Skip to main content

Remote Sensing Phenology

Status and the Way Forward

  • Chapter
  • First Online:
Phenology of Ecosystem Processes

Abstract

A number of approaches using a variety of satellite remote sensing products have been used to derive metrics related to the timing of biological events (or land surface phenology, LSP). The advantages of utilizing remote sensing for phenology applications are the ability to capture the continuous expression of phenology patterns across the landscape and the ability to retrospectively observe phenology from archived satellite data sets (e.g. Landsat and Advanced Very High Resolution Radiometer). However, LSP databases have not yet been satisfactorily validated due to the difficulty in obtaining sufficiently extensive ground observations throughout the growing season. A multi-level validation approach that uses ground observations, dedicated web cameras, and high, medium, and coarse spatial resolution satellite data is needed to give scientists an improved level of confidence in utilizing the data. Many of these shortcomings are being addressed by phenology networks across the globe such as the U.S. National Phenology Network. Even without extensive validation, a number of applications areas have employed LSP data successfully, including studies on ecosystems analysis, disasters, land use, and climate change. Land surface phenology promises to continue contributing to these types of applications, and will also likely serve as an important early indicator of environmental effects of climate change

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahl, D.E., Gower, S.T., Burrows, S.N., Shabanov, N.V., Myneni, R.B. and Knyazikhin, Y. (2006) Monitoring spring canopy phenology of a deciduous broadleaf forest using MODIS. Remote Sens. Environ. 104, 88–95.

    Article  Google Scholar 

  • Badeck, F-W., Bondeau, A., Bottcher, K., Doktor, D., Lucht, W., Schaber, J. and Sitch, S. (2004) Responses of spring phenology to climate change. New Phytol. 162, 295–309.

    Article  Google Scholar 

  • Betancourt, J.L., Schwartz, M.D., Breshears, D.D., Brewer, C.A., Frazer, G., Gross, J.E., Mazer, S.J., Reed, B.C., Wilson, B.E. (2007) Evolving plans for the USA National Phenology Network. EOS Trans. AGU 88, 211.

    Article  Google Scholar 

  • Betancourt, J.L, Schwartz, M.D., Breshears, D.D., Cayan, D.R., Dettinger, M.D., Inouye, D.W. Post, E. and Reed, B. (2005) Implementing a U.S. National Phenology Network. EOS Trans. AGU 86, 539–541.

    Google Scholar 

  • Bogaert, J., Zhou, L., Tucker, C.J., Myneni, R.B. and Ceulemans, R. (2002) Evidence for a persistent and extensive greening trend in Eurasia inferred from satellite vegetation index data. J. Geophys. Res. 107, (D11) 10.1029/2001JD001075.

    Google Scholar 

  • Bradley, B.A., Jacob, R.W., Hermance, J.F. and Mustard, J.F. (2007) A curve fitting procedure to derive inter-annual phenologies from time series of noisy satellite NDVI data. Remote Sens. Environ. 106, 137–145.

    Article  Google Scholar 

  • Brown, J.F., Wardlow, B.D., Tadesse, T., Hayes, M.J. and Reed, B.C. (2008) The Vegetation Drought Response Index (VegDRI), A new integrated approach for monitoring drought stress in vegetation, GIScience Remote Sens. 45, 16–46.

    Article  Google Scholar 

  • Bunn, A.G. and Goetz, S.J. (2006) Trends in satellite-observed circumpolar photosynthetic activity from 1982 to 2003: The influence of seasonality, cover type, and vegetation density. Earth Interact. 10, 1–19.

    Article  Google Scholar 

  • Cao, M., Prince, S.D., Small, J. and Goetz, S.J. (2004) Remotely sensed interannual variations and trends in terrestrial net primary productivity 1981–2000. Ecosystems 7, 233–242.

    Article  Google Scholar 

  • Ceccato, P., Flasse, S., Tarantola, S., Jacquemoud, S. and Gregoire, J.M. (2001) Detecting vegetation leaf water content using reflectance in the optical domain. Remote Sens. Environ. 77, 22–33.

    Article  Google Scholar 

  • Ceccato, P., Gobron, N., Flasse, S., Pinty, B. and Tarantola, S. (2002) Designing a spectral index to estimate vegetation water content from remote sensing data, Part 1 - Theoretical approach. Remote Sens. Environ. 82, 188–197.

    Article  Google Scholar 

  • Chen, X., Hu, B., and Yu, R. (2005) Spatial and temporal variation of phenological growing season and climate change impacts in temperature eastern China. Global Change Biol. 11, 1118–1130.

    Article  Google Scholar 

  • Delbart, N., Picard, G., Toan, T.L., Kegoat, L. and Quegan, S. (2005) Spring phenology in Siberia in 1982–2004, observations by remote sensing, modeling, and impact on the terrestrial carbon budget. Geophys. Res. Abstr. 7, 01283.

    Google Scholar 

  • Delbart, N., Toan, T.O., Kergoat, L. and Fedotova, V. (2006) Remote sensing of spring phenology in boreal regions; A free of snow-effect method using NOAA-AVHRR and SPOT-VGT data (1982–2004). Remote Sens. Environ. 101, 52–62.

    Article  Google Scholar 

  • de Beurs, K.M. and Henebry, G.M. (2005) Land surface phenology and temperature variation in the International Geosphere-Biosphere Program high-latitude transects. Global Change Biol. 11, 779–790.

    Article  Google Scholar 

  • de Beurs, K.M. and Henebry, G.M. (2004) Land surface phenology, climatic variation, and institutional change, Analyzing agricultural land cover change in Kazakhstan. Remote Sens. Environ. 89, 497–509.

    Article  Google Scholar 

  • Deng, F., Su, G. and Liu, C. (2007) Seasonal variation of MODIS Vegetation Indexes and their statistical relationship with climate over the subtropic evergreen forest in Zhejiang, China. IEEE Geosci. Remote Sens. Lett. 4, 236–240.

    Article  Google Scholar 

  • Doubková, M. and Henebry, G.M. (2006) Synergistic use of AMSR-E and MODIS data for understanding grassland land surface phenology. IGARSS 2006, Denver, Colorado, July 30-August 4, 2006.

    Google Scholar 

  • Eidenshink, J.C. (1992) The 1990 Conterminous U.S. AVHRR Data Set. Photogramm. Eng. Rem. Sens. 58, 809–813.

    Google Scholar 

  • Fisher, J.I. and Mustard, J.F. (2007) Cross-scalar satellite phenology from ground, Landsat, and MODIS data. Remote Sens. Environ. 109, 261–273.

    Article  Google Scholar 

  • Fisher, J.I., Mustard, J.F. and Vadeboncoeur, M.A. (2006) Green leaf phenology at Landsat resolution, Scaling from the field to the satellite. Remote Sens. Environ. 100, 265–279.

    Article  Google Scholar 

  • Fisher, J. I., Richardson, A.D. and Mustard, J. F. (2007) Phenology model from surface meteorology does not capture satellite-based green-up estimations. Global Change Biol. 13, 707–721.

    Article  Google Scholar 

  • Friedl, M., Henebry, G.M., Reed, B.C., Huete, A., White, M.A., Morisette, J.T., Nemani, R., Zhang, X. and Myneni, R. (2006) Land Surface Phenology, A Community White Paper requested by NASA, ftp,//zeus.geog.umd.edu/Land_ESDR/Phenology_Friedl_white-paper.pdf, Apr 2006.

    Google Scholar 

  • Gallo, K., Ji, L., Reed, B.C., Eidenshink, J. and Dwyer, J. (2005) Multi-platform comparisons of MODIS and AVHRR normalized difference vegetation index data. Remote Sens. Environ. 99, 221–231.

    Article  Google Scholar 

  • Gallo, K., Ji, L., Reed, B.C., Dwyer, J. and Eidenshink, J. (2004) Comparison of MODIS and AVHRR 16-day normalized difference vegetation index composite data, Geophys. Res. Lett. 31 (L07502), doi,10.1029/2003GL019385.

    Google Scholar 

  • Gao, B.C. (1996) NDWI - A normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sens. Environ. 58, 257–266.

    Article  Google Scholar 

  • Gao, F., Morisette, J.T., Wolfe, R.E., Ederer, G., Pedelty, J., Masuoka, E., Myneni, R., Bin, T. and Nightingale, J. (2008) An algorithm to produce temporally and spatially continuous MODIS-LAI time series, IEEE Geosci. Remote Sens. Lett. 5, 60–64.

    Article  Google Scholar 

  • Gitelson, A.A. (2004) Wide dynamic range vegetation index for remote quantification of biophysical characteristics of vegetation. J. Plant Physiol. 161, 165–173.

    Article  CAS  Google Scholar 

  • Goetz, S.J., Bunn, A.G., Fiske, G.J. and Houghton, R.A. (2005) Satellite-observed photosynthetic trends across boreal North America associated with climate and fire disturbance. Proc. Natl. Acad. Sci. USA 102, 13521–13525.

    Article  CAS  Google Scholar 

  • Goward, S.N., Tucker, C.J. and Dye, D.G. (1985) North American vegetation patterns observed with the NOAA-7 advanced very high resolution radiometer. Vegetation 64, 3–14.

    Article  Google Scholar 

  • Hayhoe, K., Wake, C., Huntington, T.G., Luo, L., Schwartz, M.D., Sheffield, J., Wood, E., Anderson, B., Bradbury, J., DeGaetano, A., Troy, T.J. and Wolfe, D. (2007) Past and future changes in ­climate and hydrological indicators in the U.S. Northeast. Clim. Dyn. 28, 381–407.

    Article  Google Scholar 

  • Henebry, G.M., de Beurs, K.M. and Gitelson, A.A. (2005) Land surface phenologies of Uzbekistan and Turkmenistan between 1982 and 1999. Arid Ecosyst. 11, 25–32.

    Google Scholar 

  • Hoare, D. and Frost, P. (2004) Phenological description of natural vegetation in southern Africa using remotely-sensed vegetation data. Appl. Veg. Sci. 7, 19–28.

    Article  Google Scholar 

  • Huete, A., Didan, K., Miura, T., Rodriguez, E.P., Gao, X. and Ferreira, L.G. (2002) Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Enviorn. 83, 195–213.

    Article  Google Scholar 

  • Huete, A.R., Liu, H.Q., Batchily, K. and van Leeuwen, W. (1997) A comparison of vegetation indices over a global set of TM images for EOS-MODIS. Remote Sens. Environ. 59, 440–451.

    Article  Google Scholar 

  • Huete, A.R. (1988) A soil adjusted vegetation index (SAVI). Remote Sens. Environ. 25, 295–309.

    Article  Google Scholar 

  • Hunt, E.R. and Rock, B.N. (1989) Detection of changes in leaf water-content using near-infrared and middle-infrared reflectances. Remote Sens. Environ. 30, 43–54.

    Article  Google Scholar 

  • Justice, C.O., Townshend, J.R.G., Vermote, E.F., Masuoka, E., Wolfe, R.E., Saleous, N., Roy, D.P. and Morisette, J.T. (2002) An overview of MODIS Land data processing and product status. Remote Sens. Environ. 83, 3–15.

    Article  Google Scholar 

  • Kang, S., Running, S.W., Lim, J-H., Zhao, M., Park, C.R. and Loehman, R. (2003) A regional phenology model from detecting onset of greenness in temperate mixed forests, Korea. An application of MODIS leaf area index. Remote Sens. Environ. 86, 232–242.

    Google Scholar 

  • Kathuroju, N., White, M.A., Symanzik, J., Schwartz, M.D., Powell, J.A. and Nemani, R. (2007) On the use of the Advanced Very High Resolution Radiometer for development of prognostic land surface phenology models. Ecol. Modell. 201, 144–156.

    Article  Google Scholar 

  • Kaufman, Y.J. and Tanre, D. (1992) Atmospherically resistant vegetation index (ARVI) for EOS-MODIS. IEEE Trans. Geosci. Remote Sens. 30, 261–270.

    Article  Google Scholar 

  • Lloyd, D. (1990) A phenological classification of terrestrial vegetation cover using shortwave vegetation index imagery. Int. J. Remote Sens. 12, 2269–2279.

    Article  Google Scholar 

  • Loveland, T.R., Merchant, J.W., Ohlen, D.O. and Brown, J.F. (1991) Development of a land-cover characteristics database for the conterminous U.S. Photogramm. Eng. Rem. Sens. 57, 1453–1463.

    Google Scholar 

  • Malingreau, J.P., Tucker, C.J. and Laporte, N. (1989) AVHRR for monitoring global tropical deforestation. Int. J. Remote Sens. 10, 855–867.

    Article  Google Scholar 

  • Menzel, A. (2003) Europe. In: Schwartz, M.D. (Ed.) Phenology, An Integrative Environmental Science. Kluwer Academic Publishers, Dordrecht, Netherlands, pp. 45–56.

    Google Scholar 

  • Murphy, R.E., Barnes, W.L., Lyapustin, A.I., Privette, J., Welsch, C., DeLuccia, F., Swenson, H., Schueler, C.F., Ardanuy, P.E. and Kealy, P.S.M. (2001) Using VIIRS to provide data continuity with MODIS. IEEE Geoscience and Remote Sensing Symposium 03, 1212–1214.

    Google Scholar 

  • Pinty, B. and Verstraete, M.M. (1992) GEMI, a non-linear index to monitor global vegetation from satellites. Vegetatio 101, 5–20.

    Article  Google Scholar 

  • Reed, B.C. (2006) Trend analysis of time-series phenology of North America derived from satellite data. GIScience Remote Sens. 43, 24–38.

    Article  Google Scholar 

  • Reed, B.C., Brown, J.F., VanderZee, D., Loveland, T.R., Merchant, J.W. and Ohlen, D.O. (1994) Measuring phenological variability from satellite imagery. J. Veg. Sci. 5, 703–714.

    Article  Google Scholar 

  • Richardson, A.D., Jenkins, J.P., Braswell, B.H., Hollinger, D.Y., Ollinger, S.V. and Smith, M.L. (2007) Use of digital webcam images to track spring green-up in a deciduous forest. Oecologia 152, 323–334.

    Article  Google Scholar 

  • Schwartz, M.D. (1997) Spring index models: an approach to connecting satellite and surface phenology. In: Lieth, H., Schwartz, M.D. (Eds.) Phenology in Seasonal Climates. Backhuys Publishers, Leiden, Netherlands, pp. 23–38.

    Google Scholar 

  • Schwartz, M.D. and Reed, B.C. (1999) Surface phenology and satellite sensor-derived onset of greenness: an initial comparison. Int. J. Remote Sens. 20, 3451–3457.

    Article  Google Scholar 

  • Schwartz, M.D., Reed, B.C. and White, M.A. (2002) Assessing satellite-derived start-of-season measures in the conterminous USA. Int. J. Climatol. 22, 1793–1805.

    Article  Google Scholar 

  • Schwartz, M.D., Ahas, R. and Aasa, A. (2006) Onset of spring starting earlier across the Northern Hemisphere. Global Change Biol. 12, 343–351.

    Article  Google Scholar 

  • Slayback, D.A., Pinzon, J.E., Los, S.O. and Tucker, C.J. (2003) Northern hemispheric photosynthetic trends 1982–99. Global Change Biol. 9, 1–15.

    Article  Google Scholar 

  • Studer, S., Stöckli, R., Appenzeller, C. and Vidale, P.L. (2007) A comparative study of satellite and ground-based phenology. Int. J. Biometeorol. 51, 405–414.

    Article  CAS  Google Scholar 

  • Tateishi, R. and Ebata, M. (2004) Analysis of phenological change patterns using 1982–2000 Advanced Very High Resolution Radiometer (AVHRR) data. Int. J. Remote Sens. 25, 2287–2300.

    Article  Google Scholar 

  • Townshend, J.R.G., Justice, C.O. and Skole, D. (1994) The 1 km resolution global data set, needs of the International Geosphere Biosphere Programme. Int. J. Remote Sens. 15, 3417–3441.

    Article  Google Scholar 

  • Tucker, C.J., Pinzon, J.E. and Brown, M.E. (2004) Global Inventory Modeling and Mapping Studies, NA94apr15b.n11-VIg, 2.0, Global Land Cover Facility, University of Maryland, College Park, Maryland, 04/15/1994.

    Google Scholar 

  • Tucker, C.J., and Sellers, P.J. (1986) Satellite remote sensing of primary productivity, Int. J. Remote Sens. 7, 1395–1416.

    Article  Google Scholar 

  • Verstraete, M.M., Gabron, N., Aussedat, O., Robustelli, M., Pinty, B., Widlowski, J.L., Lavergne, T. and Taberner, M. (2008) An automatic procedure to identify key vegetation phenology events using the JRC-FAPAR products. Adv. Space Res. 41, 1773–1783.

    Article  Google Scholar 

  • Wang, J., Rich, P.M. and Price, K.P. (2003) Temporal responses of NDVI to precipitation and temperature in the central Great Plains, USA. Int. J. Remote Sens. 24, 2345–2364.

    Article  Google Scholar 

  • Westerling, A.L., Hidalgo, H.G., Cayan, D.R. and Swetnam, T.W. (2006) Warming and earlier spring increase Western U.S. forest wildfire activity. Science 18, 940–943.

    Google Scholar 

  • White M.A. and Nemani, R.R. (2006) Real-time monitoring and short-term forecasting of land surface phenology. Remote Sens. Environ. 104, 43–49.

    Article  Google Scholar 

  • White, M.A., Nemani, R.R., Thornton, P.E. and Running, S.W. (2002) Satellite evidence of phenological differences between urbanized and rural areas of the eastern United States deciduous broadleaf forest. Ecosystems 5, 260–273.

    Article  Google Scholar 

  • White, M.A., Thornton, P.E. and Running, S.W. (1997) A continental phenology model for monitoring vegetation responses to interannual climatic variability. Global Biogeochem. Cycles 11, 217–234.

    Article  CAS  Google Scholar 

  • Woodcock, C.E., Allen, R., Anderson, M., Belward, A., Bindschadler, R., Cohen, W., Gao, F., Goward, S.N., Helder, D., Helmer, E., Nemani, R., Oreopoulos, L., Schott, J., Thenkabail, P.S., Vermote, E.F., Vogelmann, J., Wulder, M.A. and Wynne, R. (2008) Free access to Landsat imagery. Science 320, 1011.

    Article  CAS  Google Scholar 

  • Xiao, X., Boles, S., Liu, J.Y., Zhuang, D.F. and Liu, M.L. (2002) Characterization of forest types in Northeastern China, using multi-temporal SPOT-4 VEGETATION sensor data. Remote Sens. Environ. 82, 335–348

    Article  Google Scholar 

  • Zhang, X., Tarpley, D. and Sullivan, J.T. (2007) Diverse responses of vegetation phenology to a warming climate, Geophys. Res. Lett. 34, L19405.

    Article  Google Scholar 

  • Zhang, X., Friedl, M.A. and Schaaf, C.B. (2006) Global vegetation phenology from Moderate Resolution Imaging Spectroradiometer (MODIS). Evaluation of global patterns and comparison with in situ measurements. J. Geophys. Res. 111, G04017.

    Google Scholar 

  • Zhang, X., Friedl, M.A., Schaaf, C.B. and Strahler, A.H. (2004a) Climate controls on vegetation phenological patterns in northern mid- and high latitudes inferred from MODIS data. Global Change Biol. 10, 1133–1145.

    Article  Google Scholar 

  • Zhang, X., Friedl, M.A., Schaaf, C.B. and Strahler, A.H. (2004b) The footprint of urban climates on vegetation phenology. Geophys. Res. Lett. 31, L12209.

    Article  Google Scholar 

  • Zhang, X., Friedl, M.A., Schaaf, C.B., Strahler, A.H., Hodges, J.C.F., Gao, F., Reed, B.C., Huete, A. (2003) Monitoring vegetation phenology using MODIS. Remote Sens. Environ. 84, 471–475.

    Article  Google Scholar 

  • Zhou, L., Kaufmann, R. K., Tian, Y., Myneni, R.B. and Tucker, C. J. (2003) Relation between interannual variations in satellite measures of northern greenness and climate between 1982 and 1999. J. Geophys. Res. 108 (D1), 4004, doi:10.1029/2002JD002510.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bradley C. Reed .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Reed, B.C., Schwartz, M.D., Xiao, X. (2009). Remote Sensing Phenology. In: Noormets, A. (eds) Phenology of Ecosystem Processes. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-0026-5_10

Download citation

Publish with us

Policies and ethics