Skip to main content

Unclassified Variants in the Breast Cancer Susceptibility Genes BRCA1 and BRCA2

  • Chapter
  • First Online:
The Role of Genetics in Breast and Reproductive Cancers

Part of the book series: Cancer Genetics ((CANGENETICS))

Genetic testing for mutations in the breast cancer susceptibility genes BRCA1 and BRCA2 was underway by the mid-1990 s and is now commonly performed. Important decisions regarding the clinical management of individuals from high-risk families are often made based on whether the proband carries a pathogenic variant or not. However, test results are often confounding. In addition to sequence variants that are highly likely to cause disease (for example, protein-truncating mutations that result from a number of different kinds of underlying sequence alterations), clinical mutation screening often reveals missense substitutions, potential splicing variants, and/or small in-frame insertion–deletion variants (indels) that are initially classified as variants of uncertain clinical significance (variously referred to as unclassified clinical variants, UCVs; variants of uncertain significance, VUSs; and unclassified variants

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Frank, T. S., Deffenbaugh, A. M., Reid, J. E., Hulick, M., Ward, B. E., Lingenfelter, B., Gumpper, K. L., Scholl, T., Tavtigian, S. V., Pruss, D. R., and Critchfield, G. C. (2002). Clinical characteristics of individuals with germline mutations in BRCA1 and BRCA2: analysis of 10,000 individuals. J Clin Oncol 20, 1480–1490.

    Article  CAS  PubMed  Google Scholar 

  2. Koonin, E. V., Altschul, S. F., and Bork, P. (1996). BRCA1 protein products … Functional motifs … . Nat Genet 13, 266–268.

    Article  CAS  PubMed  Google Scholar 

  3. McAllister, K. A., Haugen-Strano, A., Hagevik, S., Brownlee, H. A., Collins, N. K., Futreal, P. A., Bennett, L. M., and Wiseman, R. W. (1997). Characterization of the rat and mouse homologues of the BRCA2 breast cancer susceptibility gene. Cancer Res 57, 3121–3125.

    CAS  PubMed  Google Scholar 

  4. Spain, B. H., Larson, C. J., Shihabuddin, L. S., Gage, F. H., and Verma, I. M. (1999). Truncated BRCA2 is cytoplasmic: implications for cancer-linked mutations. Proc Natl Acad Sci USA 96, 13920–13925.

    Article  CAS  PubMed  Google Scholar 

  5. Davies, O. R., and Pellegrini, L. (2007). Interaction with the BRCA2 C terminus protects RAD51-DNA filaments from disassembly by BRC repeats. Nat Struct Mol Biol 14, 475–483.

    PubMed  Google Scholar 

  6. Neuhausen, S. L., and Ostrander, E. A. (1997). Mutation testing of early-onset breast cancer genes BRCA1 and BRCA2. Genet Test 1, 75–83.

    Google Scholar 

  7. Miki, Y., Swensen, J., Shattuck-Eidens, D., Futreal, P. A., Harshman, K., Tavtigian, S., Liu, Q., Cochran, C., Bennett, L. M., Ding, W., Bell, R., Rosenthal, J., Hussey, C., Tran, T., McClure, M., Frye, C., Hattier, T., Phelps, R., Haugen-Strano, A., Katcher, H., Yakumo, K., Gholami, Z., Shaffer, D., Stone, S., Bayer, S., Wray, C., Bogden, R., Dayananth, P., Ward, J., Tonin, P., Narod, S., Bristow, P. K., Norris, F. H., Helvering, H., Morrison, P., Rosteck, P., Lai, M., Barrett, J. C., Lewis, C., Neuhausen, S., Cannon-Albright, L., Goldgar, D., Wiseman, R., Kamb, A., and Skolnick, M. H. (1994). A strong candidate for the breast and ovarian cancer susceptibility gene BRCA1. Science 266, 66–71.

    Article  CAS  PubMed  Google Scholar 

  8. Futreal, P. A., Liu, Q., Shattuck-Eidens, D., Cochran, C., Harshman, K., Tavtigian, S., Bennett, L. M., Haugen-Strano, A., Swensen, J., Miki, Y., and et al. (1994). BRCA1 mutations in primary breast and ovarian carcinomas. Science 266, 120–122.

    Article  CAS  PubMed  Google Scholar 

  9. Castilla, L. H., Couch, F. J., Erdos, M. R., Hoskins, K. F., Calzone, K., Garber, J. E., Boyd, J., Lubin, M. B., Deshano, M. L., Brody, L. C., Collins, F. S., and Weber, B. L. (1994). Mutations in the BRCA1 gene in families with early-onset breast and ovarian cancer. Nat Genet 8, 387–391.

