Skip to main content

Bone Loss in the Spondyloarthropathies: Role of Osteoclast, RANKL, RANK and OPG in the Spondyloarthropathies

  • Chapter
Molecular Mechanisms of Spondyloarthropathies

Part of the book series: Advances in Experimental Medicine and Biology ((volume 649))

Abstract

Bone loss is a common finding in the spondyloarthropathies. It may be localized and present as erosions or be generalized and cause osteoporosis. The pathogenesis of bone loss in the spondyloarthropathies is yet to be fully understood. There is however increasing evidence to support a role for the osteoclasts in bone erosions. Similarly a balance between the receptor activator of nuclear factor-κB ligand (RANKL) and osteoprotegerin (OPG) levels is thought to regulate osteoclastic activity and therefore bone loss in the inflammatory arthritides. In this chapter we will review the recent literature on the role of osteoclasts and the RANKL/OPG system in the various spondyloarthropathies and try to formulate a hypothesis for the possible mechanism of bone loss in this group of inflammatory rheumatic disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Sinigaglia L, Nervetti A, Mela Q et al. A multicenter cross sectional study on bone mineral density in rheumatoid arthritis. Italian study group on bone mass in rheumatoid arthritis. J Rheumatol 2000; 27:2583–89.

    Google Scholar 

  2. Weichselbaum A. The finer changes of cartilage with fungus synovitis and caries of the joint ends (German). Archiv Pathol Anat Physiol Klin Med 1878; 73:461–75.

    Google Scholar 

  3. van der Linden S, Valkenburg HA, Cats A et al. Evaluation of diagnostic criteria for ankylosing spondylitis. A proposal for modification of the New York criteria. Arthritis Rheum 1984; 27:361–68.

    Article  PubMed  Google Scholar 

  4. Sinigaglia L, Varenna M, Girasole G et al. Epidemiology of osteoporosis in rheumatic diseases. Rheum Dis Clin N Am 2006; 32:631–58.

    Article  Google Scholar 

  5. Bernstein CN, Blanchard JF, Leslie W et al. The incidence of fracture among patients with inflammatory bowel disease. A population based cohort study. Ann Intern Med 2000; 133:795–99.

    PubMed  CAS  Google Scholar 

  6. Harrison BJ, Hutchinson CE, Adams J et al. Assessing periarticular bone mineral density in patients with early psoriatic arthritis or rheumatoid arthritis. Ann Rheum Dis 2002; 61:1007–11.

    Article  PubMed  CAS  Google Scholar 

  7. Frediani B, Allegri A, Falsetti P et al. Bone mineral density in patients with proriatic arthritis. J Rheumatol 2001; 28:167–70.

    Google Scholar 

  8. Massey HM, Flanagan AM. Human osteoclasts derived form CD 14-positive monocytes. Br J Haematol 1999; 106:167–70.

    Article  PubMed  CAS  Google Scholar 

  9. Teitelbaum SL. Bone resorption by osteoclasts. Science 2000:1504–1508.

    Google Scholar 

  10. Holliday LS, Welgus HG, Fliszar CJ et al. Initiation of osteoclast bone resorption by interstitial collagenase. J Biol Chem 1997; 272:22053–58.

    Article  PubMed  CAS  Google Scholar 

  11. Teitelbaum SL. Osteoclasts: What to they do and how do they do it? Am J Pathol 2007; 170:427–435.

    Article  PubMed  CAS  Google Scholar 

  12. Vaananen HK, Horton M. The osteoclast clear zone is a specialized cell-extracellular matrix adhesion structure. J Cell Sci 1995; 108:2729–32.

    PubMed  CAS  Google Scholar 

  13. Schett G, Stolina M, Bolon B et al. Analysis of the kinetics of osteoclastogenesis in arthritic rats. Arthritis Rheum 2005; 52:3192–201.

    Article  PubMed  Google Scholar 

  14. Suzuki Y, Nishikaku F, Nakatuka M et al. Osteoclast-like cells in murine collagen induced arthritis. J Rheumatol 1998; 25:1154–60.

    PubMed  CAS  Google Scholar 

  15. Pettit AR, Ji H, von Stechow D et al. TRANCE/RANKL knockout mice are protected from bone erosion in a serum transfer model of arthritis. Am J Pathol 2001; 159:1689–99.

    Article  PubMed  CAS  Google Scholar 

  16. Redlich K, Hayer S, Ricci R et al. Osteoclasts are essential for TNF-medicated joint destruction. J Clin Invest 2002; 110:1419–27.

    PubMed  CAS  Google Scholar 

  17. Sims NA, Green JR, Glatt M et al. Targeting osteoclasts with zoledronic acid presents bone destruction in collagen induced arthritis. Arthritis Rheum 2004; 50:2338–46.

    Article  PubMed  CAS  Google Scholar 

  18. Herrak P, Gortz B, Hayer S et al. Zoledronic acid protects against local and systemic bone loss in tumor necrosis factor-mediated arthritis. Arthritis Rheum 2004; 50:2327–37.

    Article  PubMed  CAS  Google Scholar 

  19. Bromley M, Woolley DE. Chondroclasts and osteoclasts at subchondral sites of erosions in the rheumatoid joint. Arthritis Rheum 1984; 27:968–75.

    Article  PubMed  CAS  Google Scholar 

  20. Bromley M, Woolley DE. Histopathology of the rheumatoid lesion; identification of the cell types at sites of cartilage erosion. Arthritis Rheum 1984; 27:857–63.

    Article  PubMed  CAS  Google Scholar 

  21. Gravallese EM, Harada Y, Wang JT et al. Identification of cell types responsible for bone resorption in rheumatoid arthritis and juvenile rheumatoid arthritis. Am J Pathol 1999; 152:949–51.

    Google Scholar 

  22. Gravellese EM, Manning C, Tsay A et al. Synovial tissue in rheumatoid arthritis is a source of osteoclast differentiation factor. Arthritis Rheum 2000; 43:250–56.

    Article  Google Scholar 

  23. Fujikawa Y, Shingu M, Torisu T et al. Bone resorption by tartrate-resistant acid phosphatase-positive multinuclear cells isolated from rheumatoid synovium. Br J Rheumatol 1996; 35:213–17.

    Article  PubMed  CAS  Google Scholar 

  24. Suzuki Y, Tsutsumi Y, Nakagawa M et al. Osteoclast-like cells in an in-vitro model of bone destruction by rheumatoid synovium. Rheumatology (Oxford) 2001; 40:673–82.

    Article  CAS  Google Scholar 

  25. Udagawa N, Takahashi N, Akatsu T et al. Origin of osteoclasts: mature monocytes and macrophages are capable of differentiating into osteoclasts under a suitable microenvironment prepared by bone marrow-derived stromal cells. Proc Natl Acad Sci USA 1990; 87:7260–64.

    Article  PubMed  CAS  Google Scholar 

  26. Fujikawa Y, Sabokbar A, Neale S et al. Human osteoclast formation and bone resorption by monocytes and synovial macrophages in rheumatoid arthritis. Ann Rheum Dis 1996; 55:816–22.

    Article  PubMed  CAS  Google Scholar 

  27. Manolagas SC, Jilka RL. Bone marrow, cytokines and bone remodeling. N Eng J Med 1995; 332:305–11.

    Article  CAS  Google Scholar 

  28. Hofbauer LC, Khosla S, Dunstan CR et al. The roles of osteoprotogerin and osteoprotegerin ligand in the paracrine regulation of bone resorption. J Bone Miner Res 2000; 15:2–12.

    Article  PubMed  CAS  Google Scholar 

  29. Crotti TN, Smith MD, Weedon H et al. Receptor activator NF-kB ligand (RANKL) expression in synovial tissue from patients with rheumatoid arthritis, spondyloarthropathy, osteoarthritis and from normal patients: semiquantitative and quantitiative analysis. Ann Rheum Dis 2002; 61:1047–54.

    Article  PubMed  CAS  Google Scholar 

  30. Lacey DL, Timms E, Tan H-L et al. Osteoprotegerin (OPG) ligand is a cytokine that regulates osteoclast differentiation and activation. Cell 1998; 93:165–76.

