Skip to main content

Chemistry Based Nonanimal Predictive Modeling for Skin Sensitization

  • Chapter
  • First Online:
Ecotoxicology Modeling

Part of the book series: Emerging Topics in Ecotoxicology ((ETEP,volume 2))

Abstract

Skin sensitization is a significant environmental and occupational health concern. The possibility of workers and consumers becoming sensitized is a major problem for individuals, employers and marketing certain products. Consequently, there exists an important need to accurately identify chemicals that have the potential to cause skin sensitization. Under Registration, Evaluation, Authorization and Restriction of Chemicals (REACH), the sensitizing potential needs to be assessed for substances manufactured or imported at levels of 1 ton or greater per annum. Assessment of skin sensitization has traditionally relied on animal testing, but there are now strong pressures to reduce and ultimately eliminate the use of animals for this purpose. Building on research dating back at least 7 decades, a quite detailed mechanistic understanding of skin sensitization, both in terms of the underlying biological processes and the underlying chemistry, has been developed, with significant advances being made in the present century. This chapter presents an overview of the current biological and chemical mechanistic understanding, and reviews recent progress in nonanimal predictive modeling for skin sensitization, with an emphasis on how the understanding of these mechanisms can be applied in combination with in chemico and in silico approaches to hazard and risk assessment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lepoittevin J-P, Basketter DA, Goossens A, Karlberg A-T (1997) Allergic Contact Dermatitis. The Molecular Basis. Springer: Berlin

    Google Scholar 

  2. Smith Pease CK (2003) From xenobiotic chemistry and metabolism to better prediction and risk assessment of skin allergy. Toxicology 192: 1–22

    Article  CAS  Google Scholar 

  3. Ryan CA, Gerberick GF, Gildea LA, Huletter BC, Betts CJ, Cumberbatch M, Dearman RJ, Kimber I (2005) Interactions of contact allergens with dendritic cells: Opportunities and challenges for the development of novel approaches to hazard assessment. Toxicol Sci 88: 4–11

    Article  CAS  Google Scholar 

  4. Rustenmeyer T, van Hoogstraten IMW, von Blomberg BME, Scheper R (2006) Mechanisms in allergic contact dermatitis. In: Frosch PJ, Menne T, Lepoittevin J-P (eds) Contact Dermatitis, 4th edn. Springer: Berlin, pp. 11–44

    Chapter  Google Scholar 

  5. Roberts DW, Aptula AO, Patlewicz G (2007) Electrophilic chemistry related to skin sensitization. Reaction mechanistic applicability domain classification for a published dataset of 106 chemicals tested in the mouse local lymph node assay. Chem Res Toxicol 20: 44–60

    Article  CAS  Google Scholar 

  6. Roberts DW, Patlewicz GY, Kern PS, Gerberick GF, Kimber I, Dearman RJ, Ryan CA, Basketter DA, Aptula AO (2007) Mechanistic applicability domain classification of a local lymph node assay dataset for skin sensitization. Chem Res Toxicol 20: 1019–1030

    Article  CAS  Google Scholar 

  7. Basketter D, Dooms-Goossens A, Karlberg AT, Lepoittevin JP (1995) The chemistry of contact allergy: why is a molecule allergenic? Contact Dermatitis 32: 65–73

    Article  CAS  Google Scholar 

  8. Kimber I, Dearman RJ (2003) What makes a chemical an allergen? Ann Allergy Asth Immunol 90(Suppl): 28–31

    Google Scholar 

  9. Jowsey IR, Basketter DA, Westmoreland C, Kimber I (2006) A future approach to measuring relative skin sensitising potency: A proposal. J App Toxicol 26: 341–350

    Article  CAS  Google Scholar 

  10. Roberts DW, Aptula AO (2008) Determinants of skin sensitisation potential. J Appl Toxicol 28: 377–387

    Article  CAS  Google Scholar 

  11. Basketter DA, Gerberick GF, Kimber I (2001) Skin sensitization, vehicle effects and the local lymph node assay. Food Chem Toxicol 39: 621–627

    Article  CAS  Google Scholar 

  12. Wright ZM, Basketter, DA, Blaikie L, Cooper KJ, Warbrick EV, Dearman RJ, Kimber I (2001) Vehicle effects on skin sensitizing potency of four chemicals: Assessment using the local lymph node assay. Int J Cosmet Sci 23: 75–83

    Article  CAS  Google Scholar 

  13. Roberts DW, Williams DL (1982) The derivation of quantitative correlations between skin sensitisation and physico–chemical parameters for alkylating agents and their application to experimental data for sultones. J Theor Biol 99: 807–825

    Article  CAS  Google Scholar 

  14. Roberts DW, Goodwin BFJ, Williams DL, Jones K, Johnson AW, Alderson CJE (1983) Correlations between skin sensitisation potential and chemical reactivity for p-nitrobenzyl compounds. Food Chem Toxicol 21: 811–813

    Article  CAS  Google Scholar 

  15. Roberts DW (1987) Structure–activity relationships for skin sensitisation potential of diacrylates and dimethacrylates. Contact Dermatitis 17: 281–289

    Article  CAS  Google Scholar 

  16. Roberts DW (1995) Linear free energy relationships for reactions of electrophilic halo- and pseudohalobenzenes, and their application in prediction of skin sensitisation potential for SNAr electrophiles. Chem Res Toxicol 8: 545–551

    Article  CAS  Google Scholar 

  17. Roberts DW, Basketter DA (1990) A quantitative structure–activity/dose relationship for contact allergenic potential of alkyl group transfer agents. Contact Dermatitis 23: 331–335

    Article  CAS  Google Scholar 

  18. Roberts DW, Basketter DA (1997) Further evaluation of the quantitative structure-activity relationship for skin-sensitizing alkyl transfer agents. Contact Dermatitis 37: 107–112

    Article  CAS  Google Scholar 

  19. Basketter DA, Roberts DW, Cronin M, Scholes EW (1992) The value of the local lymph node assay in quantitative structure–activity investigations. Contact Dermatitis 27: 137–142

    Article  CAS  Google Scholar 

  20. Franot C, Roberts DW, Basketter DA, Benezra C, Lepoittevin J-P (1994) Structure-activity relationships for contact allergenic potential of γγ-dimethyl-γ-butyrolactone derivatives. 2. Quantititative structure-skin sensitisation relationships for α-substituted-α-methyl-γγ-dimethyl-γ-butyrolactones. Chem Res Toxicol 7: 307–312

    Article  CAS  Google Scholar 

  21. Mekenyan O, Roberts DW, Karcher W (1997) Molecular orbital parameters as predictors of skin sensitization potential of halo- and pseudohalobenzenes acting as SNAr electrophiles. Chem Res Toxicol 10: 994–1000

    Article  CAS  Google Scholar 

  22. Roberts DW, Aptula AO, Patlewicz G (2006) Mechanistic applicability domains for non-animal based prediction of toxicological endpoints. QSAR analysis of the schiff base applicability domain for skin sensitization. Chem Res Toxicol 19: 1228–1233

    CAS  Google Scholar 

  23. Howes D, Guy R, Hadgraft J, Heylings J, Hoeck U, Kemper F, Maibach H, Marty J-P, Merk H, Parra J, Rekkas D, Rondelli I, Schaefer H, Täuber U, Verbiese N (1996) Methods for assessing percutaneous absorption, ECVAM Workshop Report No. 13. ATLA 24: 81–106

    Google Scholar 

  24. Dupuis G and Benezra C (1982) Allergic contact dermatitis to simple chemicals: A molecular approach. Dekker: New York

    Google Scholar 

  25. Corsini E, Galli CL (2000) Epidermal cytokines in experimental contact dermatitis. Toxicology 142: 203–211

    Article  CAS  Google Scholar 

  26. Kimber I, Cumberbatch M, Dearman RJ, Bhushan M, Griffiths CEM (2000) Cytokines and chemokines in the initiation and regulation of epidermal Langerhans cell mobilization. Brit J Dermatol 142: 401–412

    Article  CAS  Google Scholar 

  27. Cumberbatch M, Clelland K, Dearman RJ, Kimber I (2005) Impact of cutaneous IL-10 on resident epidermal Langerhans’ cells and the development of polarized immune responses. J Immunol 33: 47–62

    Google Scholar 

  28. Kimber I, Cumberbatch M (1992) Dendritic cells and cutaneous immune responses to chemical allergens. Toxicol Appl Pharmacol 117: 137–146

    Article  CAS  Google Scholar 

  29. Kimber I, Pichowski JS, Betts CJ, Cumberbatch M, Basketter DA, Dearman RJ (2001) Alternative approaches to the identification and characterization of chemical allergens. Toxicol In Vitro 15: 307–312

    Article  CAS  Google Scholar 

  30. Landsteiner K, Jacobs JL (1936) Studies on the sensitisation of animals with simple chemicals III. J Exp Med 64: 625–639

    Article  CAS  Google Scholar 

  31. Godfrey H P. Baer K (1971) The effect of physical and chemical properties of the sensitizing substance on the induction and elicitation of delayed contact hypersensitivity. J Immunol 106: 431–441

    CAS  Google Scholar 

  32. Roberts DW, Basketter DA (2000) Quantitative structure-activity relationships: Sulfonate esters in the local lymph node assay. Contact Dermatitis 42: 154–161

    Article  CAS  Google Scholar 

  33. Roberts DW, Benezra C (1993) Quantitative structure-activity relationships for skin sensitization potential of urushiol analogues. Contact Dermatitis 29: 78–83

    Article  CAS  Google Scholar 

  34. Roberts DW, York M, Basketter DA (1999) Structure-activity relationships in the murine local lymph node assay for skin sensitization: Alpha, beta-diketones. Contact Dermatitis 41: 14–17

    Article  CAS  Google Scholar 

  35. Patlewicz G, Basketter DA, Smith CK, Hotchkiss SA, Roberts DW (2001) Skin-sensitization structure-activity relationships for aldehydes. Contact Dermatitis 44: 331–336

    Article  CAS  Google Scholar 

  36. Roberts DW, Patlewicz G (2002) Mechanism based structure-activity relationships for skin sensitisation–the carbonyl group domain. SAR QSAR Environ Res 13: 145–152

    Article  CAS  Google Scholar 

  37. Patlewicz GY, Wright ZM, Basketter DA, Pease CK, Lepoittevin JP, Gimenez Arnau E (2002) Structure-activity relationships for selected fragrance allergens. Contact Dermatitis 47: 219–226

    Article  CAS  Google Scholar 

  38. Perrin DD, Dempsey B, Serjeant EP (1981) pKa Prediction for Organic Acids and Bases, Chapman and Hall: London, pp. 109–126

    Google Scholar 

  39. Magee PS, Hostynek JJ, Maibach MI (1994) A classification model for allergic contact dermatitis. Quant Struct-Act Relat 13: 22–33

    CAS  Google Scholar 

  40. Li Y, Tseng YJ, Pan D, Liu J, Kern PS, Gerberick GF, Hopfinger AJ (2007) 4D-fingerprint categorical QSAR Models for skin sensitisation based on the classification of local lymph node assay measures. Chem Res Toxicol 20: 114–128

    Article  CAS  Google Scholar 

  41. Gerberick GF, Ryan CA, Kern PS, Schlatter H, Dearman RJ, Kimber I, Patlewicz GY, Basketter DA (2005) Compilation of historical local lymph node data for evaluation of skin sensitisation alternative methods. Dermatitis 16: 157–202

    Google Scholar 

  42. Patlewicz G, Aptula AO, Roberts DW, Uriate E (2007) Skin sensitisation (Q)SARs/expert systems: From past, present to future. European Commission report EUR 21866 EN

    Google Scholar 

  43. Patlewicz G, Aptula AO, Roberts DW, Uriarte E (2008) A mini review of available (Q)SARs and expert systems for skin sensitisation. QSAR Comb Sci 27: 60–76

    Article  CAS  Google Scholar 

  44. Roberts DW, Aptula AO, Cronin MTD, Hulzebos E, Patlewicz G (2007) Global (Q)SARs for skin sensitization – assessment against OECD principles. SAR QSAR Environ Res 18: 343–365

    Article  CAS  Google Scholar 

  45. Patlewicz G, Aptula AO, Uriate E, Roberts DW, Kern PS, Gerberick GF, Ryan CA, Kimber I, Dearman R, Basketter DA (2007) An evaluation of selected global (Q)SARs/Expert systems for the prediction of skin sensitisation potential. SAR QSAR Environ Res 18: 515–541

    Article  CAS  Google Scholar 

  46. Sanderson DM, Earnshaw CG (1991) Computer prediction of possible toxic action from chemical structure; the DEREK system. Human Exp Toxicol 10: 261–273

    Article  CAS  Google Scholar 

  47. Barratt MD, Basketter DA, Chamberlain M, Admans GD, Langowski JJ (1994) Development of an expert system rulebase for identifying contact allergens. Toxicol In Vitro 8: 837–839

    Article  CAS  Google Scholar 

  48. Barratt MD, Basketter DA, Chamberlain M, Admans GD, Langowski JJ (1994) An expert system rulebase for identifying contact allergens. Toxicol In Vitro 8: 1053–1060

    Article  CAS  Google Scholar 

  49. Barratt MD, Langowski JJ (1999) Validation and subsequent development of the Derek Skin Sensitisation Rulebase by analysis of the BgVV list of contact allergens. J Chem Inf Comput Sci 39: 294–298

    CAS  Google Scholar 

  50. Zinke S, Gerner I, Schlede E (2002) Evaluation of a rule base for identifying contact allergens by using a regulatory database: Comparison of data on chemicals notified in the European Union with “structural alerts” used in the DEREK expert system. ATLA 30: 285–298

    CAS  Google Scholar 

  51. Gerner I, Barratt MD, Zinke S, Schlegel K, Schlede E (2004) Development and prevalidation of a list of structure-activity relationship rules to be used in expert systems for prediction of the skin-sensitising properties of chemicals. ATLA 32: 487–509

    CAS  Google Scholar 

  52. Langton K, Patlewicz GY, Long A, Marchant CA, Basketter DA (2006) Structure-activity relationships for skin sensitization: recent improvements to Derek for Windows. Contact Dermatitis 55: 342–347

    Article  CAS  Google Scholar 

  53. Enslein K, Gombar VK, Blake BW, Maibach HI, Hostynek JJ, Sigman CC, Bagheri D (1997) A quantitative structure-toxicity relationships model for the dermal sensitization guinea pig maximization assay. Food Chem Toxicol 35: 1091–1098

    Article  CAS  Google Scholar 

  54. Cronin MT, Basketter DA (1994) Multivariate QSAR analysis of a skin sensitisation database. SAR QSAR Environ Res 2: 159–179

    Article  CAS  Google Scholar 

  55. Accelrys Inc (2004) TopKat User Guide Version 6.02, Accelrys Inc: San Diego

    Google Scholar 

  56. Klopman G (1984) Artificial intelligence approach to structure-activity studies. Computer automated structure evaluation of biological activity of organic molecules. J Am Chem Soc 106: 7315–7321

    CAS  Google Scholar 

  57. Klopman G (1992) MULTICASE 1. A hierarchical computer automated structure evaluated program. Quant Struct-Act Relat 11: 176–184

    CAS  Google Scholar 

  58. Rosenkranz HS, Klopman G (1995) The application of structural concepts to the prediction of the carcinogenicity of therapeutical agents. In: Wolff ME (ed) Burger’s medicinal chemistry and drug discovery, 5th Edition, Volume 1, Wiley: New York, pp. 223–249

    Google Scholar 

  59. Graham C, Gealy R, Macina OT, Karl MH, Rosenkranz HS (1996) QSAR for allergic contact dermatitis. QSAR Comb Sci 15: 224–229

    CAS  Google Scholar 

  60. Gealy R, Graham C, Sussman NB, Macina OT, Rosenkranz HS, Karol MH (1996) Evaluating clinical case report data for SAR modelling of allergic contact dermatitis. Human Exp Toxicol 15: 489–493

    Article  CAS  Google Scholar 

  61. Johnson R, Macina OT, Graham C, Rosenkranz HS, Cass GR, Karol MH (1997) Prioritising testing of organic compounds detected as gas phase air pollutants: structure-activity study for human contact allergens. Environ Health Perspect 105: 986–992

    Article  CAS  Google Scholar 

  62. Dimitrov SD, Low LK, Patlewicz GY, Kern PS, Dimitrova GD, Comber MHI, Phillips RD, Niemela J, Bailey PT, Mekenyan OG (2005) Skin sensitization: Modeling based on skin metabolism simulation and formation of protein conjugates. Int J Toxicol 24: 189–204

    Article  CAS  Google Scholar 

  63. Dimitrov S, Dimitrova G, Pavlov T, Dimitrova N, Patlewicz G, Niemela J, Mekenyan O (2005) A stepwise approach for defining the applicability domain of SAR and QSAR models. J Chem Inf Model 45: 839–849

    Article  CAS  Google Scholar 

  64. Patlewicz G, Dimitrov SD, Low LK, Kern PS, Dimitrova GD, Comber MIH, Aptula AO, Phillips RD, Niemela J, Madsen C, Wedebye EB, Roberts DW, Bailey PT, Mekenyan OG (2007) TIMES-SS – A promising tool for the assessment of skin sensitization hazard. A characterisation with respect to the OECD Validation Principles for (Q)SARs. Reg Toxicol Pharmacol 48: 225–239

    Article  CAS  Google Scholar 

  65. Roberts DW, Patlewicz G, Dimitrov S, Low LK, Aptula AO, Kern PS, Dimitrova GD, Comber MI, Phillips RD, Niemelä J, Madsen C, Wedebye EB, Bailey PT, Mekenyan OG (2007) TIMES-SS – A mechanistic evaluation of an external validation study using reaction chemistry principles. Chem Res Toxicol 20: 1321–1330

    Article  CAS  Google Scholar 

  66. Patlewicz G, Roberts DW, Uriarte E (2008) A comparison of reactivity schemes for the prediction skin sensitisation potential. Chem Res Toxicol 21: 521–541

    Article  CAS  Google Scholar 

  67. Commission of the European Communities. Regulation (EC) No 1907/2006 of the European Parliament and of the Council of 18 December 2006 concerning the Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH), establishing a European Chemicals Agency, amending Directive 1999/45/EC and repealing Council Regulation (EEC) No 793/93 and Commission Regulation (EC) No 1488/94 as well as Council Directive 76/769/EEC and Commission Directives 91/155/EEC, 93/67/EEC, 93/105/EC and 2000/21/EC. Off J Eur Union L 396/1 of 30.12.2006

    Google Scholar 

  68. Jaworska JS, Comber M, Auer C, van Leeuwen CJ (2003) Summary of a workshop on regulatory acceptance of (Q)SARs for human health and environmental endpoints. Environ Health Perspect 22: 1358–1360

    Article  Google Scholar 

  69. OECD (2004) ENV/JM/MONO/(2004)24 http://appli1.oecd.org/olis/2004doc.nsf/linkto/env-jm-mono(2004)24

  70. Worth AP, Bassan A, Gallegos A, Netzeva TI, Patlewicz G, Pavan M, Tsakovska I, Vracko M (2005) The Characterisation of (quantitative) structure-activity relationships: Preliminary guidance. EUR 21866 EN

    Google Scholar 

  71. OECD (2007) Guidance document on the validation of (quantitative)structure-activity relationships [(Q)SAR] models. ENV/JM/MONO(2007)2. Organisation for Economic Cooperation and Development, Paris. http://www.oecd.org/dataoecd/55/35/38130292.pdf

  72. Worth AP, Bassan A, de Bruijn J, Gallegos Saliner A, Netzeva T, Patlewicz G, Pavan M, Tsakovska I, Eisenreich S (2007) The role of the European Chemicals Bureau in promoting the regulatory use of (Q)SAR methods. SAR QSAR Environ Res 18: 111–125

    Article  CAS  Google Scholar 

  73. Patlewicz GY, Basketter DA, Pease CK, Wilson K, Wright ZM, Roberts DW, Bernard G, Arnau EG, Lepoittevin JP (2004) Further evaluation of quantitative structure–activity relationship models for the prediction of the skin sensitization potency of selected fragrance allergens. Contact Dermatitis 50: 91–97

    Article  CAS  Google Scholar 

  74. Aptula AO, Patlewicz G, Roberts DW (2005) Skin sensitization: Reaction mechanistic applicability domains for structure-activity relationships. Chem Res Toxicol 18: 1420–1426

    Article  CAS  Google Scholar 

  75. Gerberick GF, Ryan CA, Kern PS, Dearman RJ, Kimber I, Patlewicz GY, Basketter DA (2004) A chemical dataset for evaluation of alternative approaches to skin-sensitization testing. Contact Dermatitis 50: 274–288

    Article  CAS  Google Scholar 

  76. Aptula AO, Roberts DW (2006) Mechanistic applicability domains for nonanimal-based prediction of toxicological end points: General principles and application to reactive toxicity. Chem Res Toxicol 19: 1097–1105

    Article  CAS  Google Scholar 

  77. Karlberg AT, Bergström MA, Börje A, Luthman K, Nilsson JL (2008) Allergic contact dermatitis – Formation, structural requirements, and reactivity of skin sensitizers. Chem Res Toxicol 21: 53–69

    Article  Google Scholar 

  78. Eilstein J, Giménez-Arnau E, Rousset F, Lepoittevin J-P (2006) Synthesis and reactivity toward nucleophilic amino acids of 2,5-[13C]-dimethyl-benzoquinonediimine. Chem Res Toxicol 19: 1248–1256

    Article  CAS  Google Scholar 

  79. Magee PS (2000) Exploring the potential for allergic contact dermatitis via computed heats of reaction of haptens with protein end-groups heats of reaction of haptens with protein end-groups by computation. Quant Struct–Act Relat 19: 356–365

    Google Scholar 

  80. Aptula AO, Roberts DW, Cronin MT (2005) From experiment to theory: Molecular orbital parameters to interpret the skin sensitization potential of 5-chloro-2-methylisothiazol-3-one and 2-methylisothiazol-3-one. Chem Res Toxicol 18: 324–329

    Article  CAS  Google Scholar 

  81. Roberts DW, Aptula AO, Patlewicz G, Pease C (2008) Chemical reactivity indices and mechanism-based read-across for non-animal based assessment of skin sensitisation potential. J Appl Toxicol 28: 443–454

    Article  CAS  Google Scholar 

  82. Aptula AO, Patlewicz G, Roberts DW, Schultz TW (2006) Non-enzymatic glutathione reactivity and in vitro toxicity: a non-animal approach to skin sensitization. Toxicol In Vitro 20: 239–247

    Article  CAS  Google Scholar 

  83. Gerberick GF, Vassallo JD, Bailey RE, Chaney JG, Morrall SW, Lepoittevin JP (2004) Development of a peptide reactivity assay for screening contact allergens. Toxicol Sci 81: 332–343

    Article  CAS  Google Scholar 

  84. Gerberick GF, Vassallo JD, Foertsch LM, Price BB, Chaney JG, Lepoittevin J-P (2007) Quantification of chemical peptide reactivity for screening contact allergens: A classification tree model approach. Toxicol Sci 97: 417–427

    Article  CAS  Google Scholar 

  85. Natsch A, Gfeller H, Rothaupt M, Ellis G (2007) Utility and limitations of a peptide reactivity assay to predict fragrance allergens in vitro. Toxicol In Vitro 21: 1220–1226

    Article  CAS  Google Scholar 

  86. Farriss MW, Reed DJ (1987) High-performance liquid chromatography of thiols and disulfides: Dinitrophenol derivatives. Methods Enzymol 143: 101–109

    Article  Google Scholar 

  87. Yarborough JW, Schultz TW (2007) Abiotic sulfhydryl reactivity: A predictor of aquatic toxicity for carbonyl-containing α, β-unsaturated compounds. Chem Res Toxicol 20: 558–562

    Article  Google Scholar 

  88. Hansch C, Leo AJ (1979) Substituent constants for correlation analysis in chemistry and biology. Wiley: New York

    Google Scholar 

  89. Schultz TW, Carlson RE, Cronin MTD, Hermens JLM, Johnson R, O’Brien PJ, Roberts DW, Siraki A, Wallace KB, Veith GD (2006) A conceptual framework for predicting the toxicity of reactive chemicals” modelling soft electrophilicity. SAR QSAR Environ Res 17: 413–428

    Article  CAS  Google Scholar 

  90. Lipnick RL, Pritzker CS, Bentley DL (1987) Application of QSAR to model the toxicology of industrial organic chemicals to aquatic organisms and mammals. In: Hadzi D and Jerman-Blazic (eds) Progress in QSAR, Proceedings of the 6th European Symposium on Quantitative Structure-Activity Relationships, Portorose, Yugoslavia, September 22–26, 1986, Elsevier: Amsterdam, pp. 301–306

    Google Scholar 

  91. Lipnick RL (1988) Toxicity assessment and structure-activity relationships. In: Richardson ML (ed) Risk assessment of chemicals in the environment, Royal Society of Chemistry: London, pp. 379–397

    Google Scholar 

  92. Lipnick RL (1991) Outliers: their origin and use in the classification of molecular mechanisms of toxicity. Sci Total Environ 109/110: 131–153

    Article  Google Scholar 

  93. Schultz TW, Ralston KE, Roberts DW, Veith GD, Aptula AO (2007) Structure–activity relationships for abiotic thiol reactivity and aquatic toxicity of halo-substituted carbonyl compounds. SAR QSAR Environ Res 18: 21–29

    Article  CAS  Google Scholar 

  94. Gibbs S, van de Sandt JJ, Merk HF, Lockley DJ, Pendlington RU, Pease CK (2007) Xenobiotic metabolism in human skin and 3D human skin reconstructs: A review. Curr Drug Metab 8: 758–772

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Grace Patlewicz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Roberts, D.W., Patlewicz, G. (2009). Chemistry Based Nonanimal Predictive Modeling for Skin Sensitization. In: Devillers, J. (eds) Ecotoxicology Modeling. Emerging Topics in Ecotoxicology, vol 2. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-0197-2_3

Download citation

Publish with us

Policies and ethics