    Article  CAS  PubMed  Google Scholar 

  10. Friedman, L. S., Ostermeyer, E. A., Szabo, C. I., Dowd, P., Lynch, E. D., Rowell, S. E., and King, M. C. (1994). Confirmation of BRCA1 by analysis of germline mutations linked to breast and ovarian cancer in ten families. Nat Genet 8, 399–404.

    Article  CAS  PubMed  Google Scholar 

  11. Tavtigian, S. V., Simard, J., Rommens, J., Couch, F., Shattuck-Eidens, D., Neuhausen, S., Merajver, S., Thorlacius, S., Offit, K., Stoppa-Lyonnet, D., Belanger, C., Bell, R., Berry, S., Bogden, R., Chen, Q., Davis, T., Dumont, M., Frye, C., Hattier, T., Jammulapati, S., Janecki, T., Jiang, P., Kehrer, R., Leblanc, J. F., Mitchell, J. T., McArthur-Morrison, J., Nguyen, K., Peng, Y., Samson, C., Schroeder, M., Snyder, S. C., Steele, L., Stringfellow, M., Stroup, C., Swedlund, B., Swensen, J., Teng, D., Thomas, A., Tran, T., Tran, T., Tranchant, M., Weaver-Feldhous, J., Wong, A. K. C., Shizuya, H., Eyfjord, J. E., Cannon-Albright, L., Labrie, F., Skolnick, M. H., Weber, B., Kamb, A., and Goldgar, D. E. (1996). The complete BRCA2 gene and mutations in chromosome 13q-linked kindreds. Nat Genet 12, 333–337.

    Article  CAS  PubMed  Google Scholar 

  12. Mazoyer, S., Dunning, A. M., Serova, O., Dearden, J., Puget, N., Healey, C. S., Gayther, S. A., Mangion, J., Stratton, M. R., Lynch, H. T., Goldgar, D. E., Ponder, B. A., and Lenoir, G. M. (1996). A polymorphic stop codon in BRCA2. Nat Genet 14, 253–254.

    Article  CAS  PubMed  Google Scholar 

  13. Deffenbaugh, A. M., Frank, T. S., Hoffman, M., Cannon-Albright, L., and Neuhausen, S. L. (2002). Characterization of common BRCA1 and BRCA2 variants. Genet Test 6, 119–121.

    Article  CAS  PubMed  Google Scholar 

  14. Scholl, T., Pyne, M. T., Russo, D., and Ward, B. E. (1999). BRCA1 IVS16+6T–>C is a deleterious mutation that creates an aberrant transcript by activating a cryptic splice donor site. Am J Med Genet 85, 113–116.

    Article  CAS  PubMed  Google Scholar 

  15. Pyne, M. T., Pruss, D., Ward, B. E., and Scholl, T. (1999). A characterization of genetic variants in BRCA1 intron 8 identifies a mutation and a polymorphism. Mutat Res 406, 101–107.

    CAS  PubMed  Google Scholar 

  16. Pyne, M. T., Brothman, A. R., Ward, B., Pruss, D., Hendrickson, B. C., and Scholl, T. (2000). The BRCA2 genetic variant IVS7 + 2T–>G is a mutation. J Hum Genet 45, 351–357.

    Article  CAS  PubMed  Google Scholar 

  17. Goldgar, D. E., Easton, D. F., Deffenbaugh, A. M., Monteiro, A. N., Tavtigian, S. V., and Couch, F. J. (2004). Integrated evaluation of DNA sequence variants of unknown clinical significance: application to BRCA1 and BRCA2. Am J Hum Genet 75, 535–544.

    Article  CAS  PubMed  Google Scholar 

  18. Grantham, R. (1974). Amino acid difference formula to help explain protein evolution. Science 185, 862–864.

    Article  CAS  PubMed  Google Scholar 

  19. Goldgar, D. E., Easton, D. F., Byrnes, G. B., Spurdle, A. B., Iversen, E. S., and Greenblatt, M. S. (2008). Genetic evidence and integration of various data sources for classifying uncertain variants into a single model. Hum Mutat 29, 1265–1272.

    Article  PubMed  Google Scholar 

  20. Wappenschmidt, B., Fimmers, R., Rhiem, K., Brosig, M., Wardelmann, E., Meindl, A., Arnold, N., Mallmann, P., and Schmutzler, R. K. (2005). Strong evidence that the common variant S384F in BRCA2 has no pathogenic relevance in hereditary breast cancer. Breast Cancer Res 7, R775–9.

    Article  CAS  PubMed  Google Scholar 

  21. Wu, K., Hinson, S. R., Ohashi, A., Farrugia, D., Wendt, P., Tavtigian, S. V., Deffenbaugh, A., Goldgar, D., and Couch, F. J. (2005). Functional evaluation and cancer risk assessment of BRCA2 unclassified variants. Cancer Res 65, 417–426.

    CAS  PubMed  Google Scholar 

  22. Chenevix-Trench, G., Healey, S., Lakhani, S., Waring, P., Cummings, M., Brinkworth, R., Deffenbaugh, A. M., Burbidge, L. A., Pruss, D., Judkins, T., Scholl, T., Bekessy, A., Marsh, A., Lovelock, P., Wong, M., Tesoriero, A., Renard, H., Southey, M., Hopper, J. L., Yannoukakos, K., Brown, M., Easton, D., Tavtigian, S. V., Goldgar, D., and Spurdle, A. B. (2006). Genetic and histopathologic evaluation of BRCA1 and BRCA2 DNA sequence variants of unknown clinical significance. Cancer Res 66, 2019–2027.

    Article  CAS  PubMed  Google Scholar 

  23. Tavtigian, S. V., Deffenbaugh, A. M., Yin, L., Judkins, T., Scholl, T., Samollow, P. B., de Silva, D., Zharkikh, A., and Thomas, A. (2006). Comprehensive statistical study of 452 BRCA1 missense substitutions with classification of eight recurrent substitutions as neutral. J Med Genet 43, 295–305.

    Article  CAS  PubMed  Google Scholar 

  24. Lovelock, P. K., Healey, S., Au, W., Sum, E. Y., Tesoriero, A., Wong, E. M., Hinson, S., Brinkworth, R., Bekessy, A., Diez, O., Izatt, L., Solomon, E., Jenkins, M., Renard, H., Hopper, J., Waring, P., Tavtigian, S. V., Goldgar, D., Lindeman, G. J., Visvader, J. E., Couch, F. J., Henderson, B. R., Southey, M., Chenevix-Trench, G., Spurdle, A. B., and Brown, M. A. (2006). Genetic, functional, and histopathological evaluation of two C-terminal BRCA1 missense variants. J Med Genet 43, 74–83.

    Article  CAS  PubMed  Google Scholar 

  25. Osorio, A., Milne, R. L., Honrado, E., Barroso, A., Diez, O., Salazar, R., de la Hoya, M., Vega, A., and Benitez, J. (2007). Classification of missense variants of unknown significance in BRCA1 based on clinical and tumor information. Hum Mutat 28, 477–485.

    Article  CAS  PubMed  Google Scholar 

  26. Easton, D. F., Deffenbaugh, A. M., Pruss, D., Frye, C., Wenstrup, R. J., Allen-Brady, K., Tavtigian, S. V., Monteiro, A. N., Iversen, E. S., Couch, F. J., and Goldgar, D. E. (2007). A systematic genetic assessment of 1,433 sequence variants of unknown clinical significance in the BRCA1 and BRCA2 breast cancer-predisposition genes. Am J Hum Genet 81, 873–883.

    Article  CAS  PubMed  Google Scholar 

  27. Spurdle, A. B., Lakhani, S. R., Healey, S., Parry, S., Da Silva, L. M., Brinkworth, R., Hopper, J. L., Brown, M. A., Babikyan, D., Chenevix-Trench, G., Tavtigian, S. V., and Goldgar, D. E. (2008). Clinical classification of BRCA1 and BRCA2 DNA sequence variants: the value of cytokeratin profiles and evolutionary analysis – a report from the kConFab Investigators. J Clin Oncol 26, 1657–1663.

    Article  CAS  PubMed  Google Scholar 

  28. Spearman, A. D., Sweet, K., Zhou, X. P., McLennan, J., Couch, F. J., and Toland, A. E. (2008). Clinically applicable models to characterize BRCA1 and BRCA2 variants of uncertain significance. J Clin Oncol 26, 5393–5400.

    Article  PubMed  Google Scholar 

  29. Tischkowitz, M., Hamel, N., Carvalho, M. A., Birrane, G., Soni, A., van Beers, E. H., Joosse, S. A., Wong, N., Novak, D., Quenneville, L. A., Grist, S. A., Nederlof, P. M., Goldgar, D. E., Tavtigian, S. V., Monteiro, A. N., Ladias, J. A., and Foulkes, W. D. (2008). Pathogenicity of the BRCA1 missense variant M1775K is determined by the disruption of the BRCT phosphopeptide-binding pocket: a multi-modal approach. Eur J Hum Genet 16, 820–832.

    Article  CAS  PubMed  Google Scholar 

  30. Anagnostopoulos, T., Pertesi, M., Konstantopoulou, I., Armaou, S., Kamakari, S., Nasioulas, G., Athanasiou, A., Dobrovic, A., Young, M. A., Goldgar, D., Fountzilas, G., and Yannoukakos, D. (2008). G1738R is a BRCA1 founder mutation in Greek breast/ovarian cancer patients: evaluation of its pathogenicity and inferences on its genealogical history. Breast Cancer Res Treat 110, 377–385.

    Article  CAS  PubMed  Google Scholar 

  31. Hofstra, R. M., Spurdle, A. B., Eccles, D., Foulkes, W. D., de Wind, N., Hoogerbrugge, N., and Hogervorst, F. B. (2008). Tumor characteristics as an analytic tool for classifying genetic variants of uncertain clinical significance. Hum Mutat 29, 1292–1303.

    Article  CAS  PubMed  Google Scholar 

  32. Thompson, D., Easton, D. F., and Goldgar, D. E. (2003). A full-likelihood method for the evaluation of causality of sequence variants from family data. Am J Hum Genet 73, 652–655.

    Article  CAS  PubMed  Google Scholar 

  33. Tavtigian, S. V., Greenblatt, M. S., Lesueur, F., and Byrnes, G. B. (2008). In silico analysis of missense substitutions using sequence-alignment based methods. Hum Mutat 29, 1327–1336.

    Article  CAS  PubMed  Google Scholar 

  34. Liu, C. Y., Flesken-Nikitin, A., Li, S., Zeng, Y., and Lee, W. H. (1996). Inactivation of the mouse Brca1 gene leads to failure in the morphogenesis of the egg cylinder in early postimplantation development. Genes Dev 10, 1835–1843.

    Article  CAS  PubMed  Google Scholar 

  35. Hakem, R., de la Pompa, J. L., Sirard, C., Mo, R., Woo, M., Hakem, A., Wakeham, A., Potter, J., Reitmair, A., Billia, F., Firpo, E., Hui, C. C., Roberts, J., Rossant, J., and Mak, T. W. (1996). The tumor suppressor gene Brca1 is required for embryonic cellular proliferation in the mouse. Cell 85, 1009–1023.

    Article  CAS  PubMed  Google Scholar 

  36. Gowen, L. C., Johnson, B. L., Latour, A. M., Sulik, K. K., and Koller, B. H. (1996). Brca1 deficiency results in early embryonic lethality characterized by neuroepithelial abnormalities. Nat Genet 12, 191–194.

    Article  CAS  PubMed  Google Scholar 

  37. Ludwig, T., Chapman, D. L., Papaioannou, V. E., and Efstratiadis, A. (1997). Targeted mutations of breast cancer susceptibility gene homologs in mice: lethal phenotypes of Brca1, Brca2, Brca1/Brca2, Brca1/p53, and Brca2/p53 nullizygous embryos. Genes Dev 11, 1226–1241.

    Article  CAS  PubMed  Google Scholar 

  38. Hohenstein, P., Kielman, M. F., Breukel, C., Bennett, L. M., Wiseman, R., Krimpenfort, P., Cornelisse, C., van Ommen, G. J., Devilee, P., and Fodde, R. (2001). A targeted mouse Brca1 mutation removing the last BRCT repeat results in apoptosis and embryonic lethality at the headfold stage. Oncogene 20, 2544–2550.

    Article  CAS  PubMed  Google Scholar 

  39. Ludwig, T., Fisher, P., Ganesan, S., and Efstratiadis, A. (2001). Tumorigenesis in mice carrying a truncating Brca1 mutation. Genes Dev 15, 1188–1193.

    Article  CAS  PubMed  Google Scholar 

  40. Joukov, V., Chen, J., Fox, E. A., Green, J. B., and Livingston, D. M. (2001). Functional communication between endogenous BRCA1 and its partner, BARD1, during Xenopus laevis development. Proc Natl Acad Sci USA 98, 12078–12083.

    Article  CAS  PubMed  Google Scholar 

  41. Abkevich, V., Zharkikh, A., Deffenbaugh, A., Frank, D., Chen, Y., Shattuck, D., Skolnick, M. H., Gutin, A., and Tavtigian, S. V. (2004). Analysis of missense variation in human BRCA1 in the context of interspecific sequence variation. J Med Genet 41, 492–507.

    Article  CAS  PubMed  Google Scholar 

  42. Connor, F., Bertwistle, D., Mee, P. J., Ross, G. M., Swift, S., Grigorieva, E., Tybulewicz, V. L., and Ashworth, A. (1997). Tumorigenesis and a DNA repair defect in mice with a truncating Brca2 mutation. Nat Genet 17, 423–430.

    Article  CAS  PubMed  Google Scholar 

  43. Bennett, L. M., McAllister, K. A., Blackshear, P. E., Malphurs, J., Goulding, G., Collins, N. K., Ward, T., Bunch, D. O., Eddy, E. M., Davis, B. J., and Wiseman, R. W. (2000). BRCA2-null embryonic survival is prolonged on the BALB/c genetic background. Mol Carcinog 28, 174–183.

