Skip to main content

Artificial Neural Network Modeling of the Environmental Fate and Ecotoxicity of Chemicals

  • Chapter
  • First Online:
Ecotoxicology Modeling

Part of the book series: Emerging Topics in Ecotoxicology ((ETEP,volume 2))

Abstract

An artificial neural network (ANN) includes nonlinear computational elements called neurons, which are linked by weighted connections. Typically, a neuron receives an input information and performs a weighted summation, which is propagated by an activation function to other neurons through the ANN. Numerous ANN paradigms have been proposed for pattern classification, clustering, function approximation, prediction, optimization, and control. In this chapter, an attempt is made to review the main applications of ANNs in ecotoxicology. Our goal was not to catalog all the models in the field but only to show the diversity of the situations in which these nonlinear tools have proved their interest for modeling the environmental fate and effects of chemicals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bigus JP (1996) Data mining with neural networks. Solving business problems – From application development to decision support. McGraw-Hill, New York

    Google Scholar 

  2. Bengio Y (1996) Neural networks for speech and sequence recognition. International Thomson Computer Press, London

    Google Scholar 

  3. Zupan J, Gasteiger J (1993) Neural networks for chemists. An introduction. VCH, Weinheim

    Google Scholar 

  4. Devillers J (1996) Neural networks in QSAR and drug design. Academic Press, London

    Google Scholar 

  5. Guegan JF, Lek S (2000) Artificial neuronal networks: Application to ecology and evolution. Springer, New York

    Google Scholar 

  6. Christopoulos C, Georgiopoulos M (2001) Applications of neural networks in electromagnetics. Artech House Publishers, London

    Google Scholar 

  7. Lisboa PJG, Taylor MJ (1993) Techniques and applications of neural networks. Ellis Horwood, London

    Google Scholar 

  8. Wade N (1998) The science Times book of the brain. Lyons Press, New York

    Google Scholar 

  9. Müller B, Reinhardt J, Strickland MT (1995) Neural networks. An introduction. Springer, Berlin

    Google Scholar 

  10. Pal SK, Srimani PK (1996) Neurocomputing. Motivation, models, and hybridization. Computer March: 24–28

    Google Scholar 

  11. Jain AK, Mao J, Mohiuddin KM (1996) Artificial neural networks: A tutorial. Computer March: 31–44

    Google Scholar 

  12. Wasserman PD (1989) Neural computing: Theory and practice. Van Nostrand Reinhold, New York

    Google Scholar 

  13. Pao YH (1989) Adaptive pattern recognition and neural networks. Addison-Wesley Publishing Company, Reading

    Google Scholar 

  14. Eberhart RC, Dobbins RW (1990) Neural network PC tools. A practical guide. Academic Press, San Diego

    Google Scholar 

  15. Wasserman PD (1993) Advanced methods in neural computing. Van Nostrand Reinhold, New York

    Google Scholar 

  16. Kohonen T (1995) Self-organizing maps. Springer, Berlin

    Google Scholar 

  17. Fiesler E, Beale R (1997) Handbook of neural computation. IOP Publishing Ltd, Bristol

    Google Scholar 

  18. Devillers J, Doré JC (2002) e-statistics for deriving QSAR models. SAR QSAR Environ Res 13: 409–416

    CAS  Google Scholar 

  19. Domine D, Devillers J, Chastrette M, Karcher W (1992) Multivariate structure-property relationships (MSPR) of pesticides. Pestic Sci 35: 73–82

    CAS  Google Scholar 

  20. Samiullah Y. (1990) Prediction of the environmental fate of chemicals. Elsevier, London

    Google Scholar 

  21. Mackay D, Di Guardo A, Hickie B, Webster E (1997) Environmental modelling: Progress and prospects. SAR QSAR Environ Res 6: 1–17

    CAS  Google Scholar 

  22. Hemond HF, Fechner EJ (1994) Chemical fate and transport in the environment. Academic Press, San Diego

    Google Scholar 

  23. Lyman WJ, Reehl WF, Rosenblatt DH (1990) Handbook of chemical property estimation methods. American Chemical Society, Washington, DC

    Google Scholar 

  24. Reinhard M, Drefahl A (1999) Handbook for estimating physicochemical properties of organic compounds. Wiley, New York

    Google Scholar 

  25. Boethling RS, Howard PH, Meylan WM (2004) Finding and estimating property data for environmental assessment. Environ Toxicol Chem 23: 2290–2308

    CAS  Google Scholar 

  26. Cronin MTD, Livingstone DJ (2004) Calculation of physicochemical properties. In: Cronin MTD, Livingstone DJ (eds) Predicting chemical toxicity and fate, CRC Press, Boca Raton

    Google Scholar 

  27. Dearden JC (2003) Quantitative structure-property relationships for prediction of boiling point, vapor pressure, and melting point. Environ Toxicol Chem 22: 1696–1709

    CAS  Google Scholar 

  28. Lohninger H (1993) Evaluation of neural networks based on radial basis functions and their application to the prediction of boiling points from structural parameters. J Chem Inf Comput Sci 33: 736–744

    CAS  Google Scholar 

  29. Cherqaoui D, Villemin D, Mesbah A, Cense JM, Kvasnicka V (1994) Use of a neural network to determine the normal boiling points of acyclic ethers, peroxides, acetals and their sulfur analogues. J Chem Soc Faraday Trans 90: 2015–2019

    Google Scholar 

  30. Balaban AT, Basak SC, Colburn T, Grunwald GD (1994) Correlation between structure and normal boiling points of haloalkanes \({\mathrm{C}}_{1}\mbox{ \textendash }{\mathrm{C}}_{4}\) using neural networks. J Chem Inf Comput Sci 34: 1118–1121

    CAS  Google Scholar 

  31. Egolf LM, Wessel MD, Jurs PC (1994) Prediction of boiling points and critical temperatures of industrially important organic compounds from molecular structure. J Chem Inf Comput Sci 34, 947–956

    CAS  Google Scholar 

  32. Wessel MD, Jurs PC (1995) Prediction of normal boiling points of hydrocarbons from molecular structure. J Chem Inf Comput Sci 35: 68–76

    CAS  Google Scholar 

  33. Kier LB, Hall LH (1999) The electrotopological state; Structure modeling for QSAR and database analysis. In: Devillers J, Balaban AT (eds) Topological indices and related descriptors in QSAR and QSPR, Gordon and Breach Publishers, Amsterdam

    Google Scholar 

  34. Hall LH, Story CT (1996) Boiling point and critical temperature of a heterogeneous data set: QSAR with atom type electrotopological state indices using artificial neural networks. J Chem Inf Comput Sci 36: 1004–1014

    CAS  Google Scholar 

  35. Hall LH, Story CT (1997) Boiling point of a set of alkanes, alcohols and chloroalkanes: QSAR with atom type electrotopological state indices using artificial neural networks. SAR QSAR Environ Res 6: 139–161

    CAS  Google Scholar 

  36. Espinosa G, Yaffe D, Cohen Y, Arenas A, Giralt F (2000) Neural network based quantitative structural property relations (QSPRs) for predicting boiling points of aliphatic hydrocarbons. J Chem Inf Comput Sci 40: 859–879

    CAS  Google Scholar 

  37. Chalk AJ, Beck B, Clark T (2001) A quantum mechanical/neural net model for boiling points with error estimation. J Chem Inf Comput Sci 41: 457–462.

    CAS  Google Scholar 

  38. Anonymous (1998) QSARs in the assessment of the environmental fate and effects of chemicals. Technical report no. 74, ECETOC, Brussels

    Google Scholar 

  39. Liang C, Gallagher DA (1998) QSPR prediction of vapor pressure from solely theoretically-derived descriptors. J Chem Inf Comput Sci 38: 321–324

    CAS  Google Scholar 

  40. McClelland HE, Jurs PC (2000) Quantitative structure-property relationships for the prediction of vapor pressures of organic compounds from molecular structures. J Chem Inf Comput Sci 40: 967–975

    CAS  Google Scholar 

  41. Beck B, Breindl A, Clark T (2000) QM/NN QSPR models with error estimation: Vapor pressure and log P. J Chem Inf Comput Sci 40: 1046–1051

    CAS  Google Scholar 

  42. Chalk AJ, Beck B, Clark T (2001) A temperature-dependent quantum mechanical/neural net model for vapor pressure. J Chem Inf Comput Sci 41: 1053–1059

    CAS  Google Scholar 

  43. Yaffe D, Cohen Y (2001) Neural network based temperature-dependent quantitative structure property relations (QSPRs) for predicting vapor pressure of hydrocarbons. J Chem Inf Comput Sci 41: 463–477

    CAS  Google Scholar 

  44. Hall LH, Kier LB (1999) Molecular connectivity Chi indices for database analysis and structure-property modeling. In: Devillers J, Balaban AT (eds) Topological indices and related descriptors in QSAR and QSPR, Gordon and Breach Publishers, Amsterdam

    Google Scholar 

  45. Chow H, Chen H, Ng T, Myrdal P, Yalkowsky SH (1995) Using backpropagation networks for the estimation of aqueous activity coefficients of aromatic organic compounds. J Chem Inf Comput Sci 35: 723–728

    CAS  Google Scholar 

  46. Sutter JM, Jurs PC (1996) Prediction of aqueous solubility for a diverse set of heteroatom-containing organic compounds using a quantitative structure-property relationship. J Chem Inf Comput Sci 36: 100–107

    CAS  Google Scholar 

  47. Mitchell BE, Jurs PC (1998) Prediction of aqueous solubility of organic compounds from molecular structure. J Chem Inf Comput Sci 38: 489–496

    CAS  Google Scholar 

  48. McElroy NR, Jurs PC (2001) Prediction of aqueous solubility of heteroatom-containing organic compounds from molecular structure. J Chem Inf Comput Sci 41: 1237–1247

    CAS  Google Scholar 

  49. Huuskonen J, Salo M, Taskinen J (1998) Aqueous solubility prediction of drugs based on molecular topology and neural network modeling. J Chem Inf Comput Sci 38: 450–456

    CAS  Google Scholar 

  50. Yaffe D, Cohen Y, Espinosa G, Arenas A, Giralt F (2001) A fuzzy ARTMAP based on quantitative structure-property relationships (QSPRs) for predicting aqueous solubility of organic compounds. J Chem Inf Comput Sci 41: 1177–1207

    CAS  Google Scholar 

  51. Huuskonen J (2000) Estimation of aqueous solubility for a diverse set of organic compounds based on molecular topology. J Chem Inf Comput Sci 40: 773–777

    CAS  Google Scholar 

  52. Liu R, So SS (2001) Development of quantitative structure-property relationship models for the early ADME evaluation in drug discovery. 1. Aqueous solubility. J Chem Inf Comput Sci 41: 1633–1639

    CAS  Google Scholar 

  53. Hansen NT, Kouskoumvekaki I, Jørgensen FS, Brunak S, Jonsdottir SO (2006) Prediction of pH-dependent aqueous solubility of druglike molecules. J Chem Inf Comput Sci 46: 2601–2609

    CAS  Google Scholar 

  54. Dearden JC, Schüürmann G (2003) Quantitative structure-property relationships for predicting Henry’s law constant from molecular structure. Environ Toxicol Chem 22: 1755–1770

    CAS  Google Scholar 

  55. English NJ, Caroll DG (2001) Prediction of Henry’s law constants by a quantitative structure property relationship and neural networks. J Chem Inf Comput Sci 41: 1150–1161

    CAS  Google Scholar 

  56. Yaffe D, Cohen Y, Espinosa G, Arenas A, Giralt F (2003) A fuzzy ARTMAP-based quantitative structure-property relationship (QSPR) for the Henry’s law constant of organic compounds. J Chem Inf Comput Sci 43: 85–112

    CAS  Google Scholar 

  57. Berthelot M (1872) Sur les lois qui président au partage d’un corps entre deux dissolvants (Théorie). Ann Chim Phys 26: 408–417

    Google Scholar 

  58. Hansch C, Leo A (1995) Exploring QSAR. Fundamentals and applications in chemistry and biology. American Chemical Society, Washington

    Google Scholar 

  59. Nernst W (1891) Verteilung eines Stoffes zwischen zwei Lösungsmitteln und zwischen Lösungsmittel und Dampfraum. Z Phys Chem 8: 110–139

    Google Scholar 

  60. Meyer H (1899) Zur Theorie der Alkoholnarkose. Arch Exp Pathol Pharmakol 42: 109–118

    Google Scholar 

  61. Overton E. (1901) Studien über die Narkose. Gustav Fischer, Jena

    Google Scholar 

  62. Hansch C, Maloney PP, Fujita T, Muir RM (1962) Correlation of biological activity of phenoxyacetic acids with Hammett substituent constants and partition coefficients. Nature 194: 178–180

    CAS  Google Scholar 

  63. Hansch C, Fujita T (1964) \(\rho \mbox{ -}\sigma \mbox{ -}{ \pi }\) Analysis. A method for the correlation of biological activity and chemical structure. J Am Chem Soc 86: 1616–1626

    CAS  Google Scholar 

  64. Sangster J (1997) Octanol-water partition coefficients: Fundamentals and physical chemistry. Wiley, Chichester

    Google Scholar 

  65. Rekker RF, Mannhold R (1992) Calculation of drug lipophilicity. The hydrophobic fragmental constant approach. VCH, Weinheim

    Google Scholar 

  66. Schaper KJ, Samitier MLR (1997) Calculation of octanol/water partition coefficients (log P) using artificial neural networks and connection matrices. Quant Struct Act Relat 16: 224–230

    CAS  Google Scholar 

  67. Bodor N, Ming-Ju H, Harget A (1994) Neural network studies. III: Prediction of partition coefficients. J Molec Struct Theochem 309: 259–266

    Google Scholar 

  68. Yaffe D, Cohen Y, Espinosa G, Arenas A, Giralt F (2002) Fuzzy ARTMAP and back-propagation neural networks based quantitative structure-property relationships (QSPRs) for octanol-water partition coefficient of organic compounds. J Chem Inf Comput Sci 42: 162–183

    CAS  Google Scholar 

  69. Huuskonen JJ, Livingstone DJ, Tetko IV (2000) Neural network modeling for estimation of partition coefficient based on atom-type electrotopological states indices. J Chem Inf Comput Sci 40: 947–955

    CAS  Google Scholar 

  70. Tetko IV, Tanchuk VY, Villa AEP (2001) Prediction of n-octanol/water partition coefficients from PHYSPROP database using artificial neural networks and E-states indices. J Chem Inf Comput Sci 41: 1407–1421

    CAS  Google Scholar 

  71. Tetko IV, Tanchuk VY (2002) Application of associative neural networks for prediction of lipophilicity in ALOGPS 2.1 program. J Chem Inf Comput Sci 42: 1136–1145

    CAS  Google Scholar 

  72. Devillers J, Domine D, Guillon C, Bintein S, Karcher W (1997) Prediction of partition coefficients (log Poct) using autocorrelation descriptors. SAR QSAR Environ Res 7: 151–172

    CAS  Google Scholar 

  73. Devillers J, Domine D, Guillon C (1998) Autocorrelation modeling of lipophilicity with a back-propagation neural network. Eur J Med Chem 33, 659–664

    CAS  Google Scholar 

  74. Devillers J, Domine D, Guillon C, Karcher W (1998) Simulating lipophilicity of organic molecules with a back-propagation neural network. J Pharm Sci 87, 1086–1090

    CAS  Google Scholar 

  75. Broto P, Devillers J (1990) Autocorrelation of properties distributed on molecular graphs. In: Karcher W, Devillers J (eds) Practical applications of quantitative structure-activity relationships (QSAR) in environmental chemistry and toxicology, Kluwer, Dordrecht

    Google Scholar 

  76. Devillers J (1999) Autocorrelation descriptors for modeling (eco)toxicological endpoints. In: Devillers J, Balaban AT (eds) Topological indices and related descriptors in QSAR and QSPR, Gordon and Breach Publishers, Amsterdam

    Google Scholar 

  77. Devillers J, Domine D (1997) Comparison of reliability of log P values calculated from a group contribution approach and from the autocorrelation method. SAR QSAR Environ Res 7: 195–232

    CAS  Google Scholar 

  78. Devillers J (2000) EVA/PLS versus autocorrelation/neural network estimation of partition coefficients. Pespect Drug Discov Design 19: 117–131

    CAS  Google Scholar 

  79. Devillers J (1999). Calculation of octanol/water partition coefficients for pesticides. A comparative study. SAR QSAR Environ Res 10: 249–262

    CAS  Google Scholar 

  80. Domine D, Devillers J (1998) A computer tool for simulating lipophilicity of organic molecules. Sci Comput Autom 15: 55–63

    Google Scholar 

  81. Devillers J (1999) AUTOLOGPTM: A computer tool for simulating n-octanol-water partition coefficients. Analusis 27 23–29

    CAS  Google Scholar 

  82. Pitter P, Chudoba J (1990) Biodegradability of organic substances in the aquatic environment. CRC Press, Boca Raton

    Google Scholar 

  83. Kuenemann P, Vasseur P, Devillers J (1990) Structure-biodegradability relationships. In: Karcher W, Devillers J (eds) Practical applications of quantitative structure-activity relationships (QSAR) in environmental chemistry and toxicology, Kluwer, Dordrecht

    Google Scholar 

  84. Vasseur P, Kuenemann P, Devillers J (1993) Quantitative structure-biodegradability relationships for predictive purposes. In: Calamari D (ed) Chemical exposure predictions, Lewis Publishers, Boca Raton

    Google Scholar 

  85. Devillers J (1996). On the necessity of multivariate statistical tools for modeling biodegradation. In: Ford MG, Greenwood R, Brooks CT, Franke R (eds) Bioactive compound design: Possibilities for industrial use. BIOS Scientific Publishers, Oxford

    Google Scholar 

  86. Cambon B, Devillers J (1993) New trends in structure-biodegradability relationships. Quant Struct Act Relat 12 49–56

    CAS  Google Scholar 

  87. Devillers J, Karcher W (1990) Correspondence factor analysis as a tool in environmental SAR and QSAR studies. In: Karcher W, Devillers J (eds) Practical applications of quantitative structure-activity relationships (QSAR) in environmental chemistry and toxicology, Kluwer, Dordrecht

    Google Scholar 

  88. Devillers J (1996) Genetic algorithms in molecular modeling. Academic Press, London

    Google Scholar 

  89. Devillers J (1996) Designing molecules with specific properties from intercommunicating hybrid systems. J Chem Inf Comput Sci 36: 1061–1066

    CAS  Google Scholar 

  90. Devillers J (1993) Neural modelling of the biodegradability of benzene derivatives. SAR QSAR Environ Res 1: 161–167

    CAS  Google Scholar 

  91. Tabak HH, Govind R (1993) Prediction of biodegradation kinetics using a nonlinear group contribution method. Environ Toxicol Chem 12: 251–260

    CAS  Google Scholar 

  92. Devillers J, Domine D, Boethling RS (1996) Use of a backpropagation neural network and autocorrelation descriptors for predicting the biodegradation of organic chemicals. In: Devillers J (ed) Neural networks in QSAR and drug design, Academic Press, London

    Google Scholar 

  93. Domine D, Devillers J, Chastrette M, Karcher W (1993) Estimating pesticide field half-lives from a backpropagation neural network. SAR QSAR Environ Res 1: 211–219

    CAS  Google Scholar 

  94. Cros AFA (1863) Action de l’alcool amylique sur l’organisme. Thesis, University of Strasbourg, Strasbourg

    Google Scholar 

  95. Free SM, Wilson JW (1964) A mathematical contribution to structure-activity studies. J Med Chem 1: 395–399

    Google Scholar 

  96. Devillers J, Lipnick RL (1990) Practical applications of regression analysis in environmental QSAR studies. In: Karcher W, Devillers J (eds) Practical applications of quantitative structure-activity relationships (QSAR) in environmental chemistry and toxicology, Kluwer, Dordrecht

    Google Scholar 

  97. Devillers J, Bintein S, Domine D, Karcher W (1995) A general QSAR model for predicting the toxicity of organic chemicals to luminescent bacteria (Microtox® test). SAR QSAR Environ Res 4: 29–38

    CAS  Google Scholar 

  98. Devillers J, Domine D (1999) A noncongeneric model for predicting toxicity of organic molecules to Vibrio fischeri. SAR QSAR Environ Res 10: 61–70

    CAS  Google Scholar 

  99. Xu L, Ball JW, Dixon SL, Jurs PC (1994) Quantitative structure-activity relationships for toxicity of phenols using regression analysis and computational neural networks. Environ Toxicol Chem 13: 841–851

    CAS  Google Scholar 

  100. Serra JR, Jurs PC, Kaiser KLE (2001) Linear regression and computational neural network prediction of Tetrahymena acute toxicity of aromatic compounds from molecular structure. Chem Res Toxicol 14: 1535–1545

    CAS  Google Scholar 

  101. Burden FR, Winkler DA (2000) A Quantitative structure-activity relationships model for the acute toxicity of substituted benzenes to Tetrahymena pyriformis using Bayesian-regularized neural networks. Chem Res Toxicol 13: 436–440

    CAS  Google Scholar 

  102. Winkler D, Burden F (2003) Toxicity modelling using Bayesian neural nets and automatic relevance determination. In: Ford M, Livingstone D, Dearden J, van de Waterbeemd H (eds) EuroQSAR 2002. Designing drugs and crop protectants: Processes, problems and solutions, Blackwell publishing, Malden

    Google Scholar 

  103. Devillers J (2004) Linear versus nonlinear QSAR modeling of the toxicity of phenol derivatives to Tetrahymena pyriformis. SAR QSAR Environ Res 15: 237–249

    CAS  Google Scholar 

  104. Yao XJ, Panaye A, Doucet JP, Zhang RS, Chen HF, Liu MC, Hu ZD, Fan BT (2004) Comparative study of QSAR/QSPR correlations using support vector machines, radial basis function neural networks, and multiple linear regression. J Chem Inf Comput Sci 44: 1257–1266

    CAS  Google Scholar 

  105. Ren S (2003) Modeling the toxicity of aromatic compounds to Tetrahymena pyriformis: The response surface methodology with nonlinear methods. J Chem Inf Comput Sci 43: 1679–1687

    CAS  Google Scholar 

  106. Panaye A, Fan BT, Doucet JP, Yao XJ, Zhang RS, Liu MC, Hu ZD (2006) Quantitative structure-toxicity relationships (QSTRs): A comparative study of various non linear methods. General regression neural network, radial basis function neural network and support vector machine in predicting toxicity of nitro- and cyano-aromatics to Tetrahymena pyriformis. SAR QSAR Environ Res 17: 75–91

    Google Scholar 

  107. Novic M, Vracko M (2003) Artificial neural networks in molecular-structures-property studies. In: Leardi R (ed) Nature-inspired methods in chemometrics: Genetic algorithms and artificial neural networks, Elsevier, Amsterdam

    Google Scholar 

  108. Niculescu SP, Kaiser KLE Schultz TW (2000) Modeling the toxicity of chemicals to Tetrahymena pyriformis using molecular fragment descriptors and probabilistic neural networks. Arch Environ Contam Toxicol 39: 289–298

    Google Scholar 

  109. Kaiser KLE, Niculescu SP, Schultz TW (2002) Probabilistic neural network modeling of the toxicity of chemicals to Tetrahymena pyriformis with molecular fragment descriptors. SAR QSAR Environ Res 13: 57–67

    CAS  Google Scholar 

  110. Kahn I, Sild S, Maran U (2007) Modeling the toxicity of chemicals to Tetrahymena pyriformis using heuristic multilinear regression and heuristic back-propagation neural networks. J Chem Inf Model 47: 2271–2279

    CAS  Google Scholar 

  111. Kaiser KLE, Niculescu SP (2001) Modeling acute toxicity of chemicals to Daphnia magna: A probabilistic neural network approach. Environ Toxicol Chem 20: 420–431

    CAS  Google Scholar 

  112. Devillers J (2003) A QSAR model for predicting the acute toxicity of pesticides to gammarids. In: Leardi R (ed) Nature-inspired methods in chemometrics: Genetic algorithms and artificial neural networks, Elsevier, Amsterdam

    Google Scholar 

  113. Devillers J (2000) Prediction of toxicity of organophosphorus insecticides against the midge, Chironomus riparius, via a QSAR neural network model integrating environmental variables. Toxicol Meth 10: 69–79

    CAS  Google Scholar 

  114. Kaiser KLE, Niculescu SP, Schüürmann G (1997) Feed forward backpropagation neural networks and their use in predicting the acute toxicity of chemicals to the fathead minnow. Water Qual Res J Canada 32: 637–657

    CAS  Google Scholar 

  115. Kaiser KLE, Niculescu SP, McKinnon MB (1997) On simple linear regression, multiple linear regression, and elementary probabilistic neural network with Gaussian kernel’s performance in modeling toxicity values to fathead minnow based on Microtox data, octanol/water partition coefficient, and various structural descriptors for a 419-compound dataset In: Chen F, Schüürmann G, Proceedings of the 7th international workshop on QSAR in environmental sciences, SETAC Press

    Google Scholar 

  116. Eldred DV, Weikel CL, Jurs PC, Kaiser KLE (1999) Prediction of fathead minnow acute toxicity of organic compounds from molecular structure. Chem Res Toxicol 12: 670–678

    CAS  Google Scholar 

  117. Kaiser KLE, Niculescu SP (1999) Using probabilistic neural networks to model the toxicity of chemicals to the fathead minnow (Pimephales promelas): A study based on 865 compounds. Chemosphere 38: 3237–3245

    CAS  Google Scholar 

  118. Niculescu SP, Atkinson A, Hammond G, Lewis M (2004) Using fragment chemistry data mining and probabilistic neural networks in screening chemicals for acute toxicity to the fathead minnow. SAR QSAR Environ Res 15: 293–309

    CAS  Google Scholar 

  119. Espinosa G, Arenas A, Giralt F (2002) An integrated SOM-fuzzy ARTMAP neural system for the evaluation of toxicity. J Chem Inf Comput Sci 42: 343–359

    CAS  Google Scholar 

  120. Mazzatorta P, Benfenati E, Neagu CD, Gini G (2003) Tuning neural and fuzzy-neural networks for toxicity modeling. J Chem Inf Comput Sci 43: 513–518

    CAS  Google Scholar 

  121. Vracko M, Bandelj V, Barbieri P, Benfenati E, Chaudry Q, Cronin M, Devillers J, Gallegos A, Gini G, Gramatica P, Helma C, Mazzatorta P, Neagu D, Netzeva T, Pavan M, Patlewicz G, Randic M, Tsakovska I, Worth A (2006) Validation of counter propagation neural network models for predictive toxicology according to the OECD principles: A case study. SAR QSAR Environ Res 17: 265–284

    CAS  Google Scholar 

  122. Devillers J (2005) A new strategy for using supervised artificial neural networks in QSAR. SAR QSAR Environ Res 16: 433–442

    CAS  Google Scholar 

  123. Devillers J, Flatin J (2000) A general QSAR model for predicting the acute toxicity of pesticides to Oncorhynchus mykiss. SAR QSAR Environ Res 11: 25–43

    CAS  Google Scholar 

  124. Devillers J. (2001) A general QSAR model for predicting the acute toxicity of pesticides to Lepomis macrochirus. SAR QSAR Environ Res 11: 397–417

    CAS  Google Scholar 

  125. Devillers J, Pham-Delègue MH, Decourtye A, Budzinski H, Cluzeau S, Maurin G (2002) Structure-toxicity modeling of pesticides to honey bees. SAR QSAR Environ Res 13: 641–648

    CAS  Google Scholar 

  126. Devillers J, Pham-Delègue MH, Decourtye A, Budzinski H, Cluzeau S, Maurin G (2003) Modeling the acute toxicity of pesticides to Apis mellifera. Bull Insect 56: 103–109

    Google Scholar 

  127. Devillers J (2008) Artificial neural network modeling in environmental toxicology. In: Livingstone D (ed) Artificial neural networks: Methods and protocols, Humana Press, New York

    Google Scholar 

  128. WHO (2003) Health aspects of air pollution with particulate matter, ozone and nitrogen dioxide, Germany, Bonn

    Google Scholar 

  129. Ferré-Huguet N, Nadal M, Schuhmacher M, Domingo JL (2006) Environmental impact and human health risks of polychlorinated dibenzo-p-dioxins and dibenzofurans in the vicinity of a new hazardous waste incinerator: A case study. Environ Sci Technol 40: 61–66

    Google Scholar 

  130. Lee J, Kwak IS, Lee E, Kim KA (2007) Classification of breeding bird communities along an urbanization gradient using an unsupervised artificial neural network. Ecol Model 203: 62–71

    Google Scholar 

  131. Devillers J, Doré JC (1989) Heuristic potency of the minimum spanning tree (MST) method in toxicology. Ecotoxicol Environ Safety 17: 227–235

    CAS  Google Scholar 

  132. Wienke D, Hopke PK (1994) Visual neural mapping technique for locating fine airborne particles sources. Environ Sci Technol 28: 1015–1022

    CAS  Google Scholar 

  133. Wienke D, Gao N, Hopke PK (1994) Multiple site receptor modeling with a minimal spanning tree combined with a neural network. Environ Sci Technol 28: 1023–1030

    CAS  Google Scholar 

  134. Wienke D, Hopke PK (1994) Projection of Prim’s minimal spanning tree into a Kohonen neural network for identification of airborne particle sources by their multielement trace patterns. Anal Chim Acta 291: 1–18

    CAS  Google Scholar 

  135. Wienke D, Xie Y, Hopke PK (1995) Classification of airborne particles by analytical SEM imaging and a modified Kohonen neural network (3MAP). Anal Chim Acta 310: 1–14

    CAS  Google Scholar 

  136. Domine D, Devillers J, Chastrette M, Karcher W (1993) Non-linear mapping for structure-activity and structure-property modelling. J Chemom 7: 227–242

    CAS  Google Scholar 

  137. Domine D, Devillers J, Wienke D, Buydens L (1996) Test series selection from nonlinear neural mapping. Quant Struct Act Relat 15: 395–402

    CAS  Google Scholar 

  138. Domine D, Wienke D, Devillers J, Buydens L (1996) A new nonlinear neural mapping technique for visual exploration of QSAR data. In: Devillers J (ed) Neural networks in QSAR and drug design, Academic Press, London

    Google Scholar 

  139. Kolehmainen M, Martikainen H, Hiltunen T, Ruuskanen J (2000) Forecasting air quality parameters using hybrid neural network modelling. Environ Monit Ass 65: 277–286

    CAS  Google Scholar 

  140. Owega S, Khan BUZ, Evans GJ, Jervis RE, Fila M (2006) Identification of long-range aerosol transport patterns to Toronto via classification of back trajectories by cluster analysis and neural network techniques. Chemom Int Lab Syst 83: 26–33

    CAS  Google Scholar 

  141. Wienke D, Domine D, Buydens L, Devillers J (1996) Adaptive resonance theory based neural networks explored for pattern recognition analysis of QSAR data. In: Devillers J (ed) Neural networks in QSAR and drug design, Academic Press, London

    Google Scholar 

  142. Spencer MT, Shields LG, Prather KA (2007) Simultaneous measurement of the effective density and chemical composition of ambient aerosol particles. Environ Sci Technol 41: 1303–1309

    CAS  Google Scholar 

  143. Ibarra-Berastegi G, Elias A, Barona A, Saenz J, Ezcurra A, Diaz de Argandonia J (2008) From diagnosis to prognosis for forecasting air pollution using neural networks: Air pollution monitoring in Bilbao. Environ Model Soft 23: 622–637

    Google Scholar 

  144. Kurt A, Gulbagci B, Karaca F, Alagha O (2008) An online air pollution forecasting system using neural networks. Environ Int 34: 592–598

    CAS  Google Scholar 

  145. Sahin U, Ucan ON, Bayat C, Oztorun N (2005) Modeling of SO2 distribution in Istanbul using artificial neural networks. Environ Model Ass 10: 135–142

    Google Scholar 

  146. Chelani AB, Singh RN, Devotta S (2005) Nonlinear dynamical characterization and prediction of ambient nitrogen dioxide concentration. Water Air Soil Pollut 166: 121–138

    CAS  Google Scholar 

  147. Niska H, Hiltunen T, Karppinen A, Ruuskanen J, Kolehmainen M (2004) Evolving the neural network model for forecasting air pollution time series. Eng Appl Artif Int 17: 159–167

    Google Scholar 

  148. Gardner MW, Dorling SR (2000) Statistical surface ozone models: An improved methodology to account for non-linear behaviour. Atmos Environ 34: 21–34

    CAS  Google Scholar 

  149. Balaguer Ballester E, Camps i Valls G, Carrasco-Rodriguez JL, Soria Olivas E, del Valle-Tascon S (2002) Effective 1-day ahead prediction of hourly surface ozone concentrations in eastern Spain using linear models and neural networks. Ecol Model 156: 27–41

    Google Scholar 

  150. Abdul-Wahab SA, Al-Alawi SM (2002) Assessment and prediction of tropospheric ozone concentration levels using artificial neural networks. Environ Model Soft 17: 219–228

    Google Scholar 

  151. Corani G (2005) Air quality prediction in Milan: Feed-forward neural networks, pruned neural networks and lazy learning. Ecol Model 185: 513–529

    Google Scholar 

  152. Sousa SIV, Martins FG, Pereira MC, Alvim-Ferraz MCM (2006) Prediction of ozone concentrations in Oporto city with statistical approaches. Chemosphere 64: 1141–1149

    CAS  Google Scholar 

  153. Lu HC, Hsieh JC, Chang TS (2006) Prediction of daily maximum ozone concentrations from meteorological conditions using a two-stage neural network. Atmos Res 81: 124–139

    CAS  Google Scholar 

  154. Karatzas KD, Kaltsatos S (2007) Air pollution modeling with the aid of computational intelligence methods in Thessaloniki, Greece. Simulat Model Pract Theor 15: 1310–1319

    Google Scholar 

  155. Salazar-Ruiz E, Ordieres JB, Vergara EP, Capuz-Rizo SF (2008) Development and comparative analysis of tropospheric ozone prediction models using linear and artificial intelligence-based models in Mexicalli, Baja California (Mexico) and Calexico, California (US). Environ Model Soft 23: 1056–1069

    Google Scholar 

  156. Slini T, Kaprara A, Karatzas K, Moussiopoulos N (2006) PM10 forecasting for Thessaloniki, Greece. Environ Model Soft 21: 559–565

    Google Scholar 

  157. Papanastasiou DK, Melas D, Kioutsioukis I (2007) Development and assessment of neural network and multiple regression models in order to predict PM10 levels in a medium-sized Mediterranean city. Water Air Soil Pollut 182: 325–334

    CAS  Google Scholar 

  158. Perez P, Reyes J (2001) Prediction of particulate air pollution using neural techniques. Neural Comput Applic 10: 165–171

    Google Scholar 

  159. Ordieres JB, Vergara EP, Capuz RS, Salazar RE (2005) Neural network prediction model for fine particulate matter (PM2.5) on the US-Mexico border in El Paso (Texas) and Ciudad Juárez (Chihuahua). Environ Model Soft 20: 547–559

    Google Scholar 

  160. Dimopoulos I, Chronopoulos J, Chronopoulou-Sereli A, Lek S (1999) Neural network models to study relationships between lead concentration in grasses and permanent urban descriptors in Athens city (Greece). Ecol Model 120: 157–165

    CAS  Google Scholar 

  161. Nagendra SMS, Khare M (2006) Artificial neural network approach for modelling nitrogen dioxide dispersion from vehicular exhaust emissions. Ecol Model 190: 99–115

    CAS  Google Scholar 

  162. Jensen RR, Karki S, Salehfar H (2004) Artificial neural network-based estimation of mercury speciation in combustion flue gases. Fuel Process Technol 85: 451–462

    CAS  Google Scholar 

  163. Karakitsios SP, Papaloukas CL, Kassomenos PA, Pilidis GA (2006) Assessment and prediction of benzene concentrations in a street canyon using artificial neural networks and deterministic models. Their response to “what if” scenarios. Ecol Model 193: 253–270

    CAS  Google Scholar 

  164. De Vito S, Massera E, Piga M, Martinotto L, Di Francia G (2008) On field calibration of an electronic nose for benzene estimation in an urban pollution monitoring scenario. Sensors Actuators B 129: 750–757

    Google Scholar 

  165. Devillers J, Guillon C, Domine D (1996) A neural structure-odor threshold model for chemicals of environmental and industrial concern. In: Devillers J (ed) Neural networks in QSAR and drug design, Academic Press, London

    Google Scholar 

  166. Guyot M, Doré JC, Devillers J (2004) Typology of secondary cyanobacterial metabolites from minimum spanning tree analysis. SAR QSAR Environ Res 15: 101–114

    CAS  Google Scholar 

  167. Recknagel F, French M, Harkonen P, Yabunaka KI (1997) Artificial neural network approach for modelling and prediction of algal blooms. Ecol Model 96: 11–28

    CAS  Google Scholar 

  168. Lee JHW, Huang Y, Dickman M, Jayawardena AW (2003) Neural network modelling of coastal algal blooms. Ecol Model 159: 179–201

    CAS  Google Scholar 

  169. Oh HM, Ahn CY, Lee JW, Chon TS, Choi KH, Park YS (2007) Community patterning and identification of predominant factors in algal bloom in Deachung reservoir (Korea) using artificial neural networks. Ecol Model 203: 109–118

    Google Scholar 

  170. Kim CK, Kwak IS, Cha EY, Chon TS (2006) Implementation of wavelets and artificial neural networks to detection of toxic response behavior of chironomids (Chironomidae: Diptera) for water quality monitoring. Ecol Model 195: 61–71

    Google Scholar 

  171. Ray C, Klindworth KK (2000) Neural networks for agrichemical vulnerability assessment of rural private wells. J Hydrol Eng 5: 162–171

    Google Scholar 

  172. Mishra A, Ray C, Kolpin DW (2004) Use of qualitative and quantitative information in neural networks for assessing agricultural chemical contamination of domestic wells. J Hydrol Eng 9: 502–511

    Google Scholar 

  173. Sahoo GB, Ray C, Wade HF (2005) Pesticide prediction in ground water in North Carolina domestic wells using artificial neural networks. Ecol Model 183: 29–46

    CAS  Google Scholar 

  174. Sahoo GB, Ray C, Mehnert E, Keefer DA (2006) Application of artificial neural networks to assess pesticide contamination in shallow groundwater. Sci Total Environ 367: 234–251

    CAS  Google Scholar 

  175. Stenemo F, Lindahl AML, Gärdenäs A, Jarvis N (2007) Meta-modeling of the pesticide fate model MACRO for groundwater exposure assessments using artificial neural networks. J Contam Hydrol 93: 270–283

    CAS  Google Scholar 

  176. El Tabach E, Lancelot L, Shahrour I, Najjar Y (2007) Use of artificial neural network simulation metamodelling to assess groundwater contamination in a road project. Math Comput Model 45: 766–776

    Google Scholar 

  177. Samecka-Cymerman A, Stankiewicz A, Kolon K, Kempers AJ (2007) Self-organizing feature map (neural networks) as a tool in classification of the relation between chemical composition of aquatic bryophytes and types of streambeds in the Tatra national park in Poland. Chemosphere 67: 954–960

    CAS  Google Scholar 

  178. Gagné F, Blaise C (1997) Predicting the toxicity of complex mixtures using artificial neural networks. Chemosphere 35: 1343–1363

    Google Scholar 

  179. Pigram GM, Macdonald TR (2001) Use of neural network models to predict industrial bioreactor effluent quality. Environ Sci Technol 35: 157–162

    CAS  Google Scholar 

  180. Lopez Garcia H, Machon Gonzalez I (2004) Self-organizing map and clustering for wastewater treatment monitoring. Eng Appl Art Int 17: 215–225

    Google Scholar 

  181. Nadal M, Schuhmacher M, Domingo JL (2004) Metal pollution of soils and vegetation in an area with petrochemical industry. Sci Total Environ 321: 59–69

    CAS  Google Scholar 

  182. Arias R, Barona A, Ibarra-Berastegi G, Aranguiz I, Elias A (2008) Assessment of metal contamination in degded sediments using fractionation and self-organizing maps. J Hazad Mat 151: 78–85

    CAS  Google Scholar 

  183. Götz R, Lauer R (2003) Analysis of sources of dioxin contamination in sediments and soils using multivariate statistical methods and neural networks. Environ Sci Technol 37: 5559–5565

    Google Scholar 

  184. Kanevski MF (1999) Spatial predictions of soil contamination using general regression neural networks. Int J Syst Res Inf Syst 8: 241–256

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James Devillers .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Devillers, J. (2009). Artificial Neural Network Modeling of the Environmental Fate and Ecotoxicity of Chemicals. In: Devillers, J. (eds) Ecotoxicology Modeling. Emerging Topics in Ecotoxicology, vol 2. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-0197-2_1

Download citation

Publish with us

Policies and ethics