    Article  PubMed  CAS  Google Scholar 

  31. Anandarajah AP, Schwarz EM. Anti-RANKL therapy for inflammatory bone disorders: Mechanisms and potential clinical applications. J Cell Biochem 2006; 97:226–32.

    Article  PubMed  CAS  Google Scholar 

  32. Kong YY, Feige U, Sarosi I et al. Activated T-cells regulate bone loss and joint destruction in adjuvant arthritis through osteoprotegerin ligand. Nature 1999; 402:304–09.

    Article  PubMed  CAS  Google Scholar 

  33. lam J, Takeshita S, Barker JE et al. TNF-alpha induces osteoclastogenesis by direct stimulation of macrophages exposed to permissive levels of RANK ligand. J Clin Invest 2000; 106:1481–88.

    Article  PubMed  CAS  Google Scholar 

  34. Pettit AR, Ji H, von Stechow D et al. TRANCE/RANKL knockout mice are protected from bone erosion in a serum transfer model of arthritis. Am J Pathol 2001; 159:1689–99.

    Article  PubMed  CAS  Google Scholar 

  35. Li P, Schwarz EM, O’Keefe et al. RANK signaling is not required for TNF-mediated increase in CD11 (hi) osteoclast precursors but is essential for mature osteoclast formation in TNF alpha mediated inflammatory arthritis. J Bone Miner Res 2004; 19:207–13.

    Article  PubMed  CAS  Google Scholar 

  36. Gravallese EM, Manning C, Tsay A et al. Synovial tissue in rheumatoid arthritis is a source of osteoclast differentiation factor. Arthritis Rheum 2000; 43:250–58.

    Article  PubMed  CAS  Google Scholar 

  37. Takayanagi H, Lizuka H, Juji T et al. Involvement of receptor activator of nuclear factor κB ligand/osteoclast differentiation factor in osteoclastogenesis from synoviocytes in rheumatoid arthritis. Arthritis Rheum 2000; 43:259–69.

    Article  PubMed  CAS  Google Scholar 

  38. Hofbauer LC, Schoppet M. Clinical implications of the osteoprotegerin/RANKL/RANK system for bone and vascular diseases. JAMA 2004; 292:490–95.

    Article  PubMed  CAS  Google Scholar 

  39. Anderson MS, Maraskovsky E, Billingsley WL et al. A homologue of the TNF receptor and its ligand enhances T-cell growth and dendritic cell function. Nature 1997; 390:175–79.

    Article  PubMed  CAS  Google Scholar 

  40. Hsu H, Lacey DL, Dunstan CR et al. Tumor necrosis factor receptor family member RANK mediates osteoblast differentiation and activation by osteoprotegerin ligand. Proc Natl Acad Sci USA 1989; 96:3540–45.

    Article  Google Scholar 

  41. Fata JE, Kong YY, Li J et al. The osteoclast differentiation factor osteoprotegerin-ligand is essential for mammary gland development. Cell 2000; 103:41–50.

    Article  PubMed  CAS  Google Scholar 

  42. Chen G, Sircar K, Aprikian A et al. Expression of RANK/RANKL/OPG in primary and metastatic human prostate cancer as markers of disease stage and functional regulation. Cancer 2006; 107:289–98.

    Article  PubMed  CAS  Google Scholar 

  43. Dougall WC, Glaccum M, Charrier K et al. RANK is essential for osteoclast and lymph node development. Genes Dev 1999; 13:2412–24.

    Article  PubMed  CAS  Google Scholar 

  44. Kapur RP, Yao Z, Lida MH et al Malignant autosomal recessive osteopetrosis caused by spontaneous mutation of murine Rank. J Bone Miner Res 2004; 19:1689–97.

    Article  PubMed  CAS  Google Scholar 

  45. Simonet WA, Lacey DL, Dunstan CR et al. Osteoprotegerin: A novel secreted protein involved in the regulation of bone density. Cell 1997; 89:309–19.

    Article  PubMed  CAS  Google Scholar 

  46. Kapur RP, Yao Z, Lida MH et al Malignant autosomal recessive osteopetrosis caused by spontaneous mutation of murine Rank. J Bone Miner Res 2004; 19:1689–97.

    Article  PubMed  CAS  Google Scholar 

  47. Mizuno A, Kanno T, Hoshi M et al. Transgenic mice over expressing soluble osteoclast differentiation factor (sODF) exhibit severe osteoporosis. J Bone Miner Metab 2002; 20:337–44.

    Article  PubMed  CAS  Google Scholar 

  48. Azuma Y, Kaji K, Katogi R et al. Tumor necrosis factor alpha stimulates osteoclast differentiation of and bone resorption by osteoclasts. J Biol Chem 2000; 275:4858–64.

    Article  PubMed  CAS  Google Scholar 

  49. Fitzgerald O, McInnes I. Spondyloarthropathy: disease at the crossroads of immunity. Best Pract Res Clin Rheumatol 2006; 20:949–67.

    Article  PubMed  CAS  Google Scholar 

  50. Anandarajah AP, Ritchlin CT. Treatment update on spondyloarthropathy. Curr Opin Rheumatol 2005; 17:247–56.

    Article  PubMed  Google Scholar 

  51. Demis E, Roux C, Breban M et al. Infliximab in Spondyloarthropathy—influence on bone density. Clin Exp Rheumatol 2002; 20:S185–86.

    Google Scholar 

  52. Allali F, Breban M, Porcher R et al. Increase in bone mineral density of patients with spondyloarthropathy treated with anti-tumour necrosis factor alpha. Ann Rheum Dis 2003; 62:347–49.

    Article  PubMed  CAS  Google Scholar 

  53. Joosten LAB, Helsen MMA, van de Loo FAJ et al. Anticyokine treatment of established type II collagen induced arthritis in DBA/1 mice: a comparative study using anti-TNF, anti-IL-1 alpha/beta and IL-1Ra. Arthritis Rheum 1996; 39:797–809.

    Article  PubMed  CAS  Google Scholar 

  54. Joosten LAB, Helsen MMA, Saxne T et al. IL-1 alpha blockade prevents cartilage and bone destruction in murine type II collagen-induced arthritis, whereas TNF alpha blockade only ameliorates joint inflammation. J Immunol 1999; 163:5049–55.

    PubMed  CAS  Google Scholar 

  55. Delauren BW, Chu CQ, Filed M et al. Localization of interleukin-1α type 1 interleukin 1 receptor and interleukin 1 receptor antagonist in the synovial membrane and cartilage/pannus junction rheumatoid arthritis. Br J Rheumatol 1992; 31:801–9.

    Article  Google Scholar 

  56. Tan AL, Marzo-Ortega H, O’Connor P et al. Efficacy of anakinra in active ankylosing spondylitis: a clinical and magnetic resonance imaging study. Ann Rheum Dis 2004; 63:1041–45.

    Article  PubMed  CAS  Google Scholar 

  57. Haibel H, Rudwaleit M, Listing J et al. Open label trial of anakinra in active ankylosing spondylitis over 24 weeks. Ann Rheum Dis 2005; 64:296–98.

    Article  PubMed  CAS  Google Scholar 

  58. Gratacos J, Collado A, Pons F et al. Significant loss of bone mass in patients with earlyactive ankylosing spondylitis. Arthritis Rheum 1999; 42:2319–24.

    Article  PubMed  CAS  Google Scholar 

  59. Yoshida H, Hayashi S-I, Kunisada T et al. The murine mutation osteopetrosis is in the coding region of the macrophage colony stimulating factor gene. Nature 1990; 345:442–44.

    Article  PubMed  CAS  Google Scholar 

  60. Yang PT, Kasai H, Xiao WG et al. Increased expression of macrophage colony stimulating factor in ankylosing spondylitis and rheumatoid arthritis. Ann Rheum Dis 2006; 65:1671–72.

    Article  PubMed  CAS  Google Scholar 

  61. Manolaga SC. Birth and death of bone cells: basic regulatory mechanisms and implications for the pathogenesis and treatment of osteoporosis. Endocr Rev 2000; 21:115–37.

