Skip to main content

Disease Models, Part II: Querying & Applications

  • Chapter
  • First Online:
Medical Imaging Informatics
  • 2082 Accesses

Abstract

In the previous chapter, the mathematical formalisms that allow us to encode medical knowledge into graphical models were described. Here, we focus on how users can interact with these models (specifically, belief networks) to pose a wide range of questions and understand inferred results - an essential part of the healthcare process as patients and healthcare providers make decisions. Two general classes of queries are explored: belief updating, which computes the posterior probability of the network variables in the presence of evidence; and abductive reasoning, which identifies the most probable instantiation of network variables given some evidence. Many diagnostic, prognostic, and therapeutic questions can be represented in terms of these query Types. For models that are complex, exact inference techniques are computationally intractable; instead, approximate inference methods can be leveraged. We also briefly cover special classes of belief networks that are relevant in medicine: probabilistic relational models, which provide a compact representation of large number of propositional variables through the use of first-order logic; influence diagrams, which provide a means of selecting optimal plans given cost/preference constraints; and naïve Bayes classifiers. Importantly, the question of how to validate the accuracy of belief networks is explored through cross validation and sensitivity analysis. Finally, we explore how the intrinsic properties of a graphical model (e.g., variable selection, structure, parameters) can assist users with interacting with and understanding the results of a model through feedback. Applications of Bayesian belief networks in image processing, querying, and case-based retrieval from large imaging repositories are demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    As in Chapter 8, we follow standard notation with uppercase letters representing a random variable; lowercase letters indicating instantiations/specific values of the random variable; and bold characters symbolizing sets or vectors of variables.

  2. 2.

    Belief propagation is sometimes also referred to as the sum-product algorithm.

References

  1. Alvarado P, Berner A, Akyol S (2002) Combination of high-level cues in unsupervised single image segmentation using Bayesian belief networks. Proc Intl Conf Imaging Science, Systems, and Technology, Las Vegas, NV, pp 235-240.

    Google Scholar 

  2. Bednarski M, Cholewa W, Frid W (2004) Identification of sensitivities in Bayesian networks. Engineering Applications of Artificial Intelligence, 17(4):327-335.

    Article  Google Scholar 

  3. Bellazzi R, Zupan B (2008) Predictive data mining in clinical medicine: Current issues and guidelines. Intl J Medical Informatics, 77(2):81-97.

    Article  Google Scholar 

  4. Bishop CM (2006) Graphical models. Pattern Recognition and Machine Learning. Springer, New York, pp 359-418.

    Google Scholar 

  5. Boyen X (2002) Inference and learning in complex stochastic processes. Department of Computer Science, PhD dissertation. Stanford University.

    Google Scholar 

  6. Boyen X, Koller D (1998) Tractable inference for complex stochastic processes. Proc 16th Conf Uncertainty in Artificial Intelligence (UAI), pp 313-320.

    Google Scholar 

  7. Breitkreutz BJ, Stark C, Tyers M (2003) Osprey: A network visualization system. Genome Biol, 4(3):R22.

    Article  Google Scholar 

  8. Chan H, Darwiche A (2004) Sensitivity analysis in Bayesian networks: From single to multiple parameters. Proc 20th Conf Uncertainty in Artificial Intelligence (UAI), pp 67-75.

    Google Scholar 

  9. Chavira M, Darwiche A, Jaeger M (2006) Compiling relational Bayesian networks for exact inference. Intl J Approximate Reasoning, 42(1-2):4-20.

    Article  MATH  MathSciNet  Google Scholar 

  10. Cooper GF (1988) A method for using belief networks as influence diagrams. Proc 12th Conf Uncertainty in Artificial Intelligence, pp 55-63.

    Google Scholar 

  11. Cooper GF (1990) The computational complexity of probabilistic inference using Bayesian belief networks. Artificial Intelligence, 42:393-405.

    Article  MATH  MathSciNet  Google Scholar 

  12. Coupé VM, Peek N, Ottenkamp J, Habbema JD (1999) Using sensitivity analysis for efficient quantification of a belief network. Artif Intell Med, 17(3):223-247.

    Article  Google Scholar 

  13. Coupé VMH, van der Gaag LC (2002) Properties of sensitivity analysis of Bayesian belief networks. Annals of Mathematics and Artificial Intelligence, 36(4):323-356.

    Article  MATH  MathSciNet  Google Scholar 

  14. Darwiche A (2003) A differential approach to inference in Bayesian networks. Journal of the ACM, 50(3):280-305.

    Article  MathSciNet  Google Scholar 

  15. Darwiche A (2009) Modeling and reasoning with Bayesian networks. Cambridge University Press, New York.

    MATH  Google Scholar 

  16. de Campos LM, Gámez JA, Moral S (1999) Partial abductive inference in Bayesian belief networks using a genetic algorithm. Pattern Recognition Letters, 20(11-13):1211-1217.

    Article  Google Scholar 

  17. de Salvo Braz R, Amir E, Roth D (2008) A survey of first-order probabilistic models. In: Holmes DE, Jain LC (eds) Innovations in Bayesian Networks: Theory and Applications. Springer, pp 289-317.

    Chapter  Google Scholar 

  18. Dechter R (1999) Bucket elimination: A unifying framework for probabilistic inference. Learning in Graphical Models, pp 75-104.

    Google Scholar 

  19. Dechter R, Mateescu R (2007) AND/OR search spaces for graphical models. Artificial Intelligence, 171(2-3):73-106.

    Article  MATH  MathSciNet  Google Scholar 

  20. Donkers J, Tuyls K (2008) Belief networks for bioinformatics. Computational Intelligence in Bioinformatics, pp 75-111.

    Google Scholar 

  21. Druzdzel MJ (1996) Qualitiative verbal explanations in Bayesian belief networks. AISB Quarterly:43-54.

    Google Scholar 

  22. Geman S, Geman D (1987) Stochastic relaxation, Gibbs distributions and the Bayesian restoration of images. Readings in Computer Vision: Issues, Problems, Principles, and Paradigms:564-584.

    Google Scholar 

  23. Getoor L, Friedman N, Koller D, Pfeffer A, Taskar B (2007) Probabilistic relational models. In: Getoor L, Taskar B (eds) Introduction to Statistical Relational Learning. MIT Press, Cambridge, MA, pp 129-174.

    Google Scholar 

  24. Haddaway P, Jacobson J, Kahn CE, Jr. (1997) BANTER: A Bayesian network tutoring shell. Artif Intell Med, 10(2):177-200.

    Article  Google Scholar 

  25. Heckerman D, Chickering DM, Meek C, Rounthwaite R, Kadie C (2001) Dependency networks for inference, collaborative filtering, and data visualization. J Machine Learning Research, 1:49-75.

    Article  MATH  Google Scholar 

  26. Heckerman D, Meek C, Koller D (2004) Probabilistic Models for Relational Data (MSR-TR-2004-30). Microsoft Research. http://research.microsoft.com/pubs/70050/tr-2004-30.pdf . Accessed March 3, 2009.

  27. Horvitz E, Barry M (1995) Display of information for time-critical decision making. Proc 11th Conf Uncertainty in Artificial Intelligence (UAI), pp 296-305.

    Google Scholar 

  28. Horvitz E, Breese J, Heckerman D, Hovel D, Rommelse K (1998) The Lumiere Project: Bayesian user modeling for inferring the goals and needs of software users. Proc 14th Conf Uncertainty in Artificial Intelligence (UAI), pp 256-265.

    Google Scholar 

  29. Hu Z, Mellor J, Wu J, Yamada T, Holloway D, DeLisi C (2005) VisANT: Data-integrating visual framework for biological networks and modules. Nucleic Acids Res:W352-357.

    Google Scholar 

  30. Huang J, Chavira M, Darwiche A (2006) Solving MAP exactly by searching on compiled arithmetic circuits. Proc 21st Natl Conf Artificial Intelligence (AAAI-06), Boston, MA, pp 143-148.

    Google Scholar 

  31. Igarashi T, Hughes JF (2003) Smooth meshes for sketch-based freeform modeling. Proc ACM Symp Interactive 3D Graphics (ACM I3D 2003), pp 139-142.

    Google Scholar 

  32. Jaeger M (1997) Relational Bayesian nets. Proc 13th Conf Uncertainty in Artificial Intelligence (UAI), pp 266-273.

    Google Scholar 

  33. Jensen FV, Lauritzen SL, Olesen KG (1990) Bayesian updating in recursive graphical models by local computation. Computational Statistics Quarterly, 4:269-282.

    MathSciNet  Google Scholar 

  34. Kadaba NR, Irani PP, Leboe J (2007) Visualizing causal semantics using animations. IEEE Trans Vis Comput Graph, 13(6):1254-1261.

    Article  Google Scholar 

  35. Kjærulff UB, Madsen AL (2008) Sensitivity analysis. Bayesian Networks and Influence Diagrams, pp 273-290.

    Google Scholar 

  36. Koiter JR (2006) Visualizing inference in Bayesian networks. Department of Computer Science, PhD dissertation. Delft University of Technology (Netherlands).

    Google Scholar 

  37. Koller D (1999) Probabilistic relational models. Inductive Logic Programming, vol 1634. Springer, pp 3-13.

    Article  MathSciNet  Google Scholar 

  38. Koller D, Lerner U (2001) Sampling in factored dynamic systems. In: Doucet A, de Freitas JFG, Gordon N (eds) Sequential Monte Carlo Methods in Practice. Springer-Verlag, pp 445-464.

    Google Scholar 

  39. Kullback S, Leibler RA (1951) On information and sufficiency. Annals Mathematical Statistics, 22:79-86.

    Article  MATH  MathSciNet  Google Scholar 

  40. Kuncheva LI (2006) On the optimality of naïve Bayes with dependent binary features. Pattern Recognition Letters, 27(7):830-837.

    Article  Google Scholar 

  41. Lacave C, Dez FJ (2002) A review of explanation methods for Bayesian networks. Knowl Eng Rev, 17(2):107-127.

    Article  Google Scholar 

  42. Laskey KB (1995) Sensitivity analysis for probability assessments in Bayesian networks. IEEE Trans Syst Man Cybern, 25:901-909.

    Article  Google Scholar 

  43. Lauritzen SL, Spiegelhalter DJ (1988) Local computations with probabilities on graphical structures and their application to expert systems. J Royal Statistical Society, 50(2):157-224.

    MATH  MathSciNet  Google Scholar 

  44. Luo J, Savakis AE, Singhal A (2005) A Bayesian network-based framework for semantic image understanding. Pattern Recognition, 38(6):919-934.

    Article  Google Scholar 

  45. Madigan D, Mosurski K, Almond RG (1996) Graphical explanation in belief networks. J Comput Graphical Statistics, 6:160-181.

    Article  Google Scholar 

  46. Mengshoel O, Wilkins D (1998) Genetic algorithms for belief network inference: The role of scaling and niching. Evolutionary Programming VII, vol 1447. Springer, pp 547-556.

    Article  Google Scholar 

  47. Mortensen EN, Jin J (2006) Real-time semi-automatic segmentation using a Bayesian network. IEEE Proc Conf Computer Vision and Pattern Recognition, vol 1, pp 1007-1014.

    Google Scholar 

  48. Mozina M, Demsar J, Kattan MW, Zupan B (2004) Nomograms for visualization of naive bayesian classifier. Proc Principles Practice of Knowledge Discovery in Databases (PKDD-04), Pisa, Italy, pp 337-348.

    Google Scholar 

  49. Murphy K, Weiss Y (2001) The factored frontier algorithm for approximate inference in DBNs. Proc 18th Conf Uncertainty in Artificial Intelligence (UAI), pp 378-385.

    Google Scholar 

  50. Neal R (1993) Probabilistic inference using Markov chain Monte Carlo methods (CRG-TR-93-1). Department of Computer Science, University of Toronto.

    Google Scholar 

  51. Nease RF, Owens DK (1997) Use of influence diagrams to structure medical decisions. Med Decis Making, 17(3):263-275.

    Article  Google Scholar 

  52. Ng BM (2006) Factored inference for efficient reasoning of complex dynamic systems. Computer Science Department, PhD dissertation. Harvard University.

    Google Scholar 

  53. Ogunyemi OI, Clarke JR, Ash N, Webber BL (2002) Combining geometric and probabilistic reasoning for computer-based penetrating-trauma assessment. J Am Med Inform Assoc, 9(3):273-282.

    Article  Google Scholar 

  54. Park J (2002) MAP complexity results and approximation methods. Proc 18th Conf Uncertainty in Artificial Intelligence (UAI), pp 388-396.

    Google Scholar 

  55. Park J, Darwiche A (2001) Approximating MAP using local search. Proc 17th Conf Uncertainty in Artificial Intelligence (UAI), pp 403-410.

    Google Scholar 

  56. Park JD, Darwiche A (2003) Solving MAP exactly using systematic search. Proc 19th Conf Uncertainty in Artificial Intelligence (UAI), pp 459-468.

    Google Scholar 

  57. Pearl J (1988) Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan Kaufmann Publishers, San Mateo, CA.

    Google Scholar 

  58. Poole D (2003) First-order probabilistic inference. Proc 18th Intl Joint Conf Artificial Intelligence, pp 985-991.

    Google Scholar 

  59. Przytula KW, Dash D, Thompson D (2003) Evaluation of Bayesian networks used for diagnostics. Proc IEEE Aerospace Conf, pp 1-12.

