Skip to main content

Soil Carbon and Nitrogen, and Characteristics of Soil Active Layer in Siberian Permafrost Region

  • Chapter
  • First Online:
Permafrost Ecosystems

Part of the book series: Ecological Studies ((ECOLSTUD,volume 209))

Abstract

Permafrost region of Siberia is mostly covered with larch forest or forest tundra. The permafrost-affected soils were generally classified as Cambisols (moderately developed soils) on plain topography and Leptosols (shallow and high gravel content soils) in mountainous topography (FAO 1993). The latest revision of soil classification systems of both USDA and FAO adopted permafrost as a diagnostic horizon, and created a new “soil order” (USDA) or a “main soil” (FAO) for permafrost-affected soils: Gelisols in the USDA classification system (Soil Survey Staff 1998), Cryosols in the FAO system (ISSS Working Group RB 1998), and Cryozems in the Russian system (V. V. Dokuchaev Soil Science Institute 2001; Naumov Ye 2004; Sokolov et al. 2004). There had been a few soil survey expeditions to the permafrost region of Siberia (e.g., Ivanova 1969), but most studies in the former Soviet Union focused on examination of podzolisation and humus chemistry. The results were published nearly exclusively in Russian language and were expressed in organic matter concentrations, not in carbon contents. No map coordinate data were generally available for the survey points in the literature. Though Alexeyev and Birdsey (1998) compiled soil carbon storage data for administrative unit of Russia, there were still uncertainties in soil bulk density, rock fragment ratio, fine earth content, etc. These are disadvantages of the available information if they are to be used in discussions of carbon or nutrient storage and dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alexeyev VA, Birdsey RA (1998) Carbon storage in forests and peatlands of Russia. USDA Forest Service, Northeastern Forest Experiment Station, GTR NE-244, 137pp

    Google Scholar 

  • Allison LE, Moodie CD (1965) Carbonate. In: Black AC (ed) Methods of soil analysis. Part 2: chemical and microbiological properties. American Society of Agronomy, Madison, pp 1379-1396

    Google Scholar 

  • Berendse F, Jonasson S (1992) Nutrient use and nutrient cycling in northern ecosystems. In: Chapin FS III, Jerreries RL, Reynolds JF, Shaver GR, Svoboda J (eds) Arctic ecosystems in a changing climate. Academic Press, San Diego, pp 337-356

    Google Scholar 

  • FAO (1993) World soil resources. An explanatory note on the FAO World Soil Resources map. FAO, Rome, 64pp

    Google Scholar 

  • Gianello C, Bremner JM (1986) A simple chemical method of assessing potentially available organic nitrogen in soil. Comm Soil Sci Plant Anal 17:195-214

    Article  CAS  Google Scholar 

  • Giblin AE, Nadelhoffer KJ, Shaver GR, Laundre JA, McKerrow AJ (1991) Biogeochemical diversity along a riverside toposequence in arctic Alaska. Ecol Monogr 61:415-435

    Article  Google Scholar 

  • Giesler R, Högberg M, Högberg P (1998) Soil chemistry and plants in Fennoscandian boreal forest as exemplified by a local gradient. Ecology 79:119-137

    Article  Google Scholar 

  • Hirobe M, Tokuchi N, Iwatsubo G (1998) Spatial variability of soil N transformations along a forest slope in a Cryptomeria japonica D. Don plantation. Eur J Soil Biol 34:123-131

    Article  Google Scholar 

  • ISSS Working Group RB (1998) World reference base for soil resources. In: Bridges EM, Batjes NH, Nachtergaele FO (eds) Atlas. ISRIC-FAO-ISSS-Acco Leuven, Belgium

    Google Scholar 

  • Ivanova EN (ed) (1969) Soils of Eastern Siberia (translated by A Gourevitch). Israel Program for Scientific Translations Ltd, IPST Press, Jerusalem, 223pp

    Google Scholar 

  • Jenny H (1980) State factor topography. In: Jenny H (ed) The soil resource, ecological studies 37. Springer, New York, pp 276-304

    Google Scholar 

  • Kajimoto T, Matsuura Y, Sofronov MA, Volokitina AV, Mori S, Osawa A, Abaimov AP (1999) Above- and belowground biomass and net primary productivity of a Larix gmelinii stand near Tura, central Siberia. Tree Physiol 19:815-822

    Google Scholar 

  • Kajimoto T, Matsuura Y, Osawa A, Abaimov AP, Zyryanova OA, Isaev AP, Yefremov DP, Mori S, Koike T (2006) Size-mass allometry and biomass allocation of two larch species growing on the continuous permafrost region in Siberia. For Ecol Manage 222:314-325

    Article  Google Scholar 

  • Kanazawa Y, Osawa A, Ivanov BI, Maximov TC (1994) Biomass of a Larix gmelinii (Rupr.) Litv. stand in Spaskayapad, Yakutsk. In: Inoue G (ed) Proceedings of the Second Symposium on the Joint Siberian Permafrost Studies between Japan and Russia in 1993. National Institute for Environmental Studies, Tsukuba, pp 153-158

    Google Scholar 

  • Keeny DR, Nelson DW (1982) Nitrogen - inorganic forms. In: Page AL, Miller RH, Keeney DR (eds) Methods of soil analysis, part 2. ASA/SSSA, Madison, WI, pp 643-698

    Google Scholar 

  • Matsuura Y, Abaimov AP (1999) Soil characteristics in Tura Experiment Forest, central Siberia. In: Shibuya M, Takahashi K, Inoue G (eds) Proceedings of the Seventh Symposium on the Joint Siberian Permafrost Studies between Japan and Russia in 1998. Tsukuba, Japan, pp 69-76

    Google Scholar 

  • Matsuura Y, Abaimov AP (2000) Nitrogen mineralization in larch forest soils of continuous permafrost region, central Siberia - an implication for nitrogen economy of a larch stand. In: Inoue G, Takenaka A (eds) Proceedings of the Eighth Symposium Joint Siberian Permafrost Studies between Japan and Russia in 1999. Tsukuba, National Institute for Environmental Studies, pp 129-134

    Google Scholar 

  • Matsuura Y, Yefremov DP (1995) Carbon and nitrogen storage of soils in a forest-tundra area of northern Sakha, Russia. In: Takahashi K, Osawa A, Kanazawa Y (eds) Proceedings of the Third Symposium on the Joint Siberian Permafrost Studies between Japan and Russia in 1994. Sapporo, Japan, pp 97-101

    Google Scholar 

  • Matsuura Y, Sanada M, Ohta S, Desyatkin RV (1994) Carbon and nitrogen storage in soils developed on two different toposequence of the Lena River terrain. In: Inoue G (ed) Proceedings of the Second Symposium on the Joint Siberian Permafrost Studies between Japan and Russia in 1993. National Institute for Environmental Studies, Tsukuba, pp 177-182

    Google Scholar 

  • Matsuura Y, Abaimov AP, Zyryanova OA, Isaev AP, Yefremov DP (1997) Carbon and nitrogen storage of mountain forest tundra soils in central and eastern Siberia. In: Inoue G, Takenaka A (eds) Proceedings of the Fifth Symposium on the Joint Siberian Permafrost Studies between Japan and Russia in 1996. National Institute for Environmental Studies, Tsukuba, pp 95-99

    Google Scholar 

  • Matsuura Y, Kajimoto T, Osawa A, Abaimov AP (2005) Carbon storage in larch ecosystems in continuous permafrost region of Siberia. Phyton 45:51-54

    CAS  Google Scholar 

  • Nadelhoffer KJ, Giblin AE, Shaver GR, Linkins AE (1992) Microbial processes and plant nutrient availability in arctic soils. In: Chapin FS III, Jerreries RL, Reynolds JF, Shaver GR, Svoboda J (eds) Arctic ecosystems in a changing climate. Academic, San Diego, pp 281-300

    Google Scholar 

  • Naumov Ye M (2004) Soil and soil cover of northeastern Eurasia. In: Kimble JM (ed) Cryosols. Springer, Berlin, pp 161-183

    Google Scholar 

  • Olsen SR, Sommers LE (1982) Phosphorus. In: Page AL, Miller RH, Keeney DR (eds) Methods of soil analysis, part 2. ASA/SSSA, Madison, pp 403-430

    Google Scholar 

  • Osawa A, Abaimov AP, Kajimoto T, Matsuura Y, Zyryanova OA, Tokuchi N, Kondo K, Hirobe M (2004) Long-term development of larch forest ecosystems on continuous permafrost of Siberia: structural constraints and implications to carbon accumulation. In: Tanaka H (ed) Proceedings of the Fifth International Workshop on Global Change: Connection to the Arctic 2004 (GCCA5). Tsukuba University, Tsukuba, pp 53-55

    Google Scholar 

  • Post WM, Emanuel WR, Zinke PJ, Stangenberger AG (1982) Soil carbon pools and world life zones. Nature 298:156-159

    Article  CAS  Google Scholar 

  • Post WM, Pastor J, Zinke PJ, Stangenberger AG (1985) Global patterns of soil nitrogen storage. Nature 317:613-616

    Article  Google Scholar 

  • Schulze E-D, Schulze W, Kelliher FM, Vygodskaya NN, Ziegler W, Kobak KI, Koch H, Arneth A, Kusnetsova WA, Sogatchev A, Issajev A, Bauer G, Hollinger DY (1995) Aboveground biomass and nitrogen nutrition in a chronosequence of pristine Dahurian Larix stands in eastern Siberia. Can J For Res 25:943-960

    Article  Google Scholar 

  • Soil Survey Staff (1998) Keys to soil taxonomy, 8th edn. USDA National Resources Conservation Service, Washington DC, 326pp

    Google Scholar 

  • Sokolov IA, Ananko TV, Konyushkov DY (2004) The soil cover of Central Siberia. In: Kimble JM (ed) Cryosols. Springer, Berlin, pp 302-338

    Google Scholar 

  • SPSS (1999) SPSS 10.0 for Windows. SPSS Inc, Chicago

    Google Scholar 

  • Takenaka A, Matsuura Y, Abaimov AP (1999) The depth of active layer along a slope as affected by the fire history of ground vegetation. In: Shibuya M, Takahashi K, Inoue G (eds) Proceedings of the Seventh Symposium on the Joint Siberian Permafrost Studies between Japan and Russia in 1998. Tsukuba, Japan, pp 33-39

    Google Scholar 

  • Van Cleve K, Dyrness CT, Viereck LA, Fox J, Chapin FS III, Oechel W (1983) Taiga ecosystems in interior Alaska. Bioscience 33:39-44

    Article  Google Scholar 

  • VV Dokuchaev Soil Science Institute (2001) Russian soil classification system (translated by Gerasimova M; Arnold RW (ed)), Moscow, 221 pp

    Google Scholar 

  • Yamamoto K (2003) LIA for Win32 (LIA32). http://www.agr.nagoya-u.ac.jp/∼shinkan/LIA32/index.html

Download references

Acknowledgments

We thank the late Dr. A. Abaimov of V.N. Sukachev Institute of Forest, whose leadership was instrumental in the successful research activities at Tura. We also thank O. Zyryanova, S. Prokushkin, A. Prokushkin, T. Bugaenko, O. Masyagina, and V. Zyryanov for cooperation. We are grateful to V. Borobikov for logistical support in field surveys, to A. Takenaka for the initiative to establish a long toposequence survey line at Site 1. N. Tokuchi, and K. Kondo for supporting our field survey and laboratory procedures in Japan. These activities were funded by Global Environmental Research Fund (S-1 and B-053), Ministry of the Environment, Japan, and by Ministry of Education, Culture, Sports and Technology Japan (No. 16405010 to M. Hirobe).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Matsuura, Y., Hirobe, M. (2010). Soil Carbon and Nitrogen, and Characteristics of Soil Active Layer in Siberian Permafrost Region. In: Osawa, A., Zyryanova, O., Matsuura, Y., Kajimoto, T., Wein, R. (eds) Permafrost Ecosystems. Ecological Studies, vol 209. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9693-8_8

Download citation

Publish with us

Policies and ethics