A., and Clark, S. J. 2006. Epigenetic remodeling in colorectal cancer results in coordinate gene suppression across an entire chromosome band. Nat. Genet. 38:540–549.

    Article  PubMed  CAS  Google Scholar 

  • Fung, M. K., Au, W. Y., Liang, R., Srivastava, G., and Kwong, Y. L. 2003. Aberrant promoter methylation in gastric lymphoma. Haematologica 88:231–232.

    PubMed  CAS  Google Scholar 

  • Furukawa, T., Konishi, F., Masubuchi, S., Shitoh, K., Nagai, H., and Tsukamoto, T. 2002. Densely methylated MLH1 promoter correlates with decreased mRNA expression in sporadic colorectal cancers. Genes Chromosomes. Cancer 35:1–10.

    Article  PubMed  CAS  Google Scholar 

  • Gal-Yam, E. N., Saito, Y., Egger, G., and Jones, P. A. 2008. Cancer epigenetics: modifications, screening, and therapy. Annu. Rev. Med. 59:267–280.

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Manero, G., Assouline, S., Cortes, J., Estrov, Z., Kantarjian, H., Yang, H., Newsome, W. M., Miller, W. H., Jr., Rousseau, C., Kalita, A., Liu, J., Dubay, M., Patterson, T. A., Li, Z., Besterman, J. M., Reid, G., Laille, E., Martell, R. E., and Minden, M. D. 2008a. Phase I study of the oral isotype specific histone deacetylase inhibitor MGCD0103 in leukemia. Blood. 112(4):981–989.

    Google Scholar 

  • Garcia-Manero, G., Daniel, J., Smith, T. L., Kornblau, S. M., Lee, M. S., Kantarjian, H. M., and Issa, J. P. 2002. DNA methylation of multiple promoter-associated CpG islands in adult acute lymphocytic leukemia. Clin. Cancer Res. 8:2217–2224.

    PubMed  CAS  Google Scholar 

  • Garcia-Manero, G., Kantarjian, H. M., Sanchez-Gonzalez, B., Yang, H., Rosner, G., Verstovsek, S., Rytting, M., Wierda, W. G., Ravandi, F., Koller, C., Xiao, L., Faderl, S., Estrov, Z., Cortes, J., O’Brien, S., Estey, E., Bueso-Ramos, C., Fiorentino, J., Jabbour, E., and Issa, J. P. 2006. Phase 1/2 study of the combination of 5-aza-2’-deoxycytidine with valproic acid in patients with leukemia. Blood 108:3271–3279.

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Manero, G., Yang, H., Bueso-Ramos, C., Ferrajoli, A., Cortes, J., Wierda, W. G., Faderl, S., Koller, C., Morris, G., Rosner, G., Loboda, A., Fantin, V. R., Randolph, S. S., Hardwick, J. S., Reilly, J. F., Chen, C., Ricker, J. L., Secrist, J. P., Richon, V. M., Frankel, S. R., and Kantarjian, H. M. 2008b. Phase 1 study of the histone deacetylase inhibitor vorinostat (suberoylanilide hydroxamic acid [SAHA]) in patients with advanced leukemias and myelodysplastic syndromes. Blood 111:1060–1066.

    Article  PubMed  CAS  Google Scholar 

  • Greaves, M. 2005. In utero origins of childhood leukaemia. Early Hum. Dev. 81:123–129.

    Article  PubMed  Google Scholar 

  • Guo, J., Burger, M., Nimmrich, I., Maier, S., Becker, E., Genc, B., Duff, D., Rahmatpanah, F., Chitma-Matsiga, R., Shi, H., Berlin, K., Huang, T. H., and Caldwell, C. W. 2005. Differential DNA methylation of gene promoters in small B-cell lymphomas. Am. J. Clin. Pathol. 124: 430–439.

    Article  PubMed  CAS  Google Scholar 

  • Gyory, I. and Minarovits, J. 2005. Epigenetic regulation of lymphoid specific gene sets. Biochem. Cell Biol. 83:286–295.

    Article  PubMed  Google Scholar 

  • Han, H. J., Russo, J., Kohwi, Y., and Kohwi-Shigematsu, T. 2008. SATB1 reprogrammes gene expression to promote breast tumour growth and metastasis. Nature 452:187–193.

    Article  PubMed  CAS  Google Scholar 

  • Hanada, M., Delia, D., Aiello, A., Stadtmauer, E., and Reed, J. C. 1993. bcl-2 gene hypomethylation and high-level expression in B-cell chronic lymphocytic leukemia. Blood 82:1820–1828.

    PubMed  CAS  Google Scholar 

  • Harada, K., Toyooka, S., Maitra, A., Maruyama, R., Toyooka, K. O., Timmons, C. F., Tomlinson, G. E., Mastrangelo, D., Hay, R. J., Minna, J. D., and Gazdar, A. F. 2002. Aberrant promoter methylation and silencing of the RASSF1A gene in pediatric tumors and cell lines. Oncogene 21:4345–4349.

    Article  PubMed  CAS  Google Scholar 

  • Hayslip, J. and Montero, A. 2006. Tumor suppressor gene methylation in follicular lymphoma: a comprehensive review. Mol. Cancer 5:44.

    Article  PubMed  CAS  Google Scholar 

  • Hitzler, J. and Zipursky, A. 2005. GATA 1 mutations as clonal markers of minimal residual disease in acute megakaryoblastic leukemia of Down syndrome – a new tool with significant potential applications. Leuk. Res. 29:1239–1240.

    Article  PubMed  CAS  Google Scholar 

  • Hitzler, J. K. 2007. Acute megakaryoblastic leukemia in Down syndrome. Pediatr. Blood Cancer 49:1066–1069.

    Article  Google Scholar 

  • Hou, P., Ji, M., Yang, B., Chen, Z., Qiu, J., Shi, X., and Lu, Z. 2006. Quantitative analysis of promoter hypermethylation in multiple genes in osteosarcoma. Cancer 106: 1602–1609.

    Article  PubMed  CAS  Google Scholar 

  • Huang, T. H., Perry, M. R., and Laux, D. E. 1999. Methylation profiling of CpG islands in human breast cancer cells. Hum. Mol. Genet. 8:459–470.

    Article  PubMed  CAS  Google Scholar 

  • Issa, J. P. 2005. Optimizing therapy with methylation inhibitors in myelodysplastic syndromes: dose, duration, and patient selection. Nat. Clin. Pract. Oncol. 2 Suppl 1:S24–S29.

    Article  PubMed  CAS  Google Scholar 

  • Issa, J. P. 2003. Age-related epigenetic changes and the immune system. Clin. Immunol. 109: 103–108.

    Article  PubMed  CAS  Google Scholar 

  • Issa, J. P., Gharibyan, V., Cortes, J., Jelinek, J., Morris, G., Verstovsek, S., Talpaz, M., Garcia-Manero, G., and Kantarjian, H. M. 2005. Phase II study of low-dose decitabine in patients with chronic myelogenous leukemia resistant to imatinib mesylate. J. Clin. Oncol. 23(17):3948–3956.

    Google Scholar 

  • Issa, J. P., Ottaviano, Y. L., Celano, P., Hamilton, S. R., Davidson, N. E., and Baylin, S. B. 1994. Methylation of the oestrogen receptor CpG island links ageing and neoplasia in human colon. Nat. Genet. 7:536–540.

    Article  PubMed  CAS  Google Scholar 

  • Jensen, L. J., Saric, J., and Bork, P. 2006. Literature mining for the biologist: from information retrieval to biological discovery. Nat. Rev. Genet. 7:119–129.

    Article  PubMed  CAS  Google Scholar 

  • Jeronimo, C., Henrique, R., Hoque, M. O., Mambo, E., Ribeiro, F. R., Varzim, G., Oliveira, J., Teixeira, M. R., Lopes, C., and Sidransky, D. 2004. A quantitative promoter methylation profile of prostate cancer. Clin. Cancer Res. 10:8472–8478.

    Article  PubMed  CAS  Google Scholar 

  • Jirtle, R. L. and Skinner, M. K. 2007. Environmental epigenomics and disease susceptibility. Nat. Rev. Genet. 8:253–262.

    Article  PubMed  CAS  Google Scholar 

  • Kaneko, Y., Sakurai, S., Hironaka, M., Sato, S., Oguni, S., Sakuma, Y., Sato, K., Sugano, K., and Saito, K. 2003. Distinct methylated profiles in Helicobacter pylori dependent and independent gastric MALT lymphomas. Gut 52:641–646.

    Article  PubMed  CAS  Google Scholar 

  • Katzenellenbogen, R. A., Baylin, S. B., and Herman, J. G. 1999. Hypermethylation of the DAP-kinase CpG island is a common alteration in B-cell malignancies. Blood 93:4347–4353.

    PubMed  CAS  Google Scholar 

  • Kinlen, L. 2004. Infections and immune factors in cancer: the role of epidemiology. Oncogene 23:6341–6348.

    Article  PubMed  CAS  Google Scholar 

  • Kn, H., Bassal, S., Tikellis, C., and El-Osta, A. 2004. Expression analysis of the epigenetic methyltransferases and methyl-CpG binding protein families in the normal B-cell and B-cell chronic lymphocytic leukemia (CLL). Cancer Biol. Ther. 3:989–994.

    Article  PubMed  Google Scholar 

  • Krivtsov, A. V. and Armstrong, S. A. 2007. MLL translocations, histone modifications and leukaemia stem-cell development. Nat. Rev. Cancer 7:823–833.

    Article  PubMed  CAS  Google Scholar 

  • Kuang, S. Q., Tong, W. G., Yang, H., Lin, W., Lee, M. K., Fang, Z. H., Wei, Y., Jelinek, J., Issa, J. P., and Garcia-Manero, G. 2008. Genome-wide identification of aberrantly methylated promoter associated CpG islands in acute lymphocytic leukemia. Leukemia 22(8):1529–1538.

    Google Scholar 

  • Lehmann, U., Langer, F., Feist, H., Glockner, S., Hasemeier, B., and Kreipe, H. 2002. Quantitative assessment of promoter hypermethylation during breast cancer development. Am. J. Pathol. 160:605–612.

    PubMed  CAS  Google Scholar 

  • Leu, Y. W., Yan, P. S., Fan, M., Jin, V. X., Liu, J. C., Curran, E. M., Welshons, W. V., Wei, S. H., Davuluri, R. V., Plass, C., Nephew, K. P., and Huang, T. H. 2004. Loss of estrogen receptor signaling triggers epigenetic silencing of downstream targets in breast cancer. Cancer Res. 64:8184–8192.

    Article  PubMed  CAS  Google Scholar 

  • Li, G., Weyand, C. M., and Goronzy, J. J. 2008. Epigenetic mechanisms of age-dependent KIR2DL4 expression in T cells. J. Leukoc. Biol.

    Google Scholar 

  • Lindsey, J. C., Anderton, J. A., Lusher, M. E., and Clifford, S. C. 2005. Epigenetic events in medulloblastoma development. Neurosurg. Focus. 19:E10.

    Article  PubMed  Google Scholar 

  • Lindsey, J. C., Lusher, M. E., Anderton, J. A., Bailey, S., Gilbertson, R. J., Pearson, A. D., Ellison, D. W., and Clifford, S. C. 2004. Identification of tumour-specific epigenetic events in medulloblastoma development by hypermethylation profiling. Carcinogenesis 25:661–668.

    Article  PubMed  CAS  Google Scholar 

  • Lindsey, J. C., Lusher, M. E., Anderton, J. A., Gilbertson, R. J., Ellison, D. W., and Clifford, S. C. 2007. Epigenetic deregulation of multiple S100 gene family members by differential hypomethylation and hypermethylation events in medulloblastoma. Br. J. Cancer 97: 267–274.

    Article  PubMed  CAS  Google Scholar 

  • Lipsanen, V., Leinonen, P., Alhonen, L., and Janne, J. 1988. Hypomethylation of ornithine decarboxylase gene and erb-A1 oncogene in human chronic lymphatic leukemia. Blood 72: 2042–2044.

    PubMed  CAS  Google Scholar 

  • List, A. F., Vardiman, J., Issa, J. P., and DeWitte, T. M. 2004. Myelodysplastic syndromes. Hematology. Am. Soc. Hematol. Educ. Program. pp. 297–317.

    Google Scholar 

  • Liu, T. H., Raval, A., Chen, S. S., Matkovic, J. J., Byrd, J. C., and Plass, C. 2006. CpG island methylation and expression of the secreted frizzled-related protein gene family in chronic lymphocytic leukemia. Cancer Res. 66:653–658.

    Article  PubMed  CAS  Google Scholar 

  • Lyko, F., Stach, D., Brenner, A., Stilgenbauer, S., Dohner, H., Wirtz, M., Wiessler, M., and Schmitz, O. J. 2004. Quantitative analysis of DNA methylation in chronic lymphocytic leukemia patients. Electrophoresis 25:1530–1535.

    Article  PubMed  CAS  Google Scholar 

  • Martin, V., Agirre, X., Jimenez-Velasco, A., Jose-Eneriz, E. S., Cordeu, L., Garate, L., Vilas-Zornoza, A., Castillejo, J. A., Heiniger, A., Prosper, F., Torres, A., and Roman-Gomez, J. 2008. Methylation status of Wnt signaling pathway genes affects the clinical outcome of Philadelphia-positive acute lymphoblastic leukemia. Cancer Sci. 99(9):1865–1868.

    Google Scholar 

  • Martin-Subero, J. I., Ballestar, E., Esteller, M., and Siebert, R. 2006. Towards defining the lymphoma methylome. Leukemia 20:1658–1660.

    Article  PubMed  CAS  Google Scholar 

  • Matsushita, C., Yang, Y., Takeuchi, S., Matsushita, M., Van Dongen, J. J., Szczepanski, T., Bartram, C. R., Seo, H., Koeffler, H. P., and Taguchi, H. 2004. Aberrant methylation in promoter-associated CpG islands of multiple genes in relapsed childhood acute lymphoblastic leukemia. Oncol. Rep. 12:97–99.

    PubMed  CAS  Google Scholar 

  • Monk, M. and Holding, C. 2001. Human embryonic genes re-expressed in cancer cells. Oncogene 20:8085–8091.

    Article  PubMed  CAS  Google Scholar 

  • Mostoslavsky, R. 2008. DNA repair, insulin signaling and sirtuins: at the crossroads between cancer and aging. Front Biosci. 13:6966–6990.

    Article  PubMed  CAS  Google Scholar 

  • Motiwala, T., Majumder, S., Kutay, H., Smith, D. S., Neuberg, D. S., Lucas, D. M., Byrd, J. C., Grever, M., and Jacob, S. T. 2007. Methylation and Silencing of Protein Tyrosine Phosphatase Receptor Type O in Chronic Lymphocytic Leukemia. Clin. Cancer Res. 13:3174–3181.

    Article  PubMed  CAS  Google Scholar 

  • Nafee, T. M., Farrell, W. E., Carroll, W. D., Fryer, A. A., and Ismail, K. M. 2008. Epigenetic control of fetal gene expression. BJOG. 115:158–168.

    PubMed  CAS  Google Scholar 

  • Nakatsuka, S., Takakuwa, T., Tomita, Y., Hoshida, Y., Nishiu, M., Yamaguchi, M., Nishii, K., Yang, W. I., and Aozasa, K. 2003. Hypermethylation of death-associated protein (DAP) kinase CpG island is frequent not only in B-cell but also in T- and natural killer (NK)/T-cell malignancies. Cancer Sci. 94:87–91.

    Article  PubMed  CAS  Google Scholar 

  • Pahlich, S., Bschir, K., Chiavi, C., Belyanskaya, L., and Gehring, H. 2005. Different methylation characteristics of protein arginine methyltransferase 1 and 3 toward the Ewing Sarcoma protein and a peptide. Proteins 61:164–175.

    Article  PubMed  CAS  Google Scholar 

  • Pahlich, S., Zakaryan, R. P., and Gehring, H. 2008. Identification of proteins interacting with protein arginine methyltransferase 8: The Ewing sarcoma (EWS) protein binds independent of its methylation state. Proteins. 72(4):1125–1137.

    Google Scholar 

  • Palmisano, W. A., Divine, K. K., Saccomanno, G., Gilliland, F. D., Baylin, S. B., Herman, J. G., and Belinsky, S. A. 2000. Predicting lung cancer by detecting aberrant promoter methylation in sputum. Cancer Res. 60:5954–5958.

    PubMed  CAS  Google Scholar 

  • Park, I. H., Zhao, R., West, J. A., Yabuuchi, A., Huo, H., Ince, T. A., Lerou, P. H., Lensch, M. W., and Daley, G. Q. 2008. Reprogramming of human somatic cells to pluripotency with defined factors. Nature 451:141–146.

    Article  PubMed  CAS  Google Scholar 

  • Pasini, D., Bracken, A. P., and Helin, K. 2004. Polycomb group proteins in cell cycle progression and cancer. Cell Cycle 3:396–400.

    PubMed  CAS  Google Scholar 

  • Pufulete, M., Al-Ghnaniem, R., Khushal, A., Appleby, P., Harris, N., Gout, S., Emery, P. W., and Sanders, T. A. 2005. Effect of folic acid supplementation on genomic DNA methylation in patients with colorectal adenoma. Gut 54:648–653.

    Article  PubMed  CAS  Google Scholar 

  • Raaphorst, F. M. 2005. Deregulated expression of Polycomb-group oncogenes in human malignant lymphomas and epithelial tumors. Hum. Mol. Genet. 14 Spec No 1:R93–R100.

    Article  PubMed  CAS  Google Scholar 

  • Rahmatpanah, F. B., Carstens, S., Guo, J., Sjahputera, O., Taylor, K. H., Duff, D., Shi, H., Davis, J. W., Hooshmand, S. I., Chitma-Matsiga, R., and Caldwell, C. W. 2006. Differential DNA methylation patterns of small B-cell lymphoma subclasses with different clinical behavior. Leukemia 20:1855–1862.

    Article  PubMed  CAS  Google Scholar 

  • Rauch, T., Wang, Z., Zhang, X., Zhong, X., Wu, X., Lau, S. K., Kernstine, K. H., Riggs, A. D., and Pfeifer, G. P. 2007. Homeobox gene methylation in lung cancer studied by genome-wide analysis with a microarray-based methylated CpG island recovery assay. Proc. Natl. Acad. Sci. USA 104:5527–5532.

    Article  PubMed  CAS  Google Scholar 

  • Raval, A., Tanner, S. M., Byrd, J. C., Angerman, E. B., Perko, J. D., Chen, S. S., Hackanson, B., Grever, M. R., Lucas, D. M., Matkovic, J. J., Lin, T. S., Kipps, T. J., Murray, F., Weisenburger, D., Sanger, W., Lynch, J., Watson, P., Jansen, M., Yoshinaga, Y., Rosenquist, R., de Jong, P. J., Coggill, P., Beck, S., Lynch, H., de la, C. A., and Plass, C. 2007. Downregulation of death-associated protein kinase 1 (DAPK1) in chronic lymphocytic leukemia. Cell 129: 879–890.

    Article  PubMed  CAS  Google Scholar 

  • Reddy, J., Shivapurkar, N., Takahashi, T., Parikh, G., Stastny, V., Echebiri, C., Crumrine, K., Zochbauer-Muller, S., Drach, J., Zheng, Y., Feng, Z., Kroft, S. H., McKenna, R. W., and Gazdar, A. F. 2005. Differential methylation of genes that regulate cytokine signaling in lymphoid and hematopoietic tumors. Oncogene 24:732–736.

    Article  PubMed  CAS  Google Scholar 

  • Riggi, N. and Stamenkovic, I. 2007. The Biology of Ewing sarcoma. Cancer Lett. 254:1–10.

    Article  PubMed  CAS  Google Scholar 

  • Ringrose, L. 2007. Polycomb comes of age: genome-wide profiling of target sites. Curr. Opin. Cell Biol. 19:290–297.

    Article  PubMed  CAS  Google Scholar 

  • Roman-Gomez, J., Jimenez-Velasco, A., Castillejo, J. A., Agirre, X., Barrios, M., Navarro, G., Molina, F. J., Calasanz, M. J., Prosper, F., Heiniger, A., and Torres, A. 2004. Promoter hypermethylation of cancer-related genes: a strong independent prognostic factor in acute lymphoblastic leukemia. Blood 104:2492–2498.

    Article  PubMed  CAS  Google Scholar 

  • Rush, L. J., Raval, A., Funchain, P., Johnson, A. J., Smith, L., Lucas, D. M., Bembea, M., Liu, T. H., Heerema, N. A., Rassenti, L., Liyanarachchi, S., Davuluri, R., Byrd, J. C., and Plass, C. 2004. Epigenetic profiling in chronic lymphocytic leukemia reveals novel methylation targets. Cancer Res. 64:2424–2433.

    Article  PubMed  CAS  Google Scholar 

  • Sandlund, J. T., Downing, J. R., and Crist, W. M. 1996. Non-Hodgkin’s lymphoma in childhood. N. Engl. J. Med. 334:1238–1248.

    Article  PubMed  CAS  Google Scholar 

  • Satoh, Y., Nakadate, H., Nakagawachi, T., Higashimoto, K., Joh, K., Masaki, Z., Uozumi, J., Kaneko, Y., Mukai, T., and Soejima, H. 2006. Genetic and epigenetic alterations on the short arm of chromosome 11 are involved in a majority of sporadic Wilms’ tumours. Br. J. Cancer 95:541–547.

    Article  PubMed  CAS  Google Scholar 

  • Schlesinger, Y., Straussman, R., Keshet, I., Farkash, S., Hecht, M., Zimmerman, J., Eden, E., Yakhini, Z., Ben-Shushan, E., Reubinoff, B. E., Bergman, Y., Simon, I., and Cedar, H. 2007. Polycomb-mediated methylation on Lys27 of histone H3 pre-marks genes for de novo methylation in cancer. Nat. Genet. 39:232–236.

    Article  PubMed  CAS  Google Scholar 

  • Shen, L., Kondo, Y., Guo, Y., Zhang, J., Zhang, L., Ahmed, S., Shu, J., Chen, X., Waterland, R. A., and Issa, J. P. 2007. Genome-wide profiling of DNA methylation reveals a class of normally methylated CpG island promoters. PLoS. Genet. 3:e181.

    Article  CAS  Google Scholar 

  • Shi, H., Guo, J., Duff, D. J., Rahmatpanah, F., Chitima-Matsiga, R., Al-Kuhlani, M., Taylor, K. H., Sjahputera, O., Andreski, M., Wooldridge, J. E., and Caldwell, C. W. 2007. Discovery of novel epigenetic markers in non-Hodgkin’s lymphoma. Carcinogenesis 28:60–70.

    Article  PubMed  CAS  Google Scholar 

  • Shteper, P. J., Siegfried, Z., Asimakopoulos, F. A., Palumbo, G. A., Rachmilewitz, E. A., Ben-Neriah, Y., and Ben-Yehuda, D. 2001. ABL1 methylation in Ph-positive ALL is exclusively associated with the P210 form of BCR-ABL. Leukemia 15:575–582.

    Article  PubMed  CAS  Google Scholar 

  • Skinner, M. K. and Anway, M. D. 2007. Epigenetic transgenerational actions of vinclozolin on the development of disease and cancer. Crit Rev. Oncog. 13:75–82.

    PubMed  Google Scholar 

  • Smiraglia, D. J., Kulawiec, M., Bistulfi, G. L., Ghoshal, S., and Singh, K. K. 2008. A novel role for mitochondria in regulating epigenetic modification in the nucleus. Cancer Biol. Ther. 7.

    Google Scholar 

  • Soriano, A. O., Yang, H., Faderl, S., Estrov, Z., Giles, F., Ravandi, F., Cortes, J., Wierda, W. G., Ouzounian, S., Quezada, A., Pierce, S., Estey, E. H., Issa, J. P., Kantarjian, H. M., and Garcia-Manero, G. 2007. Safety and clinical activity of the combination of 5-azacytidine, valproic acid, and all-trans retinoic acid in acute myeloid leukemia and myelodysplastic syndrome. Blood 110:2302–2308.

    Article  PubMed  CAS  Google Scholar 

  • Suzuki, H., Gabrielson, E., Chen, W., Anbazhagan, R., Van, E. M., Weijenberg, M. P., Herman, J. G., and Baylin, S. B. 2002. A genomic screen for genes upregulated by demethylation and histone deacetylase inhibition in human colorectal cancer. Nat. Genet. 31:141–149.

    Article  PubMed  CAS  Google Scholar 

  • Suzuki, H., Watkins, D. N., Jair, K. W., Schuebel, K. E., Markowitz, S. D., Chen, W. D., Pretlow, T. P., Yang, B., Akiyama, Y., Van, E. M., Toyota, M., Tokino, T., Hinoda, Y., Imai, K., Herman, J. G., and Baylin, S. B. 2004. Epigenetic inactivation of SFRP genes allows constitutive WNT signaling in colorectal cancer. Nat. Genet. 36:417–422.

    Article  PubMed  CAS  Google Scholar 

  • Szyf, M., Pakneshan, P., and Rabbani, S. A. 2004. DNA methylation and breast cancer. Biochem. Pharmacol. 68:1187–1197.

    Article  PubMed  CAS  Google Scholar 

  • Taylor, K. H., Kramer, R. S., Davis, J. W., Guo, J., Duff, D. J., Xu, D., Caldwell, C. W., and Shi, H. 2007a. Ultradeep bisulfite sequencing analysis of DNA methylation patterns in multiple gene promoters by 454 sequencing. Cancer Res. 67:8511–8518.

    Article  PubMed  CAS  Google Scholar 

  • Taylor, K. H., Pena-Hernandez, K. E., Davis, J. W., Arthur, G. L., Duff, D. J., Shi, H., Rahmatpanah, F. B., Sjahputera, O., and Caldwell, C. W. 2007b. Large-scale CpG methylation analysis identifies novel candidate genes and reveals methylation hotspots in acute lymphoblastic leukemia. Cancer Res. 67:2617–2625.

    Article  PubMed  CAS  Google Scholar 

  • Taylor, K. H., Rahmatpanah, F., Davis, J. W., and Caldwell, C. W. 2007c. Chromosomal localization of DNA methylation in small B-cell lymphoma. Leukemia.

