Skip to main content

Predicting the Atomic Configuration of 1- and 2-Dimensional Nanostructures via Global Optimization Methods

  • Chapter
  • First Online:
Trends in Computational Nanomechanics

Part of the book series: Challenges and Advances in Computational Chemistry and Physics ((COCH,volume 9))

Abstract:

In the cluster structure community, global optimization methods are common tools for arriving at the atomic structure of molecular and atomic clusters. The large number of local minima of the potential energy surface of these clusters, and the fact that these local minima proliferate exponentially with the number of atoms in the cluster simply demands the use of fast stochastic methods to find the optimum atomic configuration. Therefore, much of the development work has come from (and mostly stayed within) the cluster structure community. Partly due to wide availability and landmark successes of high resolution microscopy techniques, finding the structure of periodically reconstructed semiconductor surfaces was not posed as a problem of stochastic optimization until recently, when we have shown that high-index semiconductor surfaces can posses a rather large number of local minima with such low surface energies that the identification of the global minimum becomes problematic. We have therefore set out to develop global optimization methods for systems other than clusters, focusing on periodic systems in one- and two- dimensions as such systems currently occupy a central place in the field of nanoscience. In this article, we review some of our recent work on global optimization methods (the parallel-tempering Monte Carlo method and the genetic algorithm) and show examples/results from two main problem categories: (1) the two-dimensional problem of determining the atomic configuration of clean semiconductor surfaces, and (2) finding the structure of freestanding nanowires. While focused mainly on optimization the atomic structure for a system with set periodic boundary conditions, our account also reviews a recent example of using genetic algorithms for growth of nanostructures into their global energy minima compatible with given confinement conditions

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S. Iijima, Nature 354, 56 (1991).

    Article  CAS  Google Scholar 

  2. D. Appell, Nature 419, 553, (2002).

    Article  CAS  Google Scholar 

  3. H. Kind, H.Q. Yan, B. Messer, M. Law, and P.D. Yang, Adv. Mater. 14, 158, (2002).

    Article  CAS  Google Scholar 

  4. Y. Cui and C.M. Lieber, Science 291, 851, (2001).

    Article  CAS  Google Scholar 

  5. B. Marsen and K. Sattler, Phys. Rev. B 60, 11593, (1999).

    Article  CAS  Google Scholar 

  6. M. Menon and E. Richter, Phys. Rev. Lett. 83, 2973, (1999).

    Article  Google Scholar 

  7. Y.F. Zhao and B.I. Yakobson, Phys. Rev. Lett. 91, 035501 (2003).

    Article  Google Scholar 

  8. R. Rurali and N. Lorente, Phys. Rev. Lett. 94, 026805 (2005).

    Article  CAS  Google Scholar 

  9. I. Ponomareva, M. Menon, D. Srivastava, and A.N. Andriotis, Phys. Rev. Lett. 95, 265502, (2005).

    Article  Google Scholar 

  10. R. Kagimura, R.W. Nunes, and H. Chacham, Phys. Rev. Lett. 95, 115502 (2005).

    Article  CAS  Google Scholar 

  11. M. Durandurdu, Physica Status Solidi B 243, R7 (2006).

    Article  CAS  Google Scholar 

  12. A.K. Singh, V. Kumar, R. Note, and Y. Kawazoe, Nano Lett. 5, 2302 (2005).

    Article  CAS  Google Scholar 

  13. W. Ranke and Y.R. Xing, Surf. Sci. 381, 1 (1997).

    Article  CAS  Google Scholar 

  14. T. Suzuki, H. Minoda, Y. Tanishiro, and K. Yagi, Surf. Sci. 358, 522 (1996); ibid., Surf. Sci. 348, 335 (1996).

    Article  Google Scholar 

  15. J. Liu, M. Takeguchi, H. Yasuda, and K. Furuya, J. Cryst. Growth 237–239, 188 (2002).

    Article  Google Scholar 

  16. S. Joeng, H. Jeong, S. Cho, and J.M. Seo, Surf. Sci. 557, 183 (2004).

    Article  Google Scholar 

  17. A.A. Baski, S.C. Erwin, and L.J. Whitman, Science 269, 1556 (1995).

    Article  CAS  Google Scholar 

  18. J. Dabrowski, H. J. Müssig, and G. Wolff, Phys. Rev. Lett. 73, 1660 (1994).

    Article  CAS  Google Scholar 

  19. G.D. Lee and E. Yoon, Phys. Rev. B 68, 113304 (2003).

    Article  Google Scholar 

  20. Y.W. Mo, D.E. Savage, B.S. Swartzentruber, and M.G. Lagally, Phys. Rev. Lett. 65, 1020 (1990).

    Article  CAS  Google Scholar 

  21. R.G. Zhao, Z. Gai, W. Li, J. Jiang, Y. Fujikawa, T. Sakurai, and W.S. Yang, Surf. Sci. 517, 98 (2002).

    Article  CAS  Google Scholar 

  22. Y. Fujikawa, K. Akiyama, T. Nagao, T. Sakurai, M.G. Lagally, T. Hashimoto, Y. Morikawa, and K. Terakura, Phys. Rev. Lett. 88,176101 (2002).

    Article  CAS  Google Scholar 

  23. P. Raiteri, D.B. Migas, L. Miglio, A. Rastelli, and H. von Kánel, Phys. Rev. Lett. 88, 256103 (2002).

    Article  CAS  Google Scholar 

  24. V.B. Shenoy, C.V. Ciobanu, and L.B. Freund, Appl. Phys. Lett. 81, 364 (2002).

    Article  CAS  Google Scholar 

  25. C.V. Ciobanu, V.B. Shenoy, C.Z. Wang, and K.M. Ho, Surf. Sci. 544, L715 (2003).

    Article  CAS  Google Scholar 

  26. D.P. Woodruff, Surf. Sci. 500, 147 (2002).

    Article  CAS  Google Scholar 

  27. K.E. Khor and S. Das Sarma, J. Vac. Sci. Technol. B 15, 1051 (1997) 1051.

    Article  CAS  Google Scholar 

  28. F.H. Stillinger and T.A. Weber, Phys. Rev. A 28, 2408 (1983).

    Article  CAS  Google Scholar 

  29. F.H. Stillinger, Phys. Rev. E 59, 48 (1999).

    Article  CAS  Google Scholar 

  30. D.J. Wales and J.P.K. Doye, J. Phys. Chem. A 101, 5111 (1997).

    Article  CAS  Google Scholar 

  31. A.F. Voter, Phys. Rev. B 57, R13985 (1998).

    Article  CAS  Google Scholar 

  32. M.R. Sørensen and A.F. Voter, J. Chem. Phys. 112, 9599 (2000).

    Article  Google Scholar 

  33. C.J. Geyer and E.A. Thompson, J. Am. Stat. Assoc. 90, 909 (1995).

    Article  Google Scholar 

  34. K. Hukushima and K. Nemoto, J. Phys. Soc. Jpn. 65, 1604 (1996).

    Article  CAS  Google Scholar 

  35. C.V. Ciobanu and C. Predescu, Phys. Rev. B 70, 085321 (2004).

    Article  Google Scholar 

  36. D.M. Deaven and K.M. Ho, Phys. Rev. Lett. 75, 288 (1995).

    Article  CAS  Google Scholar 

  37. K.M. Ho, A.A. Shvartsburg, B.C. Pan, Z.Y. Lu, C.Z. Wang, J. Wacker, J.L. Fye, and M.F. Jarrold, Nature 392, 582 (1998).

    Article  CAS  Google Scholar 

  38. F.C. Chuang, C.V. Ciobanu, V.B. Shenoy, C.Z. Wang, and K.M. Ho, Surf. Sci. 573, L375 (2004).

    Article  CAS  Google Scholar 

  39. F.C. Chuang, C.V. Ciobanu, C. Predescu, C.Z. Wang, and K.M. Ho, Surf. Sci. 578, 183 (2005).

    Article  CAS  Google Scholar 

  40. F.C. Chuang, C.V. Ciobanu, C.Z. Wang, and K.M. Ho, J. Appl. Phys. 98, 073507 (2005).

    Article  Google Scholar 

  41. C.V. Ciobanu, F.C. Chuang, and D. Lytle, Appl. Phys. Lett. 91, 171909 (2007).

    Article  Google Scholar 

  42. T.J. Lenosky, B. Sadigh, E. Alonso, V.V. Bulatov, T. Diaz de la Rubia, J. Kim, A.F. Voter, and J.D. Kress, Model. Simul. Mater. Sci. Eng. 8, 825 (2000).