    Google Scholar 

  60. Rex D, Ma J, Toga A (2003) The LONI pipeline processing environment. Neuroimage, 19(3):1033-1048.

    Article  Google Scholar 

  61. Rish I (2001) An empirical study of the naive Bayes classifier. Workshop on Empirical Methods in Artificial Intelligence; Proc Intl Joint Conf Artificial Intelligence, vol 335.

    Google Scholar 

  62. Romero T, Larrañaga P (2009) Triangulation of Bayesian networks with recursive estimation of distribution algorithms. Intl J Approximate Reasoning, 50(3):472-484.

    Article  Google Scholar 

  63. Russell SJ, Norvig P (2003) Artificial Intelligence: A modern approach. 2nd edition. Prentice Hall/Pearson Education, Upper Saddle River, NJ.

    Google Scholar 

  64. Sarkar S, Boyer KL (1993) Integration, inference, and management of spatial information using Bayesian networks: Perceptual organization. IEEE Trans Pattern Analysis and Machine Intelligence, 15(3):256-274.

    Article  Google Scholar 

  65. Schievink WI (1997) Intracranial aneurysms. N Engl J Med, 336(1):28-40.

    Article  Google Scholar 

  66. Siau K, Chan H, Wei K (2004) Effects of query complexity and learning on novice user query performance with conceptual and logical database interfaces. IEEE Trans Syst Man Cybern, 34(2):276-281.

    Article  Google Scholar 

  67. Suermondt HJ, Cooper GF (1993) An evaluation of explanations of probabilistic inference. Comput Biomed Res, 26(3):242-254.

    Article  Google Scholar 

  68. Van Allen T, Singh A, Greiner R, Hooper P (2008) Quantifying the uncertainty of a belief net response: Bayesian error-bars for belief net inference. Artificial Intelligence, 172(4-5):483-513.

    Article  MATH  MathSciNet  Google Scholar 

  69. Verduijn M, Peek N, Rosseel PMJ, de Jonge E, de Mol BAJM (2007) Prognostic Bayesian networks: I: Rationale, learning procedure, and clinical use. J Biomedical Informatics, 40(6):609-618.

    Article  Google Scholar 

  70. Wang H, Druzdel MJ (2000) User interface tools for navigation in conditional probability tables and elicitation of probabilities in Bayesian networks. Proc 16th Conf Uncertainty in Artificial Intelligence (UAI), pp 617-625.

    Google Scholar 

  71. Wemmenhove B, Mooij J, Wiegerinck W, Leisink M, Kappen H, Neijt J (2007) Inference in the Promedas medical expert system. Artificial Intelligence In Medicine, pp 456-460.

    Google Scholar 

  72. Westling M, Davis L (1997) Interpretation of complex scenes using Bayesian networks. Computer Vision - ACCV'98. Springer, pp 201-208.

    Chapter  Google Scholar 

  73. Wiebers DO, Whisnant JP, Huston J, 3rd, Meissner I, Brown RD, Jr., Piepgras DG, Forbes GS, Thielen K, Nichols D, O'Fallon WM, Peacock J, Jaeger L, Kassell NF, Kongable-Beckman GL, Torner JC (2003) Unruptured intracranial aneurysms: Natural history, clinical outcome, and risks of surgical and endovascular treatment. Lancet, 362(9378):103-110.

    Article  Google Scholar 

  74. Yanovsky I Thompson PM Osher S Leow AD (2006) Large deformation unbiased differomorphic nonlinear image registration: Theory and implementation. UCLA Center for Applied Mathematics (Report #06-71).

    Google Scholar 

  75. Yap GE, Tan AH, Pang HH (2008) Explaining inferences in Bayesian networks. Applied Intelligence, 29(3):263-278.

    Article  Google Scholar 

  76. Yedidia JS, Freeman WT, Weiss Y (2003) Understanding belief propagation and its generalizations. In: Lakemeyer G, Bernhard N (eds) Exploring Artificial Intelligence in the New Millennium. Elsevier Science, pp 239–236.

    Google Scholar 

  77. Yuan C, Lu T-C, Druzdzel MJ (2004) Annealed MAP. Proc 20th Conf Uncertainty in Artificial Intelligence (UAI), Banff, Canada, pp 628-635.

    Google Scholar 

  78. Zapata-Rivera JD, Neufeld E, Greer JE (1999) Visualization of Bayesian belief networks. Proc IEEE Visualization '99 (Late Breaking Topics), pp 85-88.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alex A. T. Bui .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Hsu, W., Bui, A.A.T. (2010). Disease Models, Part II: Querying & Applications. In: Bui, A., Taira, R. (eds) Medical Imaging Informatics. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-0385-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-0385-3_9

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-0384-6

  • Online ISBN: 978-1-4419-0385-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics