Skip to main content

Conformal Field Theory Applied to Loop Models

  • Chapter
Polygons, Polyominoes and Polycubes

Part of the book series: Lecture Notes in Physics ((LNP,volume 775))

The application of methods of quantum field theory to problems of statistical mechanics can in some sense be traced back to Onsager's 1944 solution [1] of the two-dimensional Ising model. It does however appear fair to state that the 1970's witnessed a real gain of momentum for this approach, when Wilson's ideas on scale invariance [2] were applied to study critical phenomena, in the form of the celebrated renormalisation group [3]. In particular, the so-called ε expansion permitted the systematic calculation of critical exponents [4], as formal power series in the space dimensionality d, below the upper critical dimension d c . An important lesson of these efforts was that critical exponents often do not depend on the precise details of the microscopic interactions, leading to the notion of a restricted number of distinct universality classes.

Meanwhile, further exact knowledge on two-dimensional models had appeared with Lieb's 1967 solution [5] of the six-vertex model and Baxter's subsequent 1971 generalisation [6] to the eight-vertex model. These solutions challenged the notion of universality class, since they provided examples of situations where the critical exponents depend continuously on the parameters of the underlying lattice model. On the other hand, the techniques of integrability used relied crucially on certain exact microscopic conservation laws, thus placing important restrictions on the models which could be thus solved.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L. Onsager, Crystal statistics. I. A two-dimensional model with an order-disorder transition, Phys. Rev. 65, 117 (1944).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  2. K.G. Wilson, Non Lagrangian models of current algebra, Phys. Rev. 179, 1499 (1969).

    Article  ADS  MathSciNet  Google Scholar 

  3. K.G. Wilson and J. Kogut, The renormalization group and the ε expansion, Phys. Rep. C 12, 75 (1974).

    Article  ADS  Google Scholar 

  4. J. Zinn-Justin, Quantum field theory and critical phenomena (Oxford Science Publications, Oxford, 1989).

    Google Scholar 

  5. E.H. Lieb, Residual entropy of square ice, Phys. Rev. 162, 162 (1967).

    Article  ADS  Google Scholar 

  6. R.J. Baxter, Eight-vertex model in lattice statistics, Phys. Rev. Lett. 26, 832 (1971).

    Article  ADS  Google Scholar 

  7. A.A. Belavin, A.M. Polyakov and A.B. Zamolodchikov, Infinite conformal symmetry in two-dimensional quantum field theory, Nucl. Phys. B 241, 333 (1984).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  8. A.M. Polyakov, Conformal symmetry of critical fluctuations, JETP Lett. 12, 381 (1970).

    ADS  Google Scholar 

  9. J.V. José, L.P. Kadanoff, S. Kirkpatrick and D.R. Nelson, Renormalization, vortices, and symmetry-breaking perturbations in the two-dimensional planar model, Phys. Rev. B 16, 1217 (1977).

    Article  ADS  Google Scholar 

  10. M. den Nijs, Extended scaling relations for the magnetic critical exponents of the Potts model, Phys. Rev. B 27, 1674 (1983); Extended scaling relations for the chiral and cubic crossover exponents, J. Phys. A 17, L295 (1984).

    Article  ADS  MathSciNet  Google Scholar 

  11. B. Nienhuis, Critical behavior of two-dimensional spin models and charge asymmetry in the Coulomb gas, J. Stat. Phys. 34, 731 (1984).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  12. Vl. S. Dotsenko and V. Fateev, Conformal algebra and multipoint correlation functions in 2D statistical models, Nucl. Phys. B 240, 312 (1984).

    Article  ADS  MathSciNet  Google Scholar 

  13. Vl. S. Dotsenko and V. Fateev, Four-point correlation functions and the operator algebra in 2D conformal invariant theories, Nucl. Phys. B 251, 691 (1985).

    Article  ADS  MathSciNet  Google Scholar 

  14. B. Duplantier and H. Saleur, Exact critical properties of two-dimensioanl dense self-avoiding walks, Nucl. Phys. B 290, 291 (1987).

    Article  ADS  MathSciNet  Google Scholar 

  15. P. Di Francesco, P. Mathieu and D. Sénéchal, Conformal field theory (Springer Verlag, New York, 1987).

    Google Scholar 

  16. J.L. Cardy, Conformal invariance and statistical mechanics, and P. Ginsparg, Applied con-formal field theory, both in Fields, strings and critical phenomena (Les Houches, session XLIX), eds. E. Brézin and J. Zinn-Justin (Elsevier, New York, 1989).

    Google Scholar 

  17. J. Kondev, Liouville field theory of fluctuating loops, Phys. Rev. Lett. 78, 4320 (1997).

    Article  ADS  Google Scholar 

  18. J. Cardy, The O(n) model on the annulus, J. Stat. Phys. 125, 1 (2006).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  19. B. Duplantier and H. Saleur, Exact tricritical exponents for polymers at the Θ point in two dimensions, Phys. Rev. Lett. 59, 539 (1987).

    Article  ADS  MathSciNet  Google Scholar 

  20. J. Kondev, J. de Gier and B. Nienhuis, Operator spectrum and exact exponents of the fully packed loop model, J. Phys. A 29, 6489 (1996).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  21. J.L. Jacobsen and J. Kondev, Field theory of compact polymers on the square lattice, Nucl. Phys. B 532, 635 (1998); Conformational entropy of compact polymers, Phys. Rev. Lett. 81, 2922 (1998).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  22. J.L. Cardy, Conformal invariance and surface critical behavior, Nucl. Phys. B 240, 514 (1984).

    Article  ADS  Google Scholar 

  23. J. Cardy, Operator content of two-dimensional conformally invariant theories, Nucl. Phys. B 270, 186 (1986).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  24. V.A. Fateev and A.B. Zamolodchikov, Conformal quantum field theory models in two dimensions having Z3 symmetry, Nucl. Phys. B 280, 644 (1987).

    Article  ADS  MathSciNet  Google Scholar 

  25. H.W.J. Blöte, J.L. Cardy and M.P. Nightingale, Conformal invariance, the central charge, and universal finite-size amplitudes at criticality, Phys. Rev. Lett.56, 742 (1986); I. Affleck, Universal term in the free energy at a critical point and the conformal anomaly, Phys. Rev. Lett. 56, 746 (1986).

    Article  ADS  Google Scholar 

  26. J.L. Cardy, Conformal invariance and universality in finite-size scaling, J. Phys. A 17, L385 (1984).

    Article  ADS  MathSciNet  Google Scholar 

  27. D. Friedan, Z. Qiu and S. Shenker, Conformal invariance, unitarity and critical exponents in two dimensions, Phys. Rev. Lett. 52, 1575 (1984).

    Article  ADS  MathSciNet  Google Scholar 

  28. A.B. Zamolodchikov, Conformal symmetry and multicritical points in two-dimensional quantum field theory, Sov. J. Nucl. Phys. 44, 530 (1986).

    MathSciNet  Google Scholar 

  29. C. Itzykson and J.-B. Zuber, Two-dimensional conformal invariant theories on a torus, Nucl. Phys. B 275, 580 (1986).

    Article  ADS  MathSciNet  Google Scholar 

  30. J. Cardy, Boundary conformal field theory, in J.-P. Françoise, G. Naber and T.S. Tsun (eds.), Encyclopedia of mathematical physics (Elsevier, 2005).

    Google Scholar 

  31. K. Binder, Critical behaviour at surfaces, in C. Domb and J.L. Lebowitz (eds.), Phase transitions and critical phenomena, vol. 8, p. 1 (Academic Press, London, 1983).

    Google Scholar 

  32. T.W. Burkhardt and E. Eisenriegler, Conformal theory of the two-dimensional O(N) model with ordinary, extraordinary, and special boundary conditions, Nucl. Phys. B 424, 487 (1994).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  33. J.L. Cardy, Critical percolation in finite geometries, J. Phys. A 25, L201 (1992).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  34. A. Luther and I. Peschel, Calculation of critical exponents in two dimensions from quantum field theory in one dimension, Phys. Rev. B 12, 3908 (1975); L.P. Kadanoff, Lattice Coulomb gas representations of two-dimensional problems, J. Phys. A 11, 1399 (1978); L.P. Kadanoff and A.C. Brown, Correlation functions on the critical lines of the Baxter and Ashkin-Teller models, Ann. Phys. 121, 318 (1979); H.J.F. Knops, Renormalization connection between the eight-vertex model and the Gaussian model, Ann. Phys. 128, 448 (1981).

    Article  ADS  Google Scholar 

  35. B. Nienhuis, Coulomb gas formulations of two-dimensional phase transitions, in C. Domb and J.L. Lebowitz (eds.), Phase transitions and critical phenomena, vol. 11, p. 1–53 (Academic Press, London, 1987).

    Google Scholar 

  36. G. Parisi and N. Sourlas, Self avoiding walk and supersymmetry, J. Physique Lett. 41, L403 (1980).

    Article  Google Scholar 

  37. B. Nienhuis, Exact critical point and critical exponents of O(n) models in two dimensions, Phys. Rev. Lett. 49, 1062 (1982).

    Article  ADS  MathSciNet  Google Scholar 

  38. R.J. Baxter, S.B. Kelland and F.Y. Wu, Equivalence of the Potts model or Whitney polynomial with an ice-type model, J. Phys. A 9, 397 (1975).

    Article  ADS  Google Scholar 

  39. P. Di Francesco, H. Saleur and J.B. Zuber, Modular invariance in non-minimal two-dimensional conformal theories, Nucl. Phys. B 285, 454 (1987).

    Article  ADS  Google Scholar 

  40. P. Di Francesco, H. Saleur and J.B. Zuber, Relations between the Coulomb gas picture and conformal invariance of two-dimensional critical models, J. Stat. Phys. 49, 57 (1987).

    Article  MATH  ADS  Google Scholar 

  41. P. W. Kasteleyn et C. M. Fortuin, Phase transitions in lattice systems with random local properties, J. Phys. Soc. Jpn. 26 (suppl.), 11 (1969); C.M. Fortuin and P.W. Kasteleyn, On the random-cluster model. I. Introduction and relation to other models, Physica 57, 536 (1972).

    ADS  Google Scholar 

  42. R.J. Baxter, Critical antiferromagnetic square-lattice Potts model, Proc. Roy. Soc. London Ser. A 383, 43 (1982).

    Article  ADS  MathSciNet  Google Scholar 

  43. J.L. Jacobsen and H. Saleur, The antiferromagnetic transition for the square-lattice Potts model, Nucl. Phys. B 743, 207 (2006); Y. Ikhlef, J.L. Jacobsen and H. Saleur, A staggered six-vertex model with non-compact continuum limit, Nucl. Phys. B 789, 483–524 (2008).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  44. R.J. Baxter, Potts model at the critical temperature, J. Phys. C 6 L445 (1973).

    Article  ADS  Google Scholar 

  45. H. Saleur, The antiferromagnetic Potts model in two dimensions: Berker-Kadanoff phase, antiferromagnetic transition, and the role of Beraha numbers, Nucl. Phys. B 360, 219 (1991).

    Article  ADS  MathSciNet  Google Scholar 

  46. P.-G. de Gennes, Scaling concepts in polymer physics (Cornell University Press, New York, 1979).

    Google Scholar 

  47. B. Duplantier and H. Saleur, Exact surface and wedge exponents for polymers in two dimensions, Phys. Rev. Lett. 57, 3179 (1986).

    Article  ADS  MathSciNet  Google Scholar 

  48. B. Duplantier and H. Saleur, Winding-angle distributions of two-dimensional self-avoiding walks from conformal invariance, Phys. Rev. Lett. 60, 2343 (1988).

    Article  ADS  MathSciNet  Google Scholar 

  49. J.L. Jacobsen, N. Read and H. Saleur, Dense loops, supersymmetry, and Goldstone phases in two dimensions, Phys. Rev. Lett. 90, 090601 (2003).

    Article  ADS  MathSciNet  Google Scholar 

  50. Vl. S. Dotsenko, Critical behaviour and associated conformal algebra of the Z3 Potts model, Nucl. Phys. B 235, 54 (1984).

    Article  ADS  MathSciNet  Google Scholar 

  51. H. Saleur, The antiferromagnetic Potts model in two dimensions: Berker-Kadanoff phase, antiferromagnetic transition, and the role of Beraha numbers, Nucl. Phys. B 360, 219 (1991).

    Article  ADS  MathSciNet  Google Scholar 

  52. H. Saleur, Winding-angle distribution for Brownian and self-avoiding walks, Phys. Rev. E 50, 1123 (1994).

    Article  ADS  Google Scholar 

  53. P.J. Flory, The configuration of real polymer chains, J. Chem. Phys. 17, 303 (1949).

    Article  ADS  Google Scholar 

  54. P.G. de Gennes, Collapse of a polymer chain in poor solvents, J. Physique Lett. 36, 55 (1975).

    Article  Google Scholar 

  55. B. Duplantier and H. Saleur, Stability of the polymer Θ point in two dimensions, Phys. Rev. Lett. 62, 1368 (1989).

    Article  ADS  MathSciNet  Google Scholar 

  56. R. Raghavan, C.L. Henley and S.L. Arouh, New two-color dimer models with critical ground states, J. Stat. Phys. 86, 517 (1997).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  57. A. Ghosh, D. Dhar and J.L. Jacobsen, Random trimer tilings, Phys. Rev. E 75, 011115 (2007).

    Article  ADS  MathSciNet  Google Scholar 

  58. A. Verberkmoes and B. Nienhuis, Triangular trimers on the triangular lattice: An exact solution, Phys. Rev. Lett. 83, 3986 (1999).

    Article  ADS  Google Scholar 

  59. J.L. Jacobsen, On the universality of fully packed loop models, J. Phys. A 32, 5445 (1999).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  60. H.W.J. Blöte and B. Nienhuis, Fully packed loop model on the honeycomb lattice, Phys. Rev. Lett. 72, 1372 (1994).

    Article  ADS  Google Scholar 

  61. J. Kondev and C.L. Henley, Four-coloring model on the square lattice: A critical ground state, Phys. Rev. B 52, 6628 (1995).

    Article  ADS  Google Scholar 

  62. J.L. Jacobsen and J. Kondev, Conformal field theory of the Flory model of protein melting, Phys. Rev. E 69, 066108 (2004); Continuous melting of compact polymers, Phys. Rev. Lett. 92, 210601 (2004).

    Article  ADS  Google Scholar 

  63. P.J. Flory, Statistical thermodynamics of semi-flexible chain molecules, Proc. Roy. Soc. London A 234, 60 (1956).

    Article  ADS  Google Scholar 

  64. M.T. Batchelor, J. Suzuki and C.M. Yung, Exact results for hamilton walks from the solution of the fully packed loop model on the honeycomb lattice, Phys. Rev. Lett. 73, 2646 (1994).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  65. D. Dei Cont and B. Nienhuis, The packing of two species of polygons on the square lattice, J. Phys. A 37, 3085 (2004); Critical exponents for the FPL 2 model, cond-mat/0412018.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  66. J.L. Jacobsen and P. Zinn-Justin, Algebraic Bethe Ansatz for the FPL 2 model, J. Phys. A 37, 7213 (2004).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  67. N.Y. Reshetikhin, A new exactly solvable case of an O(n) model on a hexagonal lattice, J. Phys. A 24, 2387 (1991).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  68. V. Pasquier and H. Saleur, Common structures between finite systems and conformal field theories through quantum groups, Nucl. Phys. B 330, 523 (1990).

    Article  ADS  MathSciNet  Google Scholar 

  69. B. Eynard, E. Guitter and C. Kristjansen, Hamiltonian cycles on a random three-coordinate lattice, Nucl. Phys. B 528, 523 (1998).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  70. J.L. Jacobsen and J. Kondev, Transition from the compact to the dense phase of two-dimensional polymers, J. Stat. Phys. 96, 21 (1999).

    Article  MATH  Google Scholar 

  71. P. Di Francesco, O. Golinelli and E. Guitter, Meanders: Exact asymptotics, Nucl. Phys. B 570, 699 (2000).

    Article  MATH  ADS  Google Scholar 

  72. P. Di Francesco, E. Guitter and J.L. Jacobsen, Exact meander asymptotics: A numerical check, Nucl. Phys. B 580, 757 (2000).

    Article  MATH  ADS  Google Scholar 

  73. M.T. Batchelor and J. Suzuki, Exact solution and surface critical behaviour of an O(n) model on the honeycomb lattice, J. Phys. A 26, L729 (1993).

    Article  ADS  MathSciNet  Google Scholar 

  74. C.M. Yung and M.T. Batchelor, O(n) model on the honeycomb lattice via reflection matrices: Surface critical behaviour, Nucl. Phys. B 453, 552 (1995).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  75. M.T. Batchelor and C.M. Yung, Exact results for the adsorption of a flexible self-avoiding polymer chain in two dimensions, Phys. Rev. Lett. 74, 2026 (1995).

    Article  ADS  Google Scholar 

  76. M.T. Batchelor and J. Cardy, Extraordinary transition in the two-dimensional O(n) model, Nucl. Phys. B 506, 553 (1997).

    Article  ADS  Google Scholar 

  77. T.W. Burkhardt, E. Eisenriegler and I. Guim, Conformal theory of energy correlations in the semi-infinite two-dimensional O(N) model, Nucl. Phys. B 316, 559 (1989).

    Article  ADS  MathSciNet  Google Scholar 

  78. T.W. Burkhardt and J.L. Cardy, Surface critical behaviour and local operators with boundary-induced critical profiles, J. Phys. A 20, L233 (1987).

    Article  ADS  Google Scholar 

  79. P. Fendley and H. Saleur, Exact theory of polymer adsorption in analogy with the Kondo problem, J. Phys. A 27, L789 (1994).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  80. H. Saleur and M. Bauer, On some relations between local height probabilities and conformal invariance, Nucl. Phys. B 320, 591 (1989).

    Article  ADS  MathSciNet  Google Scholar 

  81. B. Duplantier and H. Saleur, Exact surface and wedge exponents for polymers in two dimensions, Phys. Rev. Lett. 57, 3179 (1986).

    Article  ADS  MathSciNet  Google Scholar 

  82. A.J. Guttmann and G.M. Torrie, Critical behaviour at an edge for the SAW and Ising model, J. Phys. A 17, 3539 (1984).

    Article  ADS  MathSciNet  Google Scholar 

  83. J.L. Jacobsen, Surface critical behaviour of fully packed loop models, in preparation (2008).

    Google Scholar 

  84. J.L. Jacobsen and H. Saleur, Conformal boundary loop models, Nucl. Phys. B 788, 137–166 (2008).

    Article  ADS  MathSciNet  Google Scholar 

  85. P.P. Martin and H. Saleur, The blob algebra and the periodic Temperley-Lieb algebra, Lett. Math. Phys. 30, 189 (1994).

    MATH  ADS  MathSciNet  Google Scholar 

  86. I. Kostov, Boundary loop models and 2D quantum gravity, J. Stat. Mech. P08023 (2007).

    Google Scholar 

  87. J.L. Jacobsen and H. Saleur, unpublished (2007).

    Google Scholar 

  88. J. Dubail, J.L. Jacobsen and H. Saleur, Generalised special surface transition in the two-dimensional O(n) model, in preparation (2008).

    Google Scholar 

  89. A. Nichols, The Temperley-Lieb algebra and its generalizations in the Potts and XXZ models, J. Stat. Mech. P01003 (2006); Structure of the two-boundary XXZ model with non-diagonal boundary terms, J. Stat. Mech. L02004 (2006).

    Google Scholar 

  90. J. de Gier and A. Nichols, The two-boundary Temperley-Lieb algebra, math.RT/0703338.

    Google Scholar 

  91. J.L. Jacobsen and H. Saleur, Combinatorial aspects of conformal boundary loop models, J. Stat. Mech. P01021 (2008).

    Google Scholar 

  92. J. Dubail, J.L. Jacobsen and H. Saleur, Conformal two-boundary loop model on the annulus, Nucl. Phys. B 813, 430 (2009); Boundary extensions of the Temperley-Lieb algebra: representations, lattice models and BCFT, in preparation (2008).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  93. N. Read and H. Saleur, Exact spectra of conformal supersymmetric nonlinear sigma models in two dimensions, Nucl. Phys. B 613, 409 (2001).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  94. J.-F. Richard and J.L. Jacobsen, Eigenvalue amplitudes of the Potts model on a torus, Nucl. Phys. B 769, 256 (2007).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  95. J.-F. Richard and J.L. Jacobsen, Character decomposition of Potts model partition functions, I: Cyclic geometry, Nucl. Phys. B 750, 250 (2006).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  96. I. Affleck and A.W.W. Ludwig, Universal noninteger “ground-state degeneracy” in critical quantum systems, Phys. Rev. Lett. 67, 161 (1991).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  97. J.L. Cardy, Mean area of self-avoiding loops, Phys. Rev. Lett. 72, 1580 (1994).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  98. P. Fendley and J.L. Jacobsen, Critical points in coupled Potts models and critical phases in coupled loop models, J. Phys. A 41, 215001 (2008).

    Article  ADS  MathSciNet  Google Scholar 

  99. P. Fendley, Loop models and their critical points, J. Phys. A 39, 15445 (2006).

    Article  MATH  MathSciNet  Google Scholar 

  100. B. Nienhuis, Critical spin-1 vertex models and O(n) models, Int. J. Mod. Phys. B 4, 929 (1990).

    Article  ADS  MathSciNet  Google Scholar 

  101. A.G. Izergin and V.E. Korepin, The inverse scattering method approach to the quantum Shabat-Mikhailov model, Comm. Math. Phys. 79, 303 (1981).

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Canopus Academic Publishing Limited

About this chapter

Cite this chapter

Jacobsen, J.L. (2009). Conformal Field Theory Applied to Loop Models. In: Guttman, A.J. (eds) Polygons, Polyominoes and Polycubes. Lecture Notes in Physics, vol 775. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9927-4_14

Download citation

Publish with us

Policies and ethics