    Article  Google Scholar 

  62. Chabaud M, Durand JM, Buchs et al. A T-cell-derived proinflammatory cytokine produced by the rheumatoid synovium. Arthritis Rheum 1999; 42:963–70.

    Article  PubMed  CAS  Google Scholar 

  63. Kotake S, Udagawa T, Takahashi N et al. IL-17 in synovial fluids from patients with rheumatoid arthritis is a potent stimulator of osteoclastogenesis. J Clin Invest 1999; 103:1345–52.

    Article  PubMed  CAS  Google Scholar 

  64. McInnes IB, Leung BP, Sturrock RD et al. Interleukin-15 mediated T-cell-dependent regulation of tumor necrosis factor alpha production in rheumatoid arthritis. Nat Med 1997; 3:189–95.

    Article  PubMed  CAS  Google Scholar 

  65. Allali F, Breban M, Porcher R et al. Increase in bone mineral density of patients with spondyloarthropathy treated with anti-tumor necrosis factor α. Ann Rheum Dis 2003; 62:347–49.

    Article  PubMed  CAS  Google Scholar 

  66. Amor B, Santos RS, Nahal R et al. Predictive factors for the longterm outcome of spondyloarthropathies. J Rheumatol 1994; 21:1883–87.

    PubMed  CAS  Google Scholar 

  67. Francois RJ, Neure L, Sieper J et al. Immunohistological examination of open sacroiliac biopsies of patients with ankylosing spondylitis: detection of tumor necrosis factor a in two patients with early disease and transforming growth factor b in three more advanced cases. Ann Rheum Dis 2006; 65:713–20.

    Article  PubMed  CAS  Google Scholar 

  68. Marzo-Ortega H, O’Connor P, Emery P et al. Sacroiliac joint biopsies in early sacroilitis. Rheumatol 2007; 46:1210–11.

    Article  CAS  Google Scholar 

  69. Braun J, Bollow M, Konig H et al. Use of immunohistologic and in situ hybridization techniques in the examination of sacroiliac joint biopsy specimens from patients with ankylosing spondylitis. Arthritis Rheum 1995; 38:499–05.

    Article  PubMed  CAS  Google Scholar 

  70. Appel H, Kuhne M, Spiekermann S et al. Immunohistologic analysis of zygapophyseal joints in patients with ankylosing spondylitis. Arthritis Rheum 2006; 54:2845–51.

    Article  PubMed  Google Scholar 

  71. Appel H, Kuhne M, Spiekermann S et al. Immunohistochemical analysis of hip arthritis in ankylosing spondylitis. Arthritis Rheum 2006; 54:1805–13.

    Article  PubMed  Google Scholar 

  72. Cunnane G, Bresnihan B, Fitzgerald O. Immunohistologic analysis of peripheral joint disease in ankylosing spondylitis. Arthritis Rheum 1998; 41:180–82.

    Article  PubMed  CAS  Google Scholar 

  73. Baraliakos X, Listing J, Brandt H et al. Radiographic progression in patients with ankylosing spondylitis after 4 yrs of treatment with the anti-TNF-alpha antibody infliximab. Rheumatology (Oxford) 2007; 46:1450–3.

    Article  CAS  Google Scholar 

  74. Baraliakos X, Listing J, Rudwaleit M et al. Radiographic progression in patients with ankylosing spondylitis after 2 years of treatment with the tumour necrosis factor alpha antibody infliximab. Ann Rheum Dis 2005; 64:1462–6.

    Article  PubMed  CAS  Google Scholar 

  75. Schett G, Landewe R, van der Heidje D. Tumor necrosis factor blockers and structural remodeling in ankylosing spondylitis: what is reality and what is fiction. Ann Rheum Dis 2007; 66:709–11.

    Article  PubMed  CAS  Google Scholar 

  76. Mitra D, Elvins DM, Spenden DJ et al. The prevalence of vertebral compression fractures in mild ankylosing spondylitis and their relationship to bone mineral density. Rheumatology (Oxford) 2000; 39:85–9.

    Article  CAS  Google Scholar 

  77. El Maghraoui A. Osteoporosis and ankylosing spondylitis. Joint Bone Spine 2004; 71:291–95.

    Article  PubMed  Google Scholar 

  78. Will R, Bhalla AK, Palmer R et al. Osteoporosis in early ankylosing spondylitis: a primary pathological event? Lancet 1989; 11:1483–85.

    Article  Google Scholar 

  79. Gratacos J, Collado A, Pons F et al. Significant loss of bone in patients with early active ankylosing spondylitis. Arthritis Rheum 1999; 42:2319–24.

    Article  PubMed  CAS  Google Scholar 

  80. Kim H-R, Kim H-Y, Lee S-H. Elevated levels of soluble receptor activator of nuclear factor-λB ligand (sRANKL) and reduced bone mineral density in patients with ankylosing spondylitis (AS). Rheumatology 2006; 45:1197–00.

    Article  PubMed  CAS  Google Scholar 

  81. Crotti TN, Smith MD, Weedon H et al. Receptor activator NF-kB ligand (RANKL) expression in synovial tissue from patients with rheumatoid arthritis, spondyloarthropathy, osteoarthritis and from normal patients: semiquantitative and quantitative analysis. Ann Rheum Dis 2002; 61:1047–54.

    Article  PubMed  CAS  Google Scholar 

  82. Haynes DR, Barg E, Crotti TN et al. Osteoprotegerin expression in synovial tissue from patients with rheumatoid arthritis, spondyloarthropathies and osteoarthritis and normal controls. Rheumatol 2003; 42:123–34.

    Article  CAS  Google Scholar 

  83. Franck H, Meurer T, Hofbauer LC. Evaluation of bone mineral density, hormones, biochemical markers of bone metabolism and osteoprotegerin serum levels in patients with ankylosing spondylitis. J Rheumatol 2004; 31:2236–41.

    PubMed  CAS  Google Scholar 

  84. Grisar J, Bernecker PM, Aringer M et al. Ankylosing spondylitis, psoriatic arthritis and reactive arthritis show increased bone resorption, but differ with regard to bone formation. J Rheumatol 2002; 29:1430–36.

    PubMed  Google Scholar 

  85. Golmia RP, Sousa BD, Scheinberg MA. Increased osteoprotegerin and decreased pyridinoline levels in patients with ankylosing spondylitis: comment on the article by Gratacos et al. Arthritis Rheum 2002; 46:3390–91.

    Article  PubMed  Google Scholar 

  86. Gladman DD, Schukett R, Russell ML et al. QJ Med 1987; 62:127–41.

    CAS  Google Scholar 

  87. Torre Alonso JC, Perez RA, Castrillo AJM et al. Psoriatic arthritis (PA): a clinical, immunological and radiological study of 180 patients. Br J Rheumatol 1991; 30:245–50.

    Article  PubMed  CAS  Google Scholar 

  88. Kane D, Stafford L, Bresnihan B et al. A prospective, clinical and radiological study of early psoriatic arthritis: an early synovitis clinic experience. Rheuamtology (Oxford) 2003; 42:1460–68.

    Article  CAS  Google Scholar 

  89. Ritchlin CT, Haas-Smith SA, Li P et al. Mechanisms of anti-TNF-alpha and RANKL mediated osteoclastogenesis and bone resorption in psoriatic arthritis. J Clin Invest 2003; 111:821–31.

    PubMed  CAS  Google Scholar 

  90. Anandarajah AP, Schwarz EM, Totterman S et al. The effect of etanercept on osteoclast precursor frequency and enhancing bone marrow edema in patients with psoriatic arthritis. Ann Rheum Dis (in press).

    Google Scholar 

  91. Reddy SM, Reed G, Anandarajah AP et al. Comparative analysis of disease activity, radiographic features and bone density in psoriatic and rheumatoid arthritis. Arthritis Rheum 2005; 52:S1726.

    Google Scholar 

  92. Dinca M, Fries W, Luisetto G et al. Evolution of osteopenia in inflammatory bowel disease. Am J Gastroenterol 1999; 94:1292–97.

    Article  PubMed  CAS  Google Scholar 

  93. De Keyser F, Elewant D, De Vos M et al. Bowel inflammation and the spondyloarthropathies. Rheum Dis Clin North Am 1998; 24:785–13.

    Article  PubMed  Google Scholar 

  94. Lin CL, Moniz C, Chambers TJ et al. Colitis causes bone loss in rats through suppression of bone formation. Gastroenterology 1996; 111:1263–71.

    Article  PubMed  CAS  Google Scholar 

  95. Ashcroft AJ, Cruickshank SM, Croucher PI et al. Colonic dendritic cells, intestinal inflammation and T-cell mediated bone destruction are modulated by recombinant osteoportogerin. Immunity 2003; 19:849–61.

    Article  PubMed  CAS  Google Scholar 

  96. Fuss IJ. Cytokine network in inflammatory bowel disease. Curr Drug Targets Inflamm Allerhy 2003; 2:101–12.

    Article  CAS  Google Scholar 

  97. Westerholm-Ormio M, Garioch J, Ketola I et al. Inflammatory cytokines in small intestinal mucosa of patients with potential coeliac disease. Clin Exp Immunol 2002; 128:94–01.

    Article  PubMed  CAS  Google Scholar 

  98. Ryan BM, Russel MG, Schurgers L et al. Effect of antitumor necrosis factor-alpha therapy on bone turnover in patients with active Crohn’s disease: a prospective study. Aliment Pharmacol Ther 2004; 20:851–57.

    Article  PubMed  CAS  Google Scholar 

  99. Pazianas M, Rhim AD, Weinberg AM et al. The effect of anti-TNF-α therapy on spinal bone mineral density in patients with Crohn’s disease. Ann NY Acad Sci 2006; 1068:543–46.

    Article  PubMed  CAS  Google Scholar 

  100. Moschen AR, Kaser A, Enrich B et al. The RANKL/OPG system is activated in inflammatory bowel disease and relates to the state of bone loss. Gut 2005; 54:479–487.

    Article  PubMed  CAS  Google Scholar 

  101. Kemppainen T, Kroger H, Janatuinen E et al. Osteoporosis in adult patients with celiac disease. Bone 2002; 24:249–255.

    Article  Google Scholar 

  102. Kontakou M, Przemiosio RT, Sturgess RP et al. Expression of tumor necrosis factor-alpha, interleukin-6 and interleukin-2 mRNA in the jejunum of patients with celiac disease. Scand J Gastroenterol 1996; 30:456–463.

    Article  Google Scholar 

  103. Fornan MC, Pedreira S, Niveloni S et al. Pre-and posttreatment serum levels of cytokines IL-1 beta, IL-6 and IL-1 receptor antagonist in celiac disease. Are they related to the associated osteopenia? Am J Gastroenterol 1998; 93:413–418.

    Google Scholar 

  104. Taranta A, Fortunati D, Longo M et al. Imbalance of osteoclastogenesis-regulating factors in patients with celiac disease. J Bone Miner Res 2004; 19:1112–1121.

    Article  PubMed  CAS  Google Scholar 

  105. Baeten D, Demetter P, Cuvelier CA et al. Macrophages expressing the scavenger receptor CD163: a link between immune alterations of the gut and synovial inflammation in spondyloarthropathies. J Pathol 2002; 196:343–350.

    Article  PubMed  CAS  Google Scholar 

  106. Inman RD, Chiu B. Early cytokine profiles in the joint define pathogen clearance and severity of arthritis in Chlamydia-induced arthritis in rats. Arthritis Rheum 2006; 53:499–507.

    Article  CAS  Google Scholar 

  107. Butrimiene I, Jarmalaite S, Ranceva J et al. Different cytokine profiles in patients with chronic and acute reactive arthritis. Rheumatol 2004; 43:1300–1304.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Anandarajah, A.P., Schwarz, E.M. (2009). Bone Loss in the Spondyloarthropathies: Role of Osteoclast, RANKL, RANK and OPG in the Spondyloarthropathies. In: López-Larrea, C., Díaz-Peña, R. (eds) Molecular Mechanisms of Spondyloarthropathies. Advances in Experimental Medicine and Biology, vol 649. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-0298-6_6

Download citation

Publish with us

Policies and ethics