    Article  Google Scholar 

  43. N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.M. Teller, and E. Teller, J. Chem. Phys. 21, 1087 (1953).

    Article  CAS  Google Scholar 

  44. U.H.E. Hansmann, Chem. Phys. Lett. 281, 140 (1997).

    Article  CAS  Google Scholar 

  45. Y. Sugita, A. Kitao, and Y. Okamoto, J. Chem. Phys. 113, 6042 (2000).

    Article  CAS  Google Scholar 

  46. C. Predescu, M. Predescu, and C.V. Ciobanu, J. Chem. Phys. 120, 4119 (2004).

    Article  CAS  Google Scholar 

  47. S. Baroni, A. Dal Corso, S. de Gironcoli, and P. Giannozzi, http://www.pwscf.org.

  48. F.H. Stillinger and T.A. Weber, Phys. Rev. B 31, 5262 (1985).

    Article  CAS  Google Scholar 

  49. J. Tersoff, Phys. Rev. B 38, 9902 (1988);ibid Phys. Rev. B 37, 6991 (1988).

    Article  CAS  Google Scholar 

  50. S.C. Erwin, A.A. Baski, and L.J. Whitman, Phys. Rev. Lett. 77, 687 (1996).

    Article  CAS  Google Scholar 

  51. L. Hui, B.L. Wang, J.L. Wang, and G.H. Wang, J. Chem. Phys. 121, 8990 (2004).

    Article  CAS  Google Scholar 

  52. B.L. Wang, G.H. Wang, and J.J. Zhao, Phys. Rev. B 65, 235406, (2002).

    Article  Google Scholar 

  53. B.L. Wang, S.Y. Yin, G.H. Wang, A. Buldum, and J.J. Zhao, Phys. Rev. Lett. 86, 2046(2001).

    Article  CAS  Google Scholar 

  54. C.V. Ciobanu, C.Z Wang, and K.M. Ho, Mater. Manuf. Process. 24, 109, (2009).

    Article  CAS  Google Scholar 

  55. D.D.D. Ma, C.S. Lee, F.C.K. Au, S.Y. Tong, and S.T. Lee, Science 299, 1874, (2003).

    Article  CAS  Google Scholar 

  56. Y. Wu, Y. Cui, L. Huynh, C.J. Barrelet, D.C. Bell, and C.M. Lieber, Nano Lett. 4, 433, (2004).

    Article  CAS  Google Scholar 

  57. T.L. Chan, C.V. Ciobanu, F.C. Chuang, N. Lu, C.Z. Wang, and K.M. Ho, Nano Lett. 6, 277 (2006).

    Article  CAS  Google Scholar 

  58. U. Hansen and P. Vogl, Phys. Rev. B 57, 13295 (1998).

    Article  CAS  Google Scholar 

  59. VIENNA ab initio simulation package, Technische Universitat Wien, 1999; G. Kresse and J. Hafner, Phys. Rev. B 47, R558 (1993); G. Kresse and J. Furthmuller, Phys. Rev. B 54, 11169 (1996).

    Google Scholar 

  60. T.E.B. Davies, D.P. Mehta, J.L. Rodriguez-Lopez, G.H. Gilmer, and C.V. Ciobanu, Mater. Manuf. Process. 24, 265, (2009).

    Article  CAS  Google Scholar 

  61. N.L. Abraham and M.I.J. Probert, Phys. Rev. B 73, 224104, (2006).

    Article  Google Scholar 

  62. Y. Cui, L.J. Gudiksen, M.S. Wang, and C.M. Lieber, Appl. Phys. Lett. 78, 2214, (2001).

    Article  CAS  Google Scholar 

  63. N. Wang, Y.H. Tang, Y.F. Zhang, C.S. Lee, I. Bello, and S. T. Lee, Chem. Phys. Lett. 299, 237, (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Ames Laboratory is operated for the United States Department of Energy by Iowa State University under Contract No. DE-AC02-07CH11358. CVC gratefully acknowledges support from the National Science Foundation under Grant. No. CMMI-0846858.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C.V. Ciobanu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Ciobanu, C., Wang, C., Mehta, D., Ho, K. (2010). Predicting the Atomic Configuration of 1- and 2-Dimensional Nanostructures via Global Optimization Methods. In: Dumitrica, T. (eds) Trends in Computational Nanomechanics. Challenges and Advances in Computational Chemistry and Physics, vol 9. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9785-0_9

Download citation

Publish with us

Policies and ethics