    Article  CAS  PubMed  Google Scholar 

  44. McAllister, K. A., Bennett, L. M., Houle, C. D., Ward, T., Malphurs, J., Collins, N. K., Cachafeiro, C., Haseman, J., Goulding, E. H., Bunch, D., Eddy, E. M., Davis, B. J., and Wiseman, R. W. (2002). Cancer susceptibility of mice with a homozygous deletion in the COOH-terminal domain of the Brca2 gene. Cancer Res 62, 990–994.

    CAS  PubMed  Google Scholar 

  45. Howlett, N. G., Taniguchi, T., Olson, S., Cox, B., Waisfisz, Q., De Die-Smulders, C., Persky, N., Grompe, M., Joenje, H., Pals, G., Ikeda, H., Fox, E. A., and D’Andrea, A. D. (2002). Biallelic inactivation of BRCA2 in Fanconi anemia. Science 297, 606–609.

    Article  CAS  PubMed  Google Scholar 

  46. Wagner, J. E., Tolar, J., Levran, O., Scholl, T., Deffenbaugh, A., Satagopan, J., Ben-Porat, L., Mah, K., Batish, S. D., Kutler, D. I., MacMillan, M. L., Hanenberg, H., and Auerbach, A. D. (2004). Germline mutations in BRCA2: shared genetic susceptibility to breast cancer, early onset leukemia, and Fanconi anemia. Blood 103, 3226–3229.

    Article  CAS  PubMed  Google Scholar 

  47. Zuckerkandl, E., and Pauling, L. (1965). Molecules as documents of evolutionary history. J Theor Biol 8, 357–366.

    Article  CAS  PubMed  Google Scholar 

  48. Jukes, T. H., and King, J. L. (1971). Deleterious mutations and neutral substitutions. Nature 231, 114–115.

    Article  CAS  PubMed  Google Scholar 

  49. Ng, P. C., and Henikoff, S. (2002). Accounting for human polymorphisms predicted to affect protein function. Genome Res 12, 436–446.

    Article  CAS  PubMed  Google Scholar 

  50. Stone, E. A., and Sidow, A. (2005). Physicochemical constraint violation by missense substitutions mediates impairment of protein function and disease severity. Genome Res 15, 978–986.

    Article  CAS  PubMed  Google Scholar 

  51. Sunyaev, S., Ramensky, V., Koch, I., Lathe, W., 3rd., Kondrashov, A. S., and Bork, P. (2001). Prediction of deleterious human alleles. Hum Mol Genet 10, 591–597.

    Article  CAS  PubMed  Google Scholar 

  52. Ferrer-Costa, C., Gelpi, J. L., Zamakola, L., Parraga, I., de la Cruz, X., and Orozco, M. (2005). PMUT: a web-based tool for the annotation of pathological mutations on proteins. Bioinformatics 21, 3176–3178.

    Article  CAS  PubMed  Google Scholar 

  53. Yue, P., Melamud, E., and Moult, J. (2006). SNPs3D: candidate gene and SNP selection for association studies. BMC Bioinformatics 7, 166.

    Article  PubMed  Google Scholar 

  54. Tavtigian, S. V., Byrnes, G. B., Goldgar, D. E., and Thomas, A. (2008). Classification of rare missense substitutions, using risk surfaces, with genetic- and molecular-epidemiology applications. Hum Mutat 29, 1342–1354.

    Article  CAS  PubMed  Google Scholar 

  55. Szabo, C. I., Wagner, L. A., Francisco, L. V., Roach, J. C., Argonza, R., King, M. C., and Ostrander, E. A. (1996). Human, canine and murine BRCA1 genes: sequence comparison among species. Hum Mol Genet 5, 1289–1298.

    Article  CAS  PubMed  Google Scholar 

  56. Fleming, M. A., Potter, J. D., Ramirez, C. J., Ostrander, G. K., and Ostrander, E. A. (2003). Understanding missense mutations in the BRCA1 gene: an evolutionary approach. Proc Natl Acad Sci USA 100, 1151–1156.

    Article  CAS  PubMed  Google Scholar 

  57. Ramirez, C. J., Fleming, M. A., Potter, J. D., Ostrander, G. K., and Ostrander, E. A. (2004). Marsupial BRCA1: conserved regions in mammals and the potential effect of missense changes. Oncogene 23, 1780–1788.

    Article  CAS  PubMed  Google Scholar 

  58. Karchin, R., Agarwal, M., Sali, A., Couch, F., and Beattie, M. S. (2008). Classifying variants of undetermined significance in BRCA2 with protein likelihood ratios. Cancer Inform 6, 203–216.

    PubMed  Google Scholar 

  59. Johannsson, O. T., Idvall, I., Anderson, C., Borg, A., Barkardottir, R. B., Egilsson, V., and Olsson, H. (1997). Tumour biological features of BRCA1-induced breast and ovarian cancer. Eur J Cancer 33, 362–371.

    Article  CAS  PubMed  Google Scholar 

  60. Lakhani, S. R., Jacquemier, J., Sloane, J. P., Gusterson, B. A., Anderson, T. J., van de Vijver, M. J., Farid, L. M., Venter, D., Antoniou, A., Storfer-Isser, A., Smyth, E., Steel, C. M., Haites, N., Scott, R. J., Goldgar, D., Neuhausen, S., Daly, P. A., Ormiston, W., McManus, R., Scherneck, S., Ponder, B. A., Ford, D., Peto, J., Stoppa-Lyonnet, D., Bignon, Y. J., Struewing, J. P., Spurr, N. K., Bishop, D. T., Klijn, J. G., Devilee, P., Cornelisse, C. J., Lasset, C., Lenoir, G., Barkardottir, R. B., Egilsson, V., Hamann, U., Chang-Claude, J., Sobol, H., Weber, B., Stratton, M. R., and Easton, D. F. (1998). Multifactorial analysis of differences between sporadic breast cancers and cancers involving BRCA1 and BRCA2 mutations. J Natl Cancer Inst 90, 1138–1145.

    Article  CAS  PubMed  Google Scholar 

  61. Sorlie, T., Tibshirani, R., Parker, J., Hastie, T., Marron, J. S., Nobel, A., Deng, S., Johnsen, H., Pesich, R., Geisler, S., Demeter, J., Perou, C. M., Lonning, P. E., Brown, P. O., Borresen-Dale, A. L., and Botstein, D. (2003). Repeated observation of breast tumor subtypes in independent gene expression data sets. Proc Natl Acad Sci USA 100, 8418–8423.

    Article  CAS  PubMed  Google Scholar 

  62. Foulkes, W. D., Stefansson, I. M., Chappuis, P. O., Begin, L. R., Goffin, J. R., Wong, N., Trudel, M., and Akslen, L. A. (2003). Germline BRCA1 mutations and a basal epithelial phenotype in breast cancer. J Natl Cancer Inst 95, 1482–1485.

    CAS  PubMed  Google Scholar 

  63. Lakhani, S. R., Gusterson, B. A., Jacquemier, J., Sloane, J. P., Anderson, T. J., van de Vijver, M. J., Venter, D., Freeman, A., Antoniou, A., McGuffog, L., Smyth, E., Steel, C. M., Haites, N., Scott, R. J., Goldgar, D., Neuhausen, S., Daly, P. A., Ormiston, W., McManus, R., Scherneck, S., Ponder, B. A., Futreal, P. A., Peto, J., Stoppa-Lyonnet, D., Bignon, Y. J., and Stratton, M. R. (2000). The pathology of familial breast cancer: histological features of cancers in families not attributable to mutations in BRCA1 or BRCA2. Clin Cancer Res 6, 782–789.

    CAS  PubMed  Google Scholar 

  64. Lakhani, S. R., Van De Vijver, M. J., Jacquemier, J., Anderson, T. J., Osin, P. P., McGuffog, L., and Easton, D. F. (2002). The pathology of familial breast cancer: predictive value of immunohistochemical markers estrogen receptor, progesterone receptor, HER-2, and p53 in patients with mutations in BRCA1 and BRCA2. J Clin Oncol 20, 2310–2318.

    Article  CAS  PubMed  Google Scholar 

  65. Lakhani, S. R., Reis-Filho, J. S., Fulford, L., Penault-Llorca, F., van der Vijver, M., Parry, S., Bishop, T., Benitez, J., Rivas, C., Bignon, Y. J., Chang-Claude, J., Hamann, U., Cornelisse, C. J., Devilee, P., Beckmann, M. W., Nestle-Kramling, C., Daly, P. A., Haites, N., Varley, J., Lalloo, F., Evans, G., Maugard, C., Meijers-Heijboer, H., Klijn, J. G., Olah, E., Gusterson, B. A., Pilotti, S., Radice, P., Scherneck, S., Sobol, H., Jacquemier, J., Wagner, T., Peto, J., Stratton, M. R., McGuffog, L., and Easton, D. F. (2005). Prediction of BRCA1 status in patients with breast cancer using estrogen receptor and basal phenotype. Clin Cancer Res 11, 5175–5180.

    Article  CAS  PubMed  Google Scholar 

  66. Plon, S. E., Eccles, D. M., Easton, D., Foulkes, W. D., Genuardi, M., Greenblatt, M. S., Hogervorst, F. B., Hoogerbrugge, N., Spurdle, A. B., and Tavtigian, S. V. (2008). Sequence variant classification and reporting: recommendations for improving the interpretation of cancer susceptibility genetic test results. Hum Mutat 29, 1282–1291.

    Article  CAS  PubMed  Google Scholar 

  67. Morris, J. R., Pangon, L., Boutell, C., Katagiri, T., Keep, N. H., and Solomon, E. (2006). Genetic analysis of BRCA1 ubiquitin ligase activity and its relationship to breast cancer susceptibility. Hum Mol Genet 15, 599–606.

    Article  CAS  PubMed  Google Scholar 

  68. Couch, F. J., Rasmussen, L. J., Hofstra, R., Monteiro, A. N., Greenblatt, M. S., and de Wind, N. (2008). Assessment of functional effects of unclassified genetic variants. Hum Mutat 29, 1314–1326.

    Article  CAS  PubMed  Google Scholar 

  69. Phelan, C. M., Vesna, A., Tice, B., Favis, R., Kwan, E., Barany, F., Manoukian, S., Radice, P., van der Luijt, R. B., van Nesselrooij, B. P. M., Chenevix-Trench, G., kConFab, Caldes, T., de la Hoya, M., Lindquist, S., Tavtigian, S. V., Goldgar, D., Borg, A., Narod, S. A., and Monteiro, A. N. A. (2005). Classification of BRCA1 missense variants of unknown clinical significance. J Med Genet 42, 138–146.

    Article  CAS  PubMed  Google Scholar 

  70. Carvalho, M. A., Marsillac, S. M., Karchin, R., Manoukian, S., Grist, S., Swaby, R. F., Urmenyi, T. P., Rondinelli, E., Silva, R., Gayol, L., Baumbach, L., Sutphen, R., Pickard-Brzosowicz, J. L., Nathanson, K. L., Sali, A., Goldgar, D., Couch, F. J., Radice, P., and Monteiro, A. N. (2007). Determination of cancer risk associated with germ line BRCA1 missense variants by functional analysis. Cancer Res 67, 1494–1501.

    Article  CAS  PubMed  Google Scholar 

  71. Williams, R. S., Chasman, D. I., Hau, D. D., Hui, B., Lau, A. Y., and Glover, J. N. (2003). Detection of protein folding defects caused by BRCA1-BRCT truncation and missense mutations. J Biol Chem 278, 53007–53016.

    Article  CAS  PubMed  Google Scholar 

  72. Williams, R. S., Lee, M. S., Hau, D. D., and Glover, J. N. (2004). Structural basis of phosphopeptide recognition by the BRCT domain of BRCA1. Nat Struct Mol Biol 11, 519–525.

    Article  CAS  PubMed  Google Scholar 

  73. Farrugia, D. J., Agarwal, M. K., Pankratz, V. S., Deffenbaugh, A. M., Pruss, D., Frye, C., Wadum, L., Johnson, K., Mentlick, J., Tavtigian, S. V., Goldgar, D. E., and Couch, F. J. (2008). Functional assays for classification of BRCA2 variants of uncertain significance. Cancer Res 68, 3523–3531.

    Article  CAS  PubMed  Google Scholar 

  74. Kuznetsov, S. G., Liu, P., and Sharan, S. K. (2008). Mouse embryonic stem cell-based functional assay to evaluate mutations in BRCA2. Nat Med 14, 875–881.

    Article  CAS  PubMed  Google Scholar 

  75. Spurdle, A. B., Couch, F. J., Hogervorst, F. B., Radice, P., and Sinilnikova, O. M. (2008). Prediction and assessment of splicing alterations: implications for clinical testing. Hum Mutat 29, 1304–1313.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sean V. Tavtigian .

Editor information

Editors and Affiliations

Appendix

Appendix

We discuss classes of sequence variants and how they would be classified a priori in 11 examples.

  1. (1)

    If the proximal promoter of BRCA1 or BRCA2 is completely deleted, little or no mRNA would be produced. Such a deletion would be recognized as pathogenic. In contrast, the functional consequences of small insertions or deletions (indels), rearrangements, or point mutations within the promoter would be difficult to predict a priori; consequently, these types of variants would initially be reported as UVs.

  2. (2)

    In general, if one or more exons are entirely deleted, the mRNA splicing machinery will typically fuse the last exon before the deletion to the first exon after the deletion. If the length of the deleted exons is not a multiple of 3 bp, the resulting splicing event will create a shift in the mRNA reading frame; consequently, the deletion would be recognized as pathogenic. Conversely, if the length of the deleted exons is a multiple of 3 bp, the reading frame would be maintained and the resulting structural aberration would probably be reported as an UV. One can also reason through the analogous situation for duplications of internal exons.

  3. (3)

    The functional consequence of a smaller deletion that destroys either the splice acceptor at the beginning of an exon or the splice donor at the end of an exon is very difficult to predict. The splicing apparatus may use nearby sequences that resemble a bonafide splice acceptor or splice donor, or splicing may skip one or more exons. Accordingly, such variants are typically reported as UVs. Although exceedingly rare, duplication of a splice acceptor or splice donor would also be reported as an UV.

  4. (4)

    Indel mutations located entirely within an individual exon are more tractable. If the length of an indel is not a multiple of 3 bp, the consequence will most likely be a shift in the reading frame with the indel usually reported as pathogenic. Again, if the length of the indel is a multiple of 3 bp, the resulting mRNA reading frame will not be shifted and the indel would be reported as an UV.

  5. (5)

    Single-nucleotide substitutions occurring deep within introns are usually considered innocuous and are often not reported even when they are observed. However, there is always the possibility that such a variant will create or activate a splice junction; if sequence analysis indicated that this was the case, such a sequence variant would sometimes be reported as an UV.

  6. (6)

    Single-nucleotide substitutions falling within the splice acceptor consensus sequence, usually considered to extend from ˜ 20 bp before the exon to 3 bp into the exon, may well interfere with splicing. Software exists to predict whether such substitutions will affect the targeted splice acceptor (for review, see [75]). However, even if splicing to the targeted acceptor is completely abrogated, it is difficult to predict the final consequence to the mRNA structure and thus the protein. Consequently, if splice acceptor analysis algorithms predict that a substitution in the donor consensus is very unlikely to affect splice junction usage, the variant could be considered innocuous. If the software reports a modest or more severe probability that the substitution will alter splice junction usage the substitution would typically be reported as an UV.

  7. (7)

    Single-nucleotide substitutions falling within the splice donor consensus sequence, usually considered to extend from 3 bp before the end of the exon to 6 bp into the intron, may well interfere with splicing. Analytically, the situation is essentially the same as for splice acceptor sequence variants.

  8. (8)

    The cores of the splice donor and acceptor consensus sequences are the nearly invariant GT and AG dinucleotides that mark the first two and last two nucleotides of most introns. Nucleotide substitutions to the canonical GT–AG dinucleotides will almost always disrupt splice junction usage. These are typically either reported as being UVs with an explanation that they are quite likely to be pathogenic and that the patient should submit a new sample from which an mRNA splicing experiment can be done, or else they are reported as pathogenic.

  9. (9)

    Single-nucleotide substitutions falling within an exon may be silent, missense, or nonsense. Silent substitutions are usually considered innocuous and are generally not reported unless they fall very near the ends of the exon, where they may interfere with either the splice acceptor or the splice donor. Nonsense substitutions are generally considered pathogenic. The main exception is if they fall in the last coding exon downstream of the relevant functionally important C-terminal protein domains. Indeed, BRCA2 harbors a common nonsense substitution, K3326X, located downstream of the nuclear localization signal, which has been shown in an association study to be essentially neutral with respect to breast cancer risk [12]. Missense substitutions, on the other hand, have highly variable effects. The missense allele by definition directs synthesis of a protein that differs from the canonical sequence at just one amino acid. There are regions in the BRCA1 and BRCA2 proteins where almost any missense substitution is well tolerated. Likewise, there are other functionally important domains where an appreciable fraction of missense substitutions are apparently pathogenic [26,33]. However, to date, it has not been possible to classify missense substitutions at the time of their initial observation with sufficient certainty for clinical purposes; consequently, they are usually first reported as UVs. Moreover, the nucleotide substitution underlying a missense amino acid substitution can interfere with mRNA splicing as described for silent substitutions. Thus, this possibility must also be considered.

  10. (10)

    Exonic nucleotide substitutions or in-frame indels can create de novo splice donors or splice acceptors. Splice donor and acceptor consensus sequences are well enough understood that it should be possible to recognize such sequence variants with reasonable sensitivity, though the capacity to predict the impact on in vivo splicing of such an analysis is likely to be low. When a variant that could create a de novo splice junction is observed, it would typically be reported as an UV with the annotation that it could effect splicing.

  11. (11)

    In addition to splice junction consensus sequences, there are also exonic splice enhancers that act to improve the efficiency of nearby splice junctions, exonic splice silencers that act to block usage of nearby potential splice junctions, and intronic analogs of both of these sequence elements. At this time, software that could be used to predict these elements does not have the capacity to predict those elements that are functionally important, let alone sufficient sensitivity and specificity to identify sequence variants that could alter the activity of such an element (for review, see [75]). Consequently, sequence variants that could alter the activity of such elements typically go unrecognized.

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Tavtigian, S.V. (2009). Unclassified Variants in the Breast Cancer Susceptibility Genes BRCA1 and BRCA2. In: Welcsh, P. (eds) The Role of Genetics in Breast and Reproductive Cancers. Cancer Genetics. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-0477-5_3

Download citation

Publish with us

Policies and ethics