Skip to main content

The Evolution and Future of Environmental Fugacity Models

  • Chapter
  • First Online:
Ecotoxicology Modeling

Part of the book series: Emerging Topics in Ecotoxicology ((ETEP,volume 2))

Abstract

In this chapter we first review the concept of fugacity as a thermodynamic equilibrium criterion applied to chemical fate in environmental systems. We then discuss the evolution of fugacity-based models applied to the multimedia environmental distribution of chemicals and more specifically to bioaccumulation and food web models. It is shown that the combination of multimedia and bioaccumulation models can provide a comprehensive assessment of chemical fate, transport, and exposure to both humans and wildlife. A logical next step is to incorporate toxicity information to assess the likelihood of risk in the expectation that most regulatory effort will be focused on those chemicals that pose the highest risk. This capability already exists for many well-studied chemicals but we argue that there is a compelling incentive to extend this capability to other more challenging chemicals and environmental situations and indeed to all chemicals of commerce. Finally, we argue that deriving the full benefits of these applications of the fugacity concept to chemical fate and risk assessment requires continued effort to develop quantitative structure–activity relationships (QSARs) that can predict relevant chemical properties and programs to validate these models by reconciliation between modeled and monitoring data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mackay D (2001) Multimedia environmental models: The fugacity approach, 2nd edition. Lewis Publishers, Boca Raton, FL

    Book  Google Scholar 

  2. Mackay D, Di Guardo A, Paterson S, Cowan C (1996) Evaluating the environmental fate of a variety of types of chemicals using the EQC model. Environ Toxicol Chem 15: 1627–1637

    Article  CAS  Google Scholar 

  3. United Nations Environment Programme (1998) Report of the first session of the INC for an international legally binding instrument for implementing international action on certain persistent organic pollutants (POPs), in UNEP report (Vol. 15). International Institute for Sustainable Development (IISD), Canada

    Google Scholar 

  4. Arctic Monitoring and Assessment Programme (2004) AMAP assessment 2002: Persistent organic pollutants (POPs) in the Arctic. Arctic Monitoring and Assessment Programme (AMAP): Oslo, Norway

    Google Scholar 

  5. Wania F (2003) Assessing the potential of persistent organic chemicals for long-range transport and accumulation in polar regions. Environ Sci Technol 37: 1344–1351

    Article  CAS  Google Scholar 

  6. Wania F (2006) Potential of degradable organic chemicals for absolute and relative enrichment in the arctic. Environ Sci Technol 40: 569–577

    Article  CAS  Google Scholar 

  7. MacLeod M, Mackay D (2004) Modeling transport and deposition of contaminants to ecosystems of concern: A case study for the Laurentian Great Lakes. Environ Pollut 128: 241–250

    Article  CAS  Google Scholar 

  8. Mackay D, Reid L (2008) Local and distant residence times of contaminants in multi-compartment models, Part 1: Theoretical basis. Environ Pollut 156: 1196–1203

    Article  CAS  Google Scholar 

  9. Bennett DH, Kastenberg WE, McKone TE (1999) General formulation of characteristic time for persistent chemicals in a multimedia environment. Environ Sci Technol 33: 503–509

    Article  CAS  Google Scholar 

  10. Beyer A, Mackay D, Matthies M, Wania F, Webster E (2000) Assessing long-range transport potential of persistent organic pollutants. Environ Sci Technol 34: 699–703

    Article  CAS  Google Scholar 

  11. Gobas FAPC, Morrison HA (2000) Bioconcentration and biomagnification in the aquatic environment. In: Boethling RS, Mackay D (eds) Handbook of property estimation methods for chemicals: Environmental and health sciences. CRC Press: Boca Raton, FL

    Google Scholar 

  12. Mackay D, Fraser A (2000) Bioaccumulation of persistent organic chemicals: Mechanisms and models. Environ Pollut 110: 375–391

    Article  CAS  Google Scholar 

  13. Travis CC, Arms AD (1988) Bioconcentration of organics in beef, milk and vegetation. Environ Sci Technol 22: 271–274

    Article  CAS  Google Scholar 

  14. Gobas FAPC, Kelly BC, Arnot JA (2003) Quantitative structure–activity relationships for predicting the bioaccumulation of POPs in terrestrial food webs. QSAR Comb Sci 22: 329–336

    Article  CAS  Google Scholar 

  15. Kelly BC, Ikonomou M, Blair JD, Morin AE, Gobas FAPC (2007) Food web-specific biomagnification of persistent organic pollutants. Science 317: 236–239

    Article  CAS  Google Scholar 

  16. Kelly BC, Gobas FAPC (2001) Bioaccumulation of persistent organic pollutants in lichen–caribou–wolf food chains of Canada’s central and western arctic. Environ Sci Technol 35: 325–334

    Article  CAS  Google Scholar 

  17. Czub G, McLachlan MS (2004) Bioaccumulation potential of persistent organic chemicals in humans. Environ Sci Technol 38: 2406–2412

    Article  CAS  Google Scholar 

  18. Himmelstein KJ, Lutz RJ (1979) A review of the application of physiologically based pharmacokinetic modeling. J Pharmacokinet Biopharm 7: 127–137

    Article  CAS  Google Scholar 

  19. Nichols JW, McKim JM, Lien GJ, Hoffman AD, Bertelsen SL (1991) Physiologically based toxicokinetic modeling of three chlorinated ethanes in rainbow trout (Oncorhynchus mykiss). Toxicol Appl Pharmacol 110: 374–389

    Article  CAS  Google Scholar 

  20. Paterson S, Mackay D (1987) A steady-state fugacity-based pharmacokinetic model with simultaneous multiple exposure routes. Environ Toxicol Chem 6: 395–408

    Article  CAS  Google Scholar 

  21. Arnot JA, Mackay D, Webster E, Southwood JM (2006) Screening level risk assessment model for chemical fate and effects in the environment. Environ Sci Technol 40: 2316–2323

    Article  CAS  Google Scholar 

  22. Arnot JA, Mackay D (2008) Policies for chemical hazard and risk priority setting: Can persistence, bioaccumulation, toxicity and quantity information be combined? Environ Sci Technol 42: 4648–4654

    Article  CAS  Google Scholar 

  23. Arnot JA, Mackay D, Parkerton TF, Bonnell M (2008) A database of fish biotransformation rates for organic chemicals. Environ Toxicol Chem 27: 2263–2270

    Article  CAS  Google Scholar 

  24. McCarty LS, Mackay D (1993) Enhancing ecotoxicological modeling and assessment. Environ Sci Technol 27: 1719–1728

    Article  Google Scholar 

  25. Environment Canada (2005) National pollutant release inventory, 2003. Environment Canada: Ottawa, ON

    Google Scholar 

  26. Environment Canada (2006) Existing substances program at environment Canada (CD-ROM). Ecological categorization of substances on the Domestic Substances List (DSL). Existing Substances Branch, Environment Canada: Ottawa, ON

    Google Scholar 

  27. McKone TE, Castorina R, Harnly ME, Kuwabara Y, Eskenazi B, Bradmanm A (2007) Merging models and biomonitoring data to characterize sources and pathways of human exposure to organophosphorus pesticides in the Salinas Valley of California. Environ Sci Technol 41: 3233–3240

    Article  CAS  Google Scholar 

  28. Cousins IT, Mackay D (2003) Multimedia mass balance modeling of two phthalate esters by the regional population-based model (RPM). Handbook Environ Chem 3: 179–200

    CAS  Google Scholar 

  29. Ferguson J (1939) The use of chemical potentials as indices of toxicity. Proc R Soc Lond B Biol Sci 127: 387–404

    Article  CAS  Google Scholar 

  30. Verhaar HJM, Van Leeuwen CJ, Hermens JLM (1992) Classifying environmental pollutants. I. Structure–activity relationships for prediction of aquatic toxicity. Chemosphere 25: 471–491

    Article  CAS  Google Scholar 

  31. Maeder V, Escher BI, Scheringer M, Hungerbuhler K (2004) Toxic ratio as an indicator of the intrinsic toxicity in the assessment of persistent, bioaccumulative, and toxic chemicals. Environ Sci Technol 38: 3659–3666

    Article  CAS  Google Scholar 

  32. Mackay D, Shiu WY, Ma KC, Lee SC (2006) Handbook of physical–chemical properties and environmental fate for organic chemicals, Vol I-IV, 2nd edition. CRC Press: Boca Raton, FL

    Google Scholar 

  33. Mackay D, Di Guardo A, Paterson S, Kicsi G, Cowan CE (1996) Assessing the fate of new and existing chemicals: A five stage process. Environ Toxicol Chem 15: 1618–1626

    Article  CAS  Google Scholar 

  34. Mackay D, Di Guardo A, Paterson S, Kicsi G, Cowan CE, Kane M (1996) Assessment of chemical fate in the environment using evaluative, regional and local-scale models: Illustrative application to chlorobenzene and linear alkylbenzene sulfonates. Environ Toxicol Chem 15: 1638–1648

    Article  CAS  Google Scholar 

  35. Mackay D (2001) Multimedia environmental models – The fugacity approach. Second edition, Boca Raton, FL, Lewis Publishers

    Book  Google Scholar 

  36. Kawamoto K, MacLeod M, Mackay D (2001) Evaluation and comparison of mass balance models of chemical fate: Application of EUSES and ChemCAN to 68 chemicals in Japan. Chemosphere 44: 599–612

    Article  CAS  Google Scholar 

  37. MacLeod M, Fraser A, Mackay D (2002) Evaluating and expressing the propagation of uncertainty in chemical fate and bioaccumulation models. Environ Toxicol Chem 21: 700–709

    Article  CAS  Google Scholar 

  38. Webster E, Mackay D, Di Guardo A, Kane D, Woodfine D (2004) Regional differences in chemical fate model outcome. Chemosphere 55: 1361–1376

    Article  CAS  Google Scholar 

  39. McKone TE (1993) CalTOX, a multimedia total exposure model for hazardous-waste sites. U.S. Department of Energy: Washington, DC

    Book  Google Scholar 

  40. Gouin T, Mackay D, Jones KC, Harner T, Meijer SN (2004) Evidence for the “grasshopper” effect and fractionation during long-range atmospheric transport of organic contaminants. Environ Pollut 128: 139–148

    Article  CAS  Google Scholar 

  41. MacLeod M, Woodfine D, Mackay D, McKone T, Bennett D, Maddalena R (2001) BETR North America: A regionally segmented multimedia contaminant fate model for North America. Environ Sci Pollut Res 8: 156–163

    Article  CAS  Google Scholar 

  42. Toose L, Woodfine DG, MacLeod M, Mackay D, Gouin J (2004) BETR-World: A geographically explicit model of chemical fate: Application to transport of a-HCH to the arctic. Environ Pollut 128: 223–240

    Article  CAS  Google Scholar 

  43. MacLeod M, Riley WJ, McKone TE (2005) Assessing the influence of climate variability on atmospheric concentrations of polychlorinated biphenyls using a global-scale mass balance model (BETR-global). Environ Sci Technol 39: 6749–6756

    Article  CAS  Google Scholar 

  44. Armitage J, Cousins IT, Buck RC, Prevedouros J, Russell MH, Macleod M, Korzeniowski SH (2006) Modeling global-scale fate and transport of perfluorooctanoate emitted from direct sources. Environ Sci Technol 40: 6969–6975

    Article  CAS  Google Scholar 

  45. Campfens J, Mackay D (1997) Fugacity-based model of PCB bioaccumulation in complex food webs. Environ Sci Technol 31: 577–583

    Article  CAS  Google Scholar 

  46. Patwa Z, Christensen R, Lasenby DC, Webster E, Mackay D (2007) An exploration of the role of mysids in benthic–pelagic coupling and biomagnification using a dynamic bioaccumulation model. Environ Toxicol Chem 26: 186–194

    Article  Google Scholar 

  47. Arnot JA, Gobas FAPC (2004) A food web bioaccumulation model for organic chemicals in aquatic ecosystems. Environ Toxicol Chem 23: 2343–2355

    Article  CAS  Google Scholar 

  48. Nichols JW, Schultz IR, Fitzsimmons PN (2006) In vitro–in vivo extrapolation of quantitative hepatic biotransformation data for fish. I. A review of methods, and strategies for incorporating intrinsic clearance estimates into chemical kinetic models. Aquat Toxicol 78: 74–90

    Article  CAS  Google Scholar 

  49. Nichols JW, Fitzsimmons PN, Burkhard LP (2007) In vitro–in vivo extrapolation of quantitative hepatic biotransformation data for fish. II. Modeled effects on chemical bioaccumulation. Environ Toxicol Chem 26: 1304–1319

    CAS  Google Scholar 

  50. Arnot JA, Mackay D, Bonnell M (2008) Estimating metabolic biotransformation rates in fish from laboratory data. Environ Toxicol Chem 27: 341–351

    Article  CAS  Google Scholar 

  51. Barber MC (2008) Dietary uptake models used for modeling the bioaccumulation of organic contaminants in fish. Environ Toxicol Chem 27: 755–777

    Article  CAS  Google Scholar 

  52. Arnot JA, Gobas FAPC (2003) A generic QSAR for assessing the bioaccumulation potential of organic chemicals in aquatic food webs. QSAR Comb Sci 22: 337–345

    Article  CAS  Google Scholar 

  53. Han X, Nabb DL, Mingoia RT, Yang C-H (2007) Determination of xenobiotic intrinsic clearance in freshly isolated hepatocytes from rainbow trout (Oncorhynchus mykiss) and rat and its application in bioaccumulation assessment. Environ Sci Technol 41: 3269–3276

    Article  CAS  Google Scholar 

  54. Czub G, McLachlan MS (2004) A food chain model to predict the levels of lipophilic organic contaminants in humans. Environ Toxicol Chem 23: 2356–2366

    Article  CAS  Google Scholar 

  55. Cahill T, Cousins I, Mackay D (2003) Development and application of a generalized physiologically based pharmacokinetic model for multiple environmental contaminants. Environ Toxicol Chem 22: 26–34

    Article  CAS  Google Scholar 

  56. Lawrence GS, Gobas FAPC (1997) A pharmacokinetic analysis of interspecies extrapolation in dioxin risk assessment. Chemosphere 35: 427–452

    Article  CAS  Google Scholar 

  57. Hickie B, Mackay D, de Koning J (1999) Lifetime pharmacokinetic model for hydrophobic contaminants in marine mammals. Environ Toxicol Chem 18: 2622–2633

    Article  CAS  Google Scholar 

  58. Kannan K, Haddad S, Beliveau M, Tardif R (2002) Physiological modeling and extrapolation of pharmacokinetic interactions from binary to more complex chemical mixtures. Environ Health Perspect 110: 989–994

    Google Scholar 

  59. McLachlan MS (1996) Bioaccumulation of hydrophobic chemicals in agricultural food chains. Environ Sci Technol 30: 252–259

    Article  CAS  Google Scholar 

  60. Kelly BC, Gobas FAPC (2003) An arctic terrestrial food-chain bioaccumulation model for persistent organic pollutants. Environ Sci Technol 37: 2966–2974

    Article  CAS  Google Scholar 

  61. Armitage JM, Gobas FAPC (2007) A terrestrial food-chain bioaccumulation model for POPs. Environ Sci Technol 41: 4019–4025

    Article  CAS  Google Scholar 

  62. Hughes L, Webster E, Mackay D (2008) A model of the fate of chemicals in sludge-amended soils. Soil Sediments Contam 17: 564–585

    CAS  Google Scholar 

  63. Hughes L, Mackay D, Webster E, Armitage J, Gobas F. 2005. Development and application of models of chemical fate in Canada: Modelling the fate of substances in sludge-amended soils. Report to Environment Canada. CEMN Report No 200502, Trent University: Peterborough, ON

    Google Scholar 

  64. Mackay D, Joy M, Paterson S (1983) A quantitative water, air, sediment interaction (QWASI) fugacity model for describing the fate of chemicals in lakes. Chemosphere 12: 981–997

    Article  CAS  Google Scholar 

  65. Mackay D, Paterson S, Joy M (1983) A quantitative water, air, sediment interaction (QWASI) fugacity model for describing the fate of chemicals in rivers. Chemosphere 12: 1193–1208

    Article  CAS  Google Scholar 

  66. Mackay D, Diamond M (1989) Application of the QWASI (quantitative water air sediment interaction) fugacity model to the dynamics of organic and inorganic chemicals in lakes. Chemosphere 18: 1343–1365

    Article  CAS  Google Scholar 

  67. Diamond ML, Poulton DJ, Mackay D, Stride FA (1994) Development of a mass-balance model of the fate of 17 chemicals in the bay of Quinte. J Great Lake Res 20: 643–666

    Article  CAS  Google Scholar 

  68. Diamond ML, MacKay D, Poulton DJ, Stride FA (1996) Assessing chemical behavior and developing remedial actions using a mass balance model of chemical fate in the Bay of Quinte. Water Res 30: 405–421

    Article  CAS  Google Scholar 

  69. Webster E, Lian L, Mackay D (2005) Application of the quantitative water air sediment interaction (QWASI) model to the great lakes. Report to the lakewide management plan (LaMP) committee. Canadian Environmental Modelling Centre, Report No 200501, Trent University: Peterborough, ON

    Google Scholar 

  70. Clark B, Henry JG, Mackay D (1995) Fugacity analysis and model of organic-chemical fate in a sewage-treatment plant. Environ Sci Technol 29: 1488–1494

    Article  CAS  Google Scholar 

  71. Seth R, Webster E, Mackay D (2008) Continued development of a mass balance model of chemical fate in a sewage treatment plant. Water Res 42: 595–604

    Article  CAS  Google Scholar 

  72. Vermeire TG, Jager DT, Bussian B, Devillers J, den Haan K, Hansen B, Lundberg I, Niessen H, Robertson S, Tyle H, van der Zandt PTJ (1997) European union system for the evaluation of substances (EUSES). Principles and structure. Chemosphere 34: 1823–1836

    CAS  Google Scholar 

  73. Vermeire TG, Rikken M, Attias L, Boccardi P, Boeije G, Brooke D, de Bruijn J, Comber M, Dolan B, Fischer S, Heinemeyer G, Koch V, Lijzen J, Muller B, Murray-Smith R, Tadeo J (2005) European union system for the evaluation of substances (EUSES): The second version. Chemosphere 59: 473–485

    Article  Google Scholar 

  74. Pennington DW, Margni M, Payet J, Jolliet O (2006) Risk and regulatory hazard-based toxicological effect indicators in life-cycle assessment (LCA). Hum Ecol Risk Assess 12: 450–475

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donald Mackay .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Mackay, D., Arnot, J.A., Webster, E., Reid, L. (2009). The Evolution and Future of Environmental Fugacity Models. In: Devillers, J. (eds) Ecotoxicology Modeling. Emerging Topics in Ecotoxicology, vol 2. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-0197-2_12

Download citation

Publish with us

Policies and ethics