Skip to main content

Stochastic Synchrony in the Olfactory Bulb

  • Chapter
  • First Online:
Coherent Behavior in Neuronal Networks

Abstract

Oscillations in the 30–100 Hz range are common in the olfactory bulb (OB) of mammals. The principle neurons (mitral cells) of the OB are believed to be responsible for these rhythms. We suggest that the mitral cells, which prefer to fire in a limited range could be synchronized by receiving correlated statistically random inputs (stochastic synchrony). We explore the mechanisms of stochastic synchrony using a combination of experimental, computational and theoretical methods.

Supported by NIMH, NSF, and NIH CRCNS

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adrian ED (1942) Olfactory reactions in the brain of the hedgehog. J Physiol 100:459–473.

    PubMed  CAS  Google Scholar 

  2. Arevian AC, Kapoor V, Urban NN (2008) Activity-dependent gating of lateral inhibition in the mouse olfactory bulb. Nat Neurosci 11:80–87.

    Article  PubMed  CAS  Google Scholar 

  3. Aroniadou-Anderjaska V, Ennis M, Shipley MT (1999) Dendrodendritic recurrent excitation in mitral cells of the rat olfactory bulb. J Neurophysiol 82:489–494.

    PubMed  CAS  Google Scholar 

  4. Aungst JL, Heyward PM, Puche AC, Karnup SV, Hayar A, Szabo G, Shipley MT (2003) Centre-surround inhibition among olfactory bulb glomeruli. Nature 426:623–629.

    Article  PubMed  CAS  Google Scholar 

  5. Balu R, Larimer P, Strowbridge BW (2004) Phasic stimuli evoke precisely timed spikes in intermittently discharging mitral cells. J Neurophysiol 92:743–753.

    Article  PubMed  Google Scholar 

  6. Bressler SL, Freeman WJ (1980) Frequency analysis of olfactory system EEG in cat, rabbit, and rat. Electroencephalogr Clin Neurophysiol 50:19–24.

    Article  PubMed  CAS  Google Scholar 

  7. Bryant, HL, Segundo, JP (1976) Spike initiation by transmembrane current: a white-noise analysis. J. Physiol. 260:279–314.

    PubMed  CAS  Google Scholar 

  8. Buzsaki G (2006) Rhythms of the Brain. Oxford: Oxford University Press.

    Book  Google Scholar 

  9. Buzsaki G, Draguhn A (2004) Neuronal oscillations in cortical networks. Science 304:1926–1929.

    Article  PubMed  CAS  Google Scholar 

  10. Carlson GC, Shipley MT, Keller A (2000) Long-lasting depolarizations in mitral cells of the rat olfactory bulb. J Neurosci 20:2011–2021.

    PubMed  CAS  Google Scholar 

  11. Chow CC, White JA, Ritt J, Kopell N (1998) Frequency control in synchronized networks of inhibitory neurons. J Comput Neurosci 5:407–420.

    Article  PubMed  CAS  Google Scholar 

  12. Desmaisons D, Vincent JD, Lledo PM (1999) Control of action potential timing by intrinsic subthreshold oscillations in olfactory bulb output neurons. J Neurosci 19:10727–10737.

    PubMed  CAS  Google Scholar 

  13. Didier A, Carleton A, Bjaalie JG, Vincent JD, Ottersen OP, Storm-Mathisen J, Lledo PM (2001) A dendrodendritic reciprocal synapse provides a recurrent excitatory connection in the olfactory bulb. Proc Natl Acad Sci USA 98:6441–6446.

    Article  PubMed  CAS  Google Scholar 

  14. Egger V, Svoboda K, Mainen ZF (2003) Mechanisms of lateral inhibition in the olfactory bulb: efficiency and modulation of spike-evoked calcium influx into granule cells. J Neurosci 23:7551–7558.

    PubMed  CAS  Google Scholar 

  15. Egger V, Svoboda K, Mainen ZF (2005) Dendrodendritic synaptic signals in olfactory bulb granule cells: local spine boost and global low-threshold spike. J Neurosci 25:3521–3530.

    Article  PubMed  CAS  Google Scholar 

  16. Egger V, Urban NN (2006) Dynamic connectivity in the mitral cell-granule cell microcircuit. Sem Cell Develop Biol 17.

    Google Scholar 

  17. Ermentrout GB, Galán RF, Urban NN. (2008) Reliability, synchrony and noise. Trends Neurosci 31(8):428–434.

    Article  PubMed  CAS  Google Scholar 

  18. Friedman D, Strowbridge BW (2003) Both electrical and chemical synapses mediate fast network oscillations in the olfactory bulb. J Neurophysiol 89:2601–2610.

    Article  PubMed  Google Scholar 

  19. Galán, RF, Ermentrout, GB, Urban, NN (2005) Efficient estimation of phase-resetting curves in real neurons and its significance for neural-network modeling. Phys Rev Lett 94, 158101.

    Article  PubMed  Google Scholar 

  20. Galán, RF, Fourcaud-Trocme, N, Ermentrout, GB, Urban, NN (2006) Correlation-induced synchronization of oscillations in olfactory bulb neurons. J Neurosci 26, 3646–3655.

    Article  PubMed  Google Scholar 

  21. Galán, RF, Ermentrout, GB, Urban, NN (2007) Stochastic dynamics of uncoupled neural oscillators: Fokker-Planck studies with the finite element method. Phys Rev E Stat Nonlin Soft Matter Phys 76, 056110.

    Article  PubMed  Google Scholar 

  22. Galán, RF, Ermentrout, GB, Urban, NN (2008) Optimal time scale for spike-time reliability: theory, simulations and experiments. J Neurophysiol 99, 277–283.

    Article  PubMed  Google Scholar 

  23. Hasenstaub A, Shu Y, Haider B, Kraushaar U, Duque A, McCormick DA (2005) Inhibitory postsynaptic potentials carry synchronized frequency information in active cortical networks. Neuron 47:423–435.

    Article  PubMed  CAS  Google Scholar 

  24. Isaacson JS (1999) Glutamate spillover mediates excitatory transmission in the rat olfactory bulb [see comments]. Neuron 23:377–384.

    Article  PubMed  CAS  Google Scholar 

  25. Isaacson JS, Strowbridge BW (1998) Olfactory reciprocal synapses: dendritic signaling in the CNS. Neuron 20:749–761.

    Article  PubMed  CAS  Google Scholar 

  26. Jahr CE, Nicoll RA (1980) Dendrodendritic inhibition: demonstration with intracellular recording. Science 207:1473–1475.

    Article  PubMed  CAS  Google Scholar 

  27. Kapoor V, Urban NN (2006) Glomerulus-specific, long-latency activity in the olfactory bulb granule cell network. J Neurosci 26:11709–11719.

    Article  PubMed  CAS  Google Scholar 

  28. Kay LM, Laurent G (1999) Odor- and context-dependent modulation of mitral cell activity in behaving rats. Nat Neurosci 2:1003–1009.

    Article  PubMed  CAS  Google Scholar 

  29. Lagier S, Carleton A, Lledo PM (2004) Interplay between local GABAergic interneurons and relay neurons generates gamma oscillations in the rat olfactory bulb. J Neurosci 24:4382–4392.

    Article  PubMed  CAS  Google Scholar 

  30. Lowe GD, Woodward M, Rumley A, Morrison CE, Nieuwenhuizen W (2003) Associations of plasma fibrinogen assays, C-reactive protein and interleukin-6 with previous myocardial infarction. J Thromb Haemost 1:2312–2316.

    Article  PubMed  CAS  Google Scholar 

  31. Mainen, ZF, Sejnowski, TJ (1995) Reliability of spike timing in neocortical neurons. Science 268:1503–1506.

    Article  PubMed  CAS  Google Scholar 

  32. Marella, S, Ermentrout, GB (2008) Class-II neurons display a higher degree of stochastic synchronization than class-I neurons. Phys Rev E Stat Nonlin Soft Matter Phys 77, 041918.

    Article  PubMed  Google Scholar 

  33. Margrie TW, Sakmann B, Urban NN (2001a) Action potential propagation in mitral cell lateral dendrites is decremental and controls recurrent and lateral inhibition in the mammalian olfactory bulb. Proc Natl Acad Sci USA 98:319–324.

    Article  PubMed  CAS  Google Scholar 

  34. Mori K, Nowycky MC, Shepherd GM (1981) Electrophysiological analysis of mitral cells in the isolated turtle olfactory bulb. J Physiol (Lond) 314:281–294.

    CAS  Google Scholar 

  35. Mori K, Takagi SF (1978) An intracellular study of dendrodendritic inhibitory synapses on mitral cells in the rabbit olfactory bulb. J Physiol (Lond) 279:569–588.

    CAS  Google Scholar 

  36. Nagai, K et al. (2005) Synchrony of neural oscillators induced by random telegraphic currents. Phys Rev E Stat Nonlin Soft Matter Phys 71, 036217.

    Article  PubMed  Google Scholar 

  37. Nakao H, Arai K, Kawamura Y (2007) Noise-Induced Synchronization and Clustering in Ensembles of Uncoupled Limit-Cycle Oscillators, Phys. Rev. Lett. 98, 184101.

    Article  PubMed  Google Scholar 

  38. Nakao H, Arai K-S, Nagai K, Tsubo Y, Kuramoto Y (2005) Synchrony of limit-cycle oscillators induced by random external impulses. Phys Rev E 72.

    Google Scholar 

  39. Neville KR, Haberly LB (2003) Beta and gamma oscillations in the olfactory system of the urethane-anesthetized rat. J Neurophysiol 90:3921–3930.

    Article  PubMed  Google Scholar 

  40. Nickell WT, Shipley MT, Behbehani MM (1996) Orthodromic synaptic activation of rat olfactory bulb mitral cells in isolated slices. Brain Res Bull 39:57–62.

    Article  PubMed  CAS  Google Scholar 

  41. Nusser Z, Kay LM, Laurent G, Homanics GE, Mody I (2001) Disruption of GABA(A) receptors on GABAergic interneurons leads to increased oscillatory power in the olfactory bulb network. J Neurophysiol 86:2823–2833.

    PubMed  CAS  Google Scholar 

  42. Powell KR, Koppelman LF, Holtzman SG (1999) Differential involvement of dopamine in mediating the discriminative stimulus effects of low and high doses of caffeine in rats. Behav Pharmacol 10:707–716.

    Article  PubMed  CAS  Google Scholar 

  43. Rall W, Shepherd GM, Reese TS, Brightman MW (1966) Dendrodendritic synaptic pathway for inhibition in the olfactory bulb. Exp Neurol 14:44–56.

    Article  PubMed  CAS  Google Scholar 

  44. Ravel N, Chabaud P, Martin C, Gaveau V, Hugues E, Tallon-Baudry C, Bertrand O, Gervais R (2003) Olfactory learning modifies the expression of odour-induced oscillatory responses in the gamma (60-90 Hz) and beta (15-40 Hz) bands in the rat olfactory bulb. Eur J Neurosci 17:350–358.

    Article  PubMed  Google Scholar 

  45. Reyes AD (2003) Synchrony-dependent propagation of firing rate in iteratively constructed networks in vitro. Nat Neurosci 6:593–599.

    Article  PubMed  CAS  Google Scholar 

  46. Schaefer AT, Angelo K, Spors H, Margrie TW (2006) Neuronal Oscillations Enhance Stimulus Discrimination by Ensuring Action Potential Precision. PLoS Biol 4:e163.

    Article  PubMed  Google Scholar 

  47. Schoppa NE, Kinzie JM, Sahara Y, Segerson TP, Westbrook GL (1998) Dendrodendritic inhibition in the olfactory bulb is driven by NMDA receptors. J Neurosci 18:6790–6802.

    PubMed  CAS  Google Scholar 

  48. Schoppa NE, Urban NN (2003) Dendritic processing within olfactory bulb circuits. Trends Neurosci 26:501–506.

    Article  PubMed  CAS  Google Scholar 

  49. Schoppa NE, Westbrook GL (2001a) Glomerulus-specific synchronization of mitral cells in the olfactory bulb. Neuron 31:639–651.

    Article  PubMed  CAS  Google Scholar 

  50. Schoppa NE, Westbrook GL (2001b) NMDA receptors turn to another channel for inhibition. Neuron 31:877–879.

    Article  PubMed  CAS  Google Scholar 

  51. Schoppa NE, Westbrook GL (2002) AMPA autoreceptors drive correlated spiking in olfactory bulb glomeruli. Nat Neurosci 5:1194–1202.

    Article  PubMed  CAS  Google Scholar 

  52. Segev I (1999) Taming time in the olfactory bulb. Nat Neurosci 2:1041–1043.

    Article  PubMed  CAS  Google Scholar 

  53. Singer W, Gray C, Engel A, Konig P, Artola A, Brocher S (1990) Formation of cortical cell assemblies. Cold Spring Harb Symp Quant Biol 55:939–952.

    PubMed  CAS  Google Scholar 

  54. Smith TC, Jahr CE (2002) Self-inhibition of olfactory bulb neurons. Nat Neurosci 5:760–766.

    PubMed  CAS  Google Scholar 

  55. Stopfer M, Jayaraman V, Laurent G. (2003) Intensity versus identity coding in an olfactory system. Neuron 39:991–1004.

    Article  PubMed  CAS  Google Scholar 

  56. Tateno T, Robinson HP (2007a) Quantifying noise-induced stability of a cortical fast-spiking cell model with Kv3-channel-like current. Biosystems 89(1-3):110–116.

    Article  PubMed  CAS  Google Scholar 

  57. Tateno T, Robinson HP (2007b) Phase resetting curves and oscillatory stability in interneurons of rat somatosensory cortex. Biophys J 92(2):683–695.

    Article  PubMed  CAS  Google Scholar 

  58. Teramae JN, Tanaka D (2004) Robustness of the noise-induced phase synchronization in a general class of limit cycle oscillators. Phys Rev Lett 93:204103.

    Article  PubMed  Google Scholar 

  59. Urban NN (2002) Lateral inhibition in the olfactory bulb and in olfaction. Physiol Behav 77:607–612.

    Article  PubMed  CAS  Google Scholar 

  60. Urban NN, Sakmann B (2002) Reciprocal intraglomerular excitation and intra- and interglomerular lateral inhibition between mouse olfactory bulb mitral cells. J Physiol 542:355–367.

    Article  PubMed  CAS  Google Scholar 

  61. Wang XJ, Buzsaki G (1996) Gamma oscillation by synaptic inhibition in a hippocampal interneuronal network model. J Neurosci 16:6402–6413.

    PubMed  CAS  Google Scholar 

  62. White JA, Chow CC, Ritt J, Soto-Trevino C, Kopell N (1998) Synchronization and oscillatory dynamics in heterogeneous, mutually inhibited neurons. J Comput Neurosci 5:5–16.

    Article  PubMed  CAS  Google Scholar 

  63. Whittington MA, Traub RD, Kopell N, Ermentrout B, Buhl EH (2000) Inhibition-based rhythms: experimental and mathematical observations on network dynamics. Int J Psychophysiol 38:315–336.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bard Ermentrout .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Ermentrout, B., Urban, N., Galán, R.F. (2009). Stochastic Synchrony in the Olfactory Bulb. In: Josic, K., Rubin, J., Matias, M., Romo, R. (eds) Coherent Behavior in Neuronal Networks. Springer Series in Computational Neuroscience, vol 3. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-0389-1_12

Download citation

Publish with us

Policies and ethics