    Google Scholar 

  • Toyota, M., Ahuja, N., Ohe-Toyota, M., Herman, J. G., Baylin, S. B., and Issa, J. P. 1999a. CpG island methylator phenotype in colorectal cancer. Proc. Natl. Acad. Sci. USA 96:8681–8686.

    Article  PubMed  CAS  Google Scholar 

  • Toyota, M., Ho, C., Ahuja, N., Jair, K. W., Li, Q., Ohe-Toyota, M., Baylin, S. B., and Issa, J. P. 1999b. Identification of differentially methylated sequences in colorectal cancer by methylated CpG island amplification. Cancer Res. 59:2307–2312.

    PubMed  CAS  Google Scholar 

  • Usmani, B. A., Shen, R., Janeczko, M., Papandreou, C. N., Lee, W. H., Nelson, W. G., Nelson, J. B., and Nanus, D. M. 2000. Methylation of the neutral endopeptidase gene promoter in human prostate cancers. Clin. Cancer Res. 6:1664–1670.

    PubMed  CAS  Google Scholar 

  • Valinluck, V., Liu, P., Kang, J. I., Jr., Burdzy, A., and Sowers, L. C. 2005. 5-halogenated pyrimidine lesions within a CpG sequence context mimic 5-methylcytosine by enhancing the binding of the methyl-CpG-binding domain of methyl-CpG-binding protein 2 (MeCP2). Nucleic Acids Res. 33:3057–3064.

    Article  PubMed  CAS  Google Scholar 

  • Valinluck, V. and Sowers, L. C. 2007a. Endogenous cytosine damage products alter the site selectivity of human DNA maintenance methyltransferase DNMT1. Cancer Res. 67:946–950.

    Article  PubMed  CAS  Google Scholar 

  • Valinluck, V. and Sowers, L. C. 2007b. Inflammation-mediated cytosine damage: a mechanistic link between inflammation and the epigenetic alterations in human cancers. Cancer Res. 67:5583–5586.

    Article  PubMed  CAS  Google Scholar 

  • Valinluck, V., Tsai, H. H., Rogstad, D. K., Burdzy, A., Bird, A., and Sowers, L. C. 2004. Oxidative damage to methyl-CpG sequences inhibits the binding of the methyl-CpG binding domain (MBD) of methyl-CpG binding protein 2 (MeCP2). Nucleic Acids Res. 32:4100–4108.

    Article  PubMed  CAS  Google Scholar 

  • van Galen, J. C., Dukers, D. F., Giroth, C., Sewalt, R. G., Otte, A. P., Meijer, C. J., and Raaphorst, F. M. 2004. Distinct expression patterns of polycomb oncoproteins and their binding partners during the germinal center reaction. Eur. J. Immunol. 34:1870–1881.

    Article  PubMed  CAS  Google Scholar 

  • van, V., Dai, H., van, d., V., He, Y. D., Hart, A. A., Mao, M., Peterse, H. L., van der, K. K., Marton, M. J., Witteveen, A. T., Schreiber, G. J., Kerkhoven, R. M., Roberts, C., Linsley, P. S., Bernards, R., and Friend, S. H. 2002. Gene expression profiling predicts clinical outcome of breast cancer. Nature 415:530–536.

    Google Scholar 

  • Varambally, S., Dhanasekaran, S. M., Zhou, M., Barrette, T. R., Kumar-Sinha, C., Sanda, M. G., Ghosh, D., Pienta, K. J., Sewalt, R. G., Otte, A. P., Rubin, M. A., and Chinnaiyan, A. M. 2002. The polycomb group protein EZH2 is involved in progression of prostate cancer. Nature 419:624–629.

    Article  PubMed  CAS  Google Scholar 

  • Visser, H. P., Gunster, M. J., Kluin-Nelemans, H. C., Manders, E. M., Raaphorst, F. M., Meijer, C. J., Willemze, R., and Otte, A. P. 2001. The Polycomb group protein EZH2 is upregulated in proliferating, cultured human mantle cell lymphoma. Br. J. Haematol. 112:950–958.

    Article  PubMed  CAS  Google Scholar 

  • Wagner, W., Horn, P., Bork, S., and Ho, A. D. 2008. Aging of hematopoietic stem cells is regulated by the stem cell niche. Exp. Gerontol.

    Google Scholar 

  • Wahlfors, J., Hiltunen, H., Heinonen, K., Hamalainen, E., Alhonen, L., and Janne, J. 1992. Genomic hypomethylation in human chronic lymphocytic leukemia. Blood 80:2074–2080.

    PubMed  CAS  Google Scholar 

  • Waly, M., Olteanu, H., Banerjee, R., Choi, S. W., Mason, J. B., Parker, B. S., Sukumar, S., Shim, S., Sharma, A., Benzecry, J. M., Power-Charnitsky, V. A., and Deth, R. C. 2004. Activation of methionine synthase by insulin-like growth factor-1 and dopamine: a target for neurodevelopmental toxins and thimerosal. Mol. Psychiatry 9:358–370.

    Article  PubMed  CAS  Google Scholar 

  • Weisenberger, D. J., Siegmund, K. D., Campan, M., Young, J., Long, T. I., Faasse, M. A., Kang, G. H., Widschwendter, M., Weener, D., Buchanan, D., Koh, H., Simms, L., Barker, M., Leggett, B., Levine, J., Kim, M., French, A. J., Thibodeau, S. N., Jass, J., Haile, R., and Laird, P. W. 2006. CpG island methylator phenotype underlies sporadic microsatellite instability and is tightly associated with BRAF mutation in colorectal cancer. Nat. Genet. 38:787–793.

    Article  PubMed  CAS  Google Scholar 

  • Wong, I. H., Chan, J., Wong, J., and Tam, P. K. 2004. Ubiquitous aberrant RASSF1A promoter methylation in childhood neoplasia. Clin. Cancer Res. 10:994–1002.

    Article  PubMed  CAS  Google Scholar 

  • Yan, P. S., Chen, C. M., Shi, H., Rahmatpanah, F., Wei, S. H., Caldwell, C. W., and Huang, T. H. 2001. Dissecting complex epigenetic alterations in breast cancer using CpG island microarrays. Cancer Res. 61:8375–8380.

    PubMed  CAS  Google Scholar 

  • Yan, P. S., Efferth, T., Chen, H. L., Lin, J., Rodel, F., Fuzesi, L., and Huang, T. H. 2002. Use of CpG island microarrays to identify colorectal tumors with a high degree of concurrent methylation. Methods 27:162–169.

    Article  PubMed  CAS  Google Scholar 

  • Yan, P. S., Perry, M. R., Laux, D. E., Asare, A. L., Caldwell, C. W., and Huang, T. H. 2000. CpG island arrays: an application toward deciphering epigenetic signatures of breast cancer. Clin. Cancer Res. 6:1432–1438.

    PubMed  CAS  Google Scholar 

  • Yan, P. S., Shi, H., Rahmatpanah, F., Hsiau, T. H., Hsiau, A. H., Leu, Y. W., Liu, J. C., and Huang, T. H. 2003. Differential distribution of DNA methylation within the RASSF1A CpG island in breast cancer. Cancer Res. 63:6178–6186.

    PubMed  CAS  Google Scholar 

  • Yang, H., Hoshino, K., Sanchez-Gonzalez, B., Kantarjian, H., and Garcia-Manero, G. 2005. Antileukemia activity of the combination of 5-aza-2'-deoxycytidine with valproic acid. Leuk. Res. 29:739–748.

    Article  PubMed  CAS  Google Scholar 

  • Yu, M. K. 2006. Epigenetics and chronic lymphocytic leukemia. Am. J. Hematol. 81:864–869.

    Article  PubMed  CAS  Google Scholar 

  • Zent, C. S. and Kay, N. E. 2007. Chronic lymphocytic leukemia: biology and current treatment. Curr. Oncol. Rep. 9:345–352.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, Q., Wang, H. Y., Marzec, M., Raghunath, P. N., Nagasawa, T., and Wasik, M. A. 2005. STAT3- and DNA methyltransferase 1-mediated epigenetic silencing of SHP-1 tyrosine phosphatase tumor suppressor gene in malignant T lymphocytes. Proc. Natl. Acad. Sci. USA 102:6948–6953.

    Article  PubMed  CAS  Google Scholar 

  • Zheng, S., Ma, X., Zhang, L., Gunn, L., Smith, M. T., Wiemels, J. L., Leung, K., Buffler, P. A., and Wiencke, J. K. 2004. Hypermethylation of the 5' CpG island of the FHIT gene is associated with hyperdiploid and translocation-negative subtypes of pediatric leukemia. Cancer Res. 64: 2000–2006.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles W. Caldwell .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Taylor, K.H., Bennett, L.B., Arthur, G.L., Shi, H., Caldwell, C.W. (2010). The Epigenetics of Age-Related Cancers. In: Tollefsbol, T.O. (eds) Epigenetics of Aging. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-0639-7_16

Download citation

Publish with us

Policies and ethics