Skip to main content

Synovial and Mucosal Immunopathology in Spondyloarthritis

  • Chapter
Molecular Mechanisms of Spondyloarthropathies

Part of the book series: Advances in Experimental Medicine and Biology ((volume 649))

Abstract

Chronic inflammation of musculoskeletal structures is the most prominent disease manifestation of SpA. More specifically, the axial disease affects the spine, the sacroiliac joints and the hips. Peripheral disease includes peripheral arthritis, with a preference for asymmetrical inflammation of joints of the lower limbs and enthesitis, which is the presence of inflammation at the sites were ligaments and tendons attach to the bone. Additionally, SpA is often characterized by subclinical inflammation of the gut which partially resembles inflammatory bowel disease.1 Here, we will review the immunopathology of these different disease manifestations and relate them to clinical applications as well as emerging pathogenic concepts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Rudwaleit M, Baeten D. Ankylosing spondylitis and bowel disease. Best Pract Res Clin Rheumatol 2006; 20(3):451–71.

    PubMed  Google Scholar 

  2. Cawley MI, Chalmers TM, Kellgren JH et al. Destructive lesions of vertebral bodies in ankylosing spondylitis. Ann Rheum Dis 1972; 31:345–58.

    PubMed  CAS  Google Scholar 

  3. Francois RJ. Microradiographic study of the intervertebral bridges in ankylosing spondylitis and in the normal sacrum. Ann Rheum Dis 1965; 24:481–9.

    PubMed  CAS  Google Scholar 

  4. de Vlam K, Mielants H, Verstaete KL et al. The zygapophyseal joint determines morphology of the enthesophyte. J Rheumatol 2000; 27:1732–9.

    PubMed  Google Scholar 

  5. Appel H, Kuhne M, Spiekermann S et al. Immunohistologic analysis of zygapophyseal joints in patients with ankylosing spondylitis. Arthritis Rheum 2006; 54:2845–51.

    PubMed  Google Scholar 

  6. Francois RJ, Gardner DL, Degrave EJ et al. Histopathologic evidence that sacroiliitis in ankylosing spondylitis is not merely enthesitis. Arthritis Rheum 2000; 43:2011–24.

    PubMed  CAS  Google Scholar 

  7. Braun J, Bollow M, Neure L et al. Use of immunohistologic and in situ hybridization techniques in the examination of sacroiliac joint biopsy specimens from patients with ankylosing spondylitis. Arthritis Rheum 1995; 38:499–505.

    PubMed  CAS  Google Scholar 

  8. Appel H, Kuhne M, Spiekermann S et al. Immunohistochemical analysis of hip arthritis in ankylosing spondylitis: evaluation of the bone-cartilage interface and subchondral bone marrow. Arthritis Rheum 2006; 54:1805–13.

    PubMed  Google Scholar 

  9. Baeten D, Demetter P, Cuvelier C et al. Comparative study of the synovial histology in rheumatoid arthritis, spondyloarthropathy and osteoarthritis: influence of disease duration and activity. Ann Rheum Dis 2000; 59:945–53.

    PubMed  CAS  Google Scholar 

  10. Kruithof E, Baeten D, De Rycke L et al. Synovial histopathology of psoriatic arthritis, both oligo-and polyarticular, resembles spondyloarthropathy more than it does rheumatoid arthritis. Arthritis Res Ther 2005; 7:R569–80.

    PubMed  CAS  Google Scholar 

  11. Smeets TJ, Dolhain RJ, Breedveld FC et al. Analysis of the cellular infiltrates and expression of cytokines in synovial tissue from patients with rheumatoid arthritis and reactive arthritis. J Pathol 1998; 186:75–81.

    PubMed  CAS  Google Scholar 

  12. van Kuijk AW, Reinders-Blankert P, Smeets TJ et al. Detailed analysis of the cell infiltrate and the expression of mediators of synovial inflammation and joint destruction in the synovium of patients with psoriatic arthritis: implications for treatment. Ann Rheum Dis 2006; 65:1551–7.

    PubMed  Google Scholar 

  13. Cunnane G, Bresnihan B, FitzGerald O. Immunohistologic analysis of peripheral joint disease in ankylosing spondylitis. Arthritis Rheum 1998; 41:180–2.

    PubMed  CAS  Google Scholar 

  14. Kristiansen M, Graversen JH, Jacobsen C et al. Identification of the haemoglobin scavenger receptor. Nature 2001; 409:198–201.

    PubMed  CAS  Google Scholar 

  15. Baeten D, Kruithod E, De Rycke L et al. Infiltration of the synovival membrane with macrophage subsets and polymorphonuclear cells reflects global disease activity in spondyloarthropathy. Arthritis Res Ther 2005; 7:R359–69.

    PubMed  Google Scholar 

  16. Kruithof E, De Rycke L, Vandooren B et al. OMERACT Special Interest Group on Synovial Analysis in Clinical Trials. Identification of synovial biomarkers of response to experimental treatment in early-phase clinical trials in spondylarthritis. Arthritis Rheum 2006; 54:1795–804.

    PubMed  CAS  Google Scholar 

  17. Reece RJ, Canete JD, Parsons WJ et al. Distinct vascular patterns of early synovitis in psoriatic, reactive and rheumatoid arthritis. Arthritis Rheum 1999; 42:1481–4.

    PubMed  CAS  Google Scholar 

  18. Canete JD, Rodriguez JR, Salvador G et al. Diagnostic usefulness of synovial vascular morphology in chronic arthritis. A systematic survey of 100 cases. Semin Arthritis Rheum 2003; 32:378–87.

    PubMed  Google Scholar 

  19. Francois RJ, Braun J, Khan MA. Entheses and enthesitis: a histopathologic review and relevance to spondyloarthritides. Curr Opin Rheumatol 2001; 13:255–64.

    PubMed  CAS  Google Scholar 

  20. McGonagle D, Marzo-Ortega H, O’Connor P et al. Histological assessment of the early enthesitis lesion in spondyloarthropathy. Ann Rheum Dis 2002; 61:534–7.

    PubMed  CAS  Google Scholar 

  21. Laloux L, Voisin MC, Allain J et al. Immunohistological study of entheses in spondyloarthropathies: comparison in rheumatoid arthritis and osteoarthritis. Ann Rheum Dis 2001; 60:316–21.

    PubMed  CAS  Google Scholar 

  22. Said-Nahal R, Miceli-Richard C, D’Agostino MA et al. Phenotypic diversity is not determined by independent genetic factors in familial spondylarthropathy. Arthritis Rheum 2001; 45:478–84.

    PubMed  CAS  Google Scholar 

  23. Calin A, Marder A, Marks S et al. Familial aggregation of Reiter’s syndrome and ankylosing spondylitis: a comparative study. J Rheumatol 1984; 11:672–7.

    PubMed  CAS  Google Scholar 

  24. Gossec L, van der Heijde D, Melian A et al. Efficacy of cyclo-oxygenase-2 inhibition by etoricoxib and naproxen on the axial manifestations of ankylosing spondylitis in the presence of peripheral arthritis. Ann Rheum Dis 2005; 64:1563–7.

    PubMed  CAS  Google Scholar 

  25. Braun J, Zochling J, Baraliakos X et al. Efficacy of sulfasalazine in patients with inflammatory back pain due to undifferentiated spondyloarthritis and early ankylosing spondylitis: a multicentre randomised controlled trial. Ann Rheum Dis 2006; 65:1147–53.

    PubMed  CAS  Google Scholar 

  26. Clegg DO, Reda DJ, Weisman MH et al. Comparison of sulfasalazine and placebo in the treatment of ankylosing spondylitis. A Department of Veterans Affairs Cooperative Study. Arthritis Rheum 1996; 39:2004–12.

    PubMed  CAS  Google Scholar 

  27. Vandooren B, Kruithof E, Yu DT et al. Involvement of matrix metalloproteinases and their inhibitors in peripheral synovitis and down-regulation by tumor necrosis factor alpha blockade in spondylarthropathy. Arthritis Rheum 2004; 50:2942–53.

    PubMed  CAS  Google Scholar 

  28. Maksymowych WP, Landewe R, Conner-Spady B et al. Serum matrix metalloproteinase 3 is an independent predictor of structural damage progression in patients with ankylosing spondylitis. Arthritis Rheum 2007; 56:1846–53.

    PubMed  CAS  Google Scholar 

  29. Brophy S, Mackay K, Al-Saidi A et al. The natural history of ankylosing spondylitis as defined by radiological progression. J Rheumatol 2002; 29:1236–43.

    PubMed  Google Scholar 

  30. Dougados M, van der Linden S, Juhlin R et al. The European Spondylarthropathy Study Group preliminary criteria for the classification of spondylarthropathy. Arthritis Rheum 1991; 34:1218–27.

    PubMed  CAS  Google Scholar 

  31. van der Linden S. Spondyloarthropathies. In: Kelley, Harris, Ruddy and Sledge. Textbook of Rheumatology, 5th Ed. 1997; 969–82.

    Google Scholar 

  32. Polzer K, Schett G, Zwerina J. The lonely death: chondrocyte apoptosis in TNF-induced arthritis. Autoimmunity 2007; 40:333–6.

    PubMed  CAS  Google Scholar 

  33. Zwerina J, Redlich K, Polzer K et al. TNF-induced structural joint damage is mediated by IL-1. Proc Natl Acad Sci USA 2007; 104:11742–7.

    PubMed  CAS  Google Scholar 

  34. Redlich K, Hayer S, Ricci R et al. Osteoclasts are essential for TNF-alpha-mediated joint destruction. J Clin Invest 2002; 110:1419–27.

    PubMed  CAS  Google Scholar 

  35. Diarra D, Stolina M, Polzer K, et al. Dickkopf-1 is a master regulator of joint remodeling. Nat Med 2007; 13:156–63.

    PubMed  CAS  Google Scholar 

  36. Pettit AR, Ji H, von Stechow D et al. TRANCE/RANKL knockout mice are protected from bone erosion in a serum transfer model of arthritis. Am J Pathol 2001; 159:1689–99.

    PubMed  CAS  Google Scholar 

  37. Lam J, Takeshita S, Barker JE et al. TNF-alpha induces osteoclastogenesis by direct stimulation of macrophages exposed to permissive levels of RANK ligand. J Clin Invest 2000; 106:1481–8.

    PubMed  CAS  Google Scholar 

  38. Wei S, Kitaura H, Zhou P et al. IL-1 mediates TNF-induced osteoclastogenesis. J Clin Invest 2005; 115:282–90.

    PubMed  CAS  Google Scholar 

  39. Rountree RB, Schoor M, Chen H et al. BMP receptor signaling is required for postnatal maintenance of articular cartilage. PLoS Biol 2004; 2:e355.

    PubMed  Google Scholar 

  40. Lories RJ, Derese I, Luyten FP. Modulation of bone morphogenetic protein signaling inhibits the onset and progression of ankylosing enthesitis. J Clin Invest 2005; 115:1571–9.

    PubMed  CAS  Google Scholar 

  41. van Beuningen HM, Glansbeek HL, van der Kraan PM et al. Differential effects of local application of BMP-2 or TGF-beta 1 on both articular cartilage composition and osteophyte formation. Osteoarthritis Cartilage 1998; 6:306–17.

    PubMed  Google Scholar 

  42. van Beuningen HM, van der Kraan PM, Arntz OJ et al. Transforming growth factor-beta 1 stimulates articular chondrocyte proteoglycan synthesis and induces osteophyte formation in the murine knee joint. Lab Invest 1994; 71:279–90.

    PubMed  Google Scholar 

  43. Valencia X, Higgins JM, Kiener HP et al. Cadherin-11 provides specific cellular adhesion between fibroblast-like synoviocytes. J Exp Med 2004; 200:1673–9.

    PubMed  CAS  Google Scholar 

  44. Lee DM, Kiener HP, Agarwal SK et al. Cadherin-11 in synovial lining formation and pathology in arthritis. Science 2007; 315:1006–10.

    PubMed  CAS  Google Scholar 

  45. Vandooren B, Cantaert T, van Lierop MJ et al. Melanoma Inhibitory Activity, a biomarker related to chondrocyte anabolism, is reversibly suppressed by proinflammatory cytokines in rheumatoid arthritis. Submitted for publication.

    Google Scholar 

  46. Vandooren B, Cantaert T, Noordenbos T et al. The abundant synovial expression of the RANK-RANKL-OPG system in peripheral spondyloarthritis is partially disconnected from inflammation. Arthritis Rheum. In press.

    Google Scholar 

  47. Ritchlin CT, Haas-Smith SA, Li P et al. Mechanisms of TNF-alpha-and RANKL-mediated osteoclastogenesis and bone resorption in psoriatic arthritis. J Clin Invest 2003; 111:821–31.

    PubMed  CAS  Google Scholar 

  48. Lories RJ, Derese I, Ceuppens JL et al. Bone morphogenetic proteins 2 and 6, expressed in arthritic synovium, are regulated by proinflammatory cytokines and differentially modulate fibroblast-like synoviocyte apoptosis. Arthritis Rheum 2003; 48:2807–18.

    PubMed  CAS  Google Scholar 

  49. Glansbeek HL, van Beuningen HM, Vitters EL et al. Bone morphogenetic protein 2 stimulates articular cartilage proteoglycan synthesis in vivo but does not counteract interleukin-1 alpha effects on proteoglycan synthesis and content. Arthritis Rheum 1997; 40:1020–8.

    PubMed  CAS  Google Scholar 

  50. Chen Y, Whetstone HC, Youn A et al. Beta-catenin signaling pathway is crucial for bone morphogenetic protein 2 to induce new bone formation. J Biol Chem 2007; 282:526–33.

    PubMed  CAS  Google Scholar 

  51. Ribbens C, Martin y Porras M, Franchimont N et al. Increased matrix metalloproteinase-3 serum levels in rheumatic diseases: relationship with synovitis and steroid treatment. Ann Rheum Dis 2002; 61:161–6.

    PubMed  CAS  Google Scholar 

  52. Chen CH, Lin KC, Yu DT et al. Serum matrix metalloproteinases and tissue inhibitors of metalloproteinases in ankylosing spondylitis: MMP-3 is a reproducibly sensitive and specific biomarker of disease activity. Rheumatology 2006; 45:414–20.

    PubMed  CAS  Google Scholar 

  53. Yang C, Gu J, Rihl M et al. Serum levels of matrix metalloproteinase 3 and macrophage colony-stimulating factor 1 correlate with disease activity in ankylosing spondylitis. Arthritis Rheum 2004; 51:691–9.

    PubMed  CAS  Google Scholar 

  54. Kim TH, Stone M, Payne U et al. Inman Cartilage biomarkers in ankylosing spondylitis: relationship to clinical variables and treatment response. Arthritis Rheum 2005;52:885–91.

    PubMed  CAS  Google Scholar 

  55. Maksymowych WP, Poole AR, Hiebert L et al. Etanercept exerts beneficial effects on articular cartilage biomarkers of degradation and turnover in patients with ankylosing spondylitis. J Rheumatol 2005; 32:1911–7.

    PubMed  CAS  Google Scholar 

  56. Olsen AK, Sondergaard BC, Byrjalsen I et al. Anabolic and catabolic function of chondrocyte ex vivo is reflected by the metabolic processing of type II collagen. Osteoarthritis Cartilage 2007; 15:335–42.

    PubMed  CAS  Google Scholar 

  57. Grisar J, Bernecker PM, Aringer M et al. Ankylosing spondylitis, psoriatic arthritis and reactive arthritis show increased bone resorption, but differ with regard to bone formation. J Rheumatol 2002; 29:1430–6.

    PubMed  Google Scholar 

  58. Woo JH, Lee HJ, Sung IH et al. Changes of clinical response and bone biochemical markers in patients with ankylosing spondylitis taking etanercept. J Rheumatol 2007; 34:1753–9.

    PubMed  CAS  Google Scholar 

  59. Baeten D, Kruithof E, De Rycke L et al. Diagnostic classification of spondylarthropathy and rheumatoid arthritis bysynovial histopathology: a prospective study in 154 consecutive patients. Arthritis Rheum 2004; 50:2931–41.

    PubMed  Google Scholar 

  60. Baeten D, Kruithof E, De Rycke L et al. Infiltration of the synovial membrane with macrophage subsets and polymorphonuclear cells reflects global disease activity in spondyloarthropathy. Arthritis Res Ther 2005; 7:R359–69.

    PubMed  Google Scholar 

  61. Kruithof E, De Rycke L, Vandooren B et al. OMERACT Special Interest Group on Synovial Analysis in Clinical Trials. Identification of synovial biomarkers of response to experimental treatment in early-phase clinical trials in spondylarthritis Arthritis Rheum 2006; 54:1795–804.

    PubMed  CAS  Google Scholar 

  62. Breban M. Genetics of spondyloarthritis. Best Pract Res Clin Rheumatol 2006; 20:593–9.

    PubMed  CAS  Google Scholar 

  63. Loftus EV Jr. Clinical epidemiology of inflammatory bowel disease: Incidence, prevalence and environmental influences. Gastroenterology 2004; 126:1504–17.

    PubMed  Google Scholar 

  64. Porcher R, Said-Nahal R, D’Agostino MA et al. Two major spondylarthropathy phenotypes are distinguished by pattern analysis in multiplex families. Arthritis Rheum 2005; 53:263–71.

    PubMed  Google Scholar 

  65. de Vlam K, Mielants H, Cuvelier C et al. Spondyloarthropathy is underestimated in inflammatory bowel disease: prevalence and HLA association. J Rheumatol 2000; 27:2860–5.

    PubMed  Google Scholar 

  66. Hugot JP, Chamaillard M, Zouali H et al. Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn’s disease. Nature 2001; 411:599–603.

    PubMed  CAS  Google Scholar 

  67. Laukens D, Peeters H, Marichal D et al. CARD15 gene polymorphisms in patients with spondyloarthropathies identify a specific phenotype previously related to Crohn’s disease. Ann Rheum Dis 2005; 64:930–5.

    PubMed  CAS  Google Scholar 

  68. Bjarnason I, Helgason KO, Geirsson AJ et al. Subclinical intestinal inflammation and sacroiliac changes in relatives of patients with ankylosing spondylitis. Gastroenterology 2003; 125:1598–605.

    PubMed  Google Scholar 

  69. Peeters H, Vander Cruyssen B, Mielants H et al. Clinical and genetic factors associated with sacroiliitis in Crohn’s disease. J Gastroenterol Hepatol 2007; [Epub ahead of print].

    Google Scholar 

  70. Duerr RH, Taylor KD, Brant SR et al. A genome-wide association study identifies IL23R as an inflammatory bowel disease gene. Science 2006; 314:1461–3.

    PubMed  CAS  Google Scholar 

  71. Capon F, Di Meglio P, Szaub J et al. Sequence variants in the genes for the interleukin-23 receptor (IL23R) and its ligand (IL12B) confer protection against psoriasis. Hum Genet 2007; 122:201–206.

    PubMed  CAS  Google Scholar 

  72. Brown MA. Nature Genetics. In Press.

    Google Scholar 

  73. Mannon PJ, Fuss IJ, Mayer L et al. Anti-IL-12 Crohn’s Disease Study Group. Anti-interleukin-12 antibody for active Crohn’s disease. N Engl J Med 2004; 351:2069–79.

    PubMed  CAS  Google Scholar 

  74. Krueger GG, Langley RG, Leonardi C et al. CNTO 1275 Psoriasis Study Group. A human interleukin-12/23 monoclonal antibody for the treatment of psoriasis. N Engl J Med 2007; 356:580–92.

    PubMed  CAS  Google Scholar 

  75. De Vos M, Cuvelier C, Mielants H et al. Ileocolonoscopy in seronegative spondylarthropathy. Gastroenterology 1989; 96:339–44.

    PubMed  Google Scholar 

  76. Demetter P, Van Huysse JA, De Keyser F et al. Increase in lymphoid follicles and leukocyte adhesion molecules emphasizes a role for the gut in spondyloarthropathy pathogenesis. J Pathol 2002; 198:517–22.

    PubMed  CAS  Google Scholar 

  77. Becker C, Wirtz S, Blessing M et al. Constitutive p40 promoter activation and IL-23 production in the terminal ileum mediated by dendritic cells. J Clin Invest 2003; 112:693–706.

    PubMed  CAS  Google Scholar 

  78. Demetter P, De Vos M, Van Huysse JA et al. Colon mucosa of patients both with spondyloarthritis and Crohn’s disease is enriched with macrophages expressing the scavenger receptor CD163. Ann Rheum Dis 2005; 64:321–4.

    PubMed  CAS  Google Scholar 

  79. Baeten D, Demetter P, Cuvelier CA et al. Macrophages expressing the scavenger receptor CD163: a link between immune alterations of the gut and synovial inflammation in spondyloarthropathy. J Pathol 2002; 196:343–50.

    PubMed  CAS  Google Scholar 

  80. Van Damme N, Elewaut D, Baeten D et al. Gut mucosal T-cell lines from ankylosing spondylitis patients are enriched with alphaEbeta7 integrin. Clin Exp Rheumatol 2001; 19:681–7.

    PubMed  Google Scholar 

  81. Van Damme N, De Keyser F, Demetter P et al. The proportion of Th1 cells, which prevail in gut mucosa, is decreased in inflammatory bowel syndrome. Clin Exp Immunol 2001; 125:383–90.

    PubMed  Google Scholar 

  82. Canete JD, Martinez SE, Farres J et al. Differential Th1/Th2 cytokine patterns in chronic arthritis: interferon gamma is highly expressed in synovium of rheumatoid arthritis compared with seronegative spondyloarthropathies. Ann Rheum Dis 2000; 59:263–8.

    PubMed  CAS  Google Scholar 

  83. Baeten D, Van Damme N, Van den Bosch F et al. Impaired Th1 cytokine production in spondyloarthropathy is restored by anti-TNFalpha. Ann Rheum Dis 2001; 60:750–5.

    PubMed  CAS  Google Scholar 

  84. Rudwaleit M, Siegert S, Yin Z et al. Low T-cell production of TNFalpha and IFN gamma in ankylosing spondylitis: its relation to HLA-B27 and influence of the TNF-308 gene polymorphism. Ann Rheum Dis 2001; 60(1):36–42.

    PubMed  CAS  Google Scholar 

  85. Baeten D, De Keyser F, Mielants H et al. Immune linkages between inflammatory bowel disease and spondyloarthropathies. Curr Opin Rheumatol 2002; 14:342–7.

    PubMed  Google Scholar 

  86. May E, Marker-Hermann E, Wittig BM et al. Identical T-cell expansions in the colon mucosa and the synovium of a patient with enterogenic spondyloarthropathy. Gastroenterology 2000; 119:1745–55.

    PubMed  CAS  Google Scholar 

  87. Hammer RE, Maika SD, Richardson JA et al. Spontaneous inflammatory disease in transgenic rats expressing HLA-B27 and human beta 2m: an animal model of HLA-B27 associated human disorders. Cell 1990; 30:1099–112.

    Google Scholar 

  88. Taurog JD, Richardson JA, Croft JT et al. The germfree state prevents development of gut and joint inflammatory disease in HLA-B27 transgenic rats. J Exp Med 1994; 180:2359–64.

    PubMed  CAS  Google Scholar 

  89. Breban M, Fernandez-Sueiro JL, Richardson JA et al. T-cells, but not thymic exposure to HLA-B27, are required for the inflammatory disease of HLA-B27 transgenic rats. J Immunol 1996; 156:794–803.

    PubMed  CAS  Google Scholar 

  90. Hacquard-Bouder C, Chimenti MS, Giquel B et al. Alteration of antigen-independent immunologic synapse formation between dendritic cells from HLA-B27-transgenic rats and CD4+ T-cells: selective impairment of costimulatory molecule engagement by mature HLA-B27. Arthritis Rheum 2007; 56:1478–89.

    PubMed  Google Scholar 

  91. Janeway CA Jr, Medzhitov R. Innate immune recognition. Annu-Rev Immunol 2002; 20:197–216.

    PubMed  CAS  Google Scholar 

  92. Li Q, Verma IM. NF-kappaB regulation in the immune system. Nat Rev Immunol 2002; 2:725–34.

    PubMed  CAS  Google Scholar 

  93. De Rycke L, Kruithof E, Vandooren B et al. Pathogenesis of spondyloarthritis: insights from synovial membrane studies. Curr Rheumatol Rep 2006; 8:275–82.

    PubMed  Google Scholar 

  94. Liew FY, Xu D, Brint EK et al. Negative regulation of toll-like receptor-mediated immune responses. Nat Rev Immunol 2005; 5:446–58.

    PubMed  CAS  Google Scholar 

  95. Fitzgerald KA, Palsson-McDermott EM, Bowie AG et al. Mal (MyD88-adapter-like) is required for Toll-like receptor-4 signal transduction. Nature 2001; 413:78–83.

    PubMed  CAS  Google Scholar 

  96. Mansell A, Smith R, Doyle SL et al. Suppressor of cytokine signaling 1 negatively regulates Toll-like receptor signaling by mediating Mal degradation. Nat Immunol 2006; 7:148–55.

    PubMed  CAS  Google Scholar 

  97. Lee EG, Boone DL, Chai S et al. Failure to regulate TNF-induced NF-kappaB and cell death responses in A20-deficient mice. Science 2000; 289:2350–4.

    PubMed  CAS  Google Scholar 

  98. Boone DL, Turer EE, Lee EG et al. The ubiquitin-modifying enzyme A20 is required for termination of Toll-like receptor responses. Nat Immunol 2004; 5:1052–60.

    PubMed  CAS  Google Scholar 

  99. Trompouki E, Hatzivassiliou E, Tsichritzis T et al. CYLD is a deubiquitinating enzyme that negatively regulates NF-kappaB activation by TNFR family members. Nature 2003; 424:793–6.

    PubMed  CAS  Google Scholar 

  100. Yoshida H, Jono H, Kai H et al. The tumor suppressor cylindromatosis (CYLD) acts as a negative regulator for toll-like receptor 2 signaling via negative cross-talk with TRAF6 AND TRAF7. J Biol Chem 2005; 280:41111–21.

    PubMed  CAS  Google Scholar 

  101. Inman RD, Rohekar S, Reena R et al. TLR2, but not TLR4, variants are associated with reactive arthritis. Poster presentation American College of Rheumatology meeting 2007.

    Google Scholar 

  102. De Rycke L, Vandooren B, Kruithof E et al. Tumor necrosis factor alpha blockade treatment down-modulates the increased systemic and local expression of Toll-like receptor 2 and Toll-like receptor 4 in spondylarthropathy. Arthritis Rheum 2005; 52:2146–58.

    PubMed  Google Scholar 

  103. Watanabe T, Kitani A, Murray PJ et al. Nucleotide binding oligomerization domain 2 deficiency leads to dysregulated TLR2 signaling and induction of antigen-specific colitis. Immunity 2006; 25:473–85.

    PubMed  CAS  Google Scholar 

  104. Iwasaki A, Medzhitov R. Toll-like receptor control of the adaptive immune responses. Nat Immunol 2004; 5:987–95.

    PubMed  CAS  Google Scholar 

  105. Kim KD, Zhao J, Auh S et al. Adaptive immune cells temper initial innate responses. Nat Med 2007; 13:1248–52

    PubMed  CAS  Google Scholar 

  106. Pulendran B, Palucka K, Banchereau J. Sensing pathogens and tuning immune responses. Science 2001; 293:253–6.

    PubMed  CAS  Google Scholar 

  107. Rimoldi M, Chieppa M, Salucci V et al. Intestinal immune homeostasis is regulated by the crosstalk between epithelial cells and dendritic cells. Nat Immunol 2005; 6:507–14.

    PubMed  CAS  Google Scholar 

  108. Hart AL, Al-Hassi HO, Rigby RJ et al. Characteristics of intestinal dendritic cells in inflammatory bowel diseases. Gastroenterology 2005; 129:50–65.

    PubMed  CAS  Google Scholar 

  109. Annunziato F, Cosmi L, Santarlasci V et al. Phenotypic and functional features of human Th17 cells. J Exp Med 2007; 204:1849–61.

    PubMed  CAS  Google Scholar 

  110. Elson CO, Cong Y, Weaver CT et al. Monoclonal anti-interleukin 23 reverses active colitis in a T-cell-mediated model in mice. Gastroenterology 2007; 132:2359–70.

    PubMed  CAS  Google Scholar 

  111. Timms AE, Crane AM, Sims AM et al. The interleukin 1 gene cluster contains a major susceptibility locus for ankylosing spondylitis. Am J Hum Genet 2004; 75:587–95.

    PubMed  CAS  Google Scholar 

  112. Maksymowych WP, Rahman P, Reeve JP et al. Association of the IL1 gene cluster with susceptibility to ankylosing spondylitis: an analysis of three Canadian populations. Arthritis Rheum 2006; 54:974–85.

    PubMed  CAS  Google Scholar 

  113. Wilson NJ, Boniface K, Chan JR et al. Development, cytokine profile and function of human interleukin 17-producing helper T-cells. Nat Immunol 2007; 8:950–7.

    PubMed  CAS  Google Scholar 

  114. Benjamin M, Toumi H, Suzuki D et al. Microdamage and altered vascularity at the enthesis-bone interface provides an anatomic explanation for bone involvement in the HLA-B27 associated spondylarthritides and allied disorders. Arthritis Rheum 2007; 56:224–33.

    PubMed  CAS  Google Scholar 

  115. Corps AN, Robinson AH, Movin T et al. Increased expression of aggrecan and biglycan mRNA in Achilles tendinopathy. Rheumatology 2006; 45:291–4.

    PubMed  CAS  Google Scholar 

  116. Schaefer L, Babelova A, Kiss E et al. The matrix component biglycan is proinflammatory and signals through Toll-like receptors 4 and 2 in macrophages. J Clin Invest 2005; 115:2223–33.

    PubMed  CAS  Google Scholar 

  117. Dossumbekova A, Anghelina M, Madhavan S et al. Biomechanical signals inhibit IKK activity to attenuate NF-kappaB transcription activity in inflamed chondrocytes. Arthritis Rheum 2007; 56:3284–3296.

    PubMed  CAS  Google Scholar 

  118. Agarwal S, Deschner J, Long P et al. Role of NF-kappaB transcription factors in antiinflammatory and proinflammatory actions of mechanical signals. Arthritis Rheum 2004; 50:3541–8.

    PubMed  CAS  Google Scholar 

  119. Yang XO, Panopoulos AD, Nurieva R et al. STAT3 regulates cytokine-mediated generation of inflammatory helper T-cells. J Biol Chem 2007; 282:9358–63.

    PubMed  CAS  Google Scholar 

  120. Laitio P, Virtala M, Salmi M et al. HLA-B27 modulates intracellular survival of Salmonella enteritidis in human monocytic cells. Eur J Immunol 1997; 27:1331–8.

    PubMed  CAS  Google Scholar 

  121. Turner MJ, Sowders DP, DeLay ML et al. HLA-B27 misfolding in transgenic rats is associated with activation of the unfolded protein response. J Immunol 2005; 175:2438–48.

    PubMed  CAS  Google Scholar 

  122. Tran TM, Dorris ML, Satumtira N et al. Additional human beta2-microglobulin curbs HLA-B27 misfolding and promotes arthritis and spondylitis without colitis in male HLA-B27-transgenic rats. Arthritis Rheum 2006; 54:1317–27.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Vandooren, B., Tak, P.P., Baeten, D. (2009). Synovial and Mucosal Immunopathology in Spondyloarthritis. In: López-Larrea, C., Díaz-Peña, R. (eds) Molecular Mechanisms of Spondyloarthropathies. Advances in Experimental Medicine and Biology, vol 649. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-0298-6_5

Download citation

Publish with us

Policies and ethics