Skip to main content

Behavior of Dissolved Organic Carbon in Larch Ecosystems

  • Chapter
  • First Online:
Permafrost Ecosystems

Part of the book series: Ecological Studies ((ECOLSTUD,volume 209))

Abstract

Dissolved organic carbon (DOC) has a significant contribution to carbon cycling in terrestrial ecosystems and links terrestrial and aquatic environments (McDowell and Likens 1988; Neff and Asner 2001; Dittmar and Kattner 2003; Sondergaard et al. 2003). Permafrost-affected ecosystems, which hold 25-33% of the world’s soil organic carbon (Hobbie et al. 2000), store significant part of this carbon temporarily in the surface layer of the ground as plant debris of different decomposition stages. This highly labile organic C may greatly exceed vegetation biomass (Prokushkin et al. 2006a, b; see also Chap. 8) and is most vulnerable to climate change (Schulze and Freibauer 2005). It is expected that along with climate-induced decomposition of this carbon pool, large amounts of dissolved organic matter will be released and transported to the oceans. Therefore, the transport of DOC from land to riverine systems and its chemical characteristics have received growing attention in the permafrost-dominated landscapes (Neff et al. 2006).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abaimov AP (2005) Features and main trends of dynamics of forests and wood lands in permafrost zone of Siberia. Siberian Ecol J 4:663-675 (in Russian)

    Google Scholar 

  • Aitkenhead JA, McDowell WH (2000) Soil C:N ratio as a predictor of annual riverine DOC flux at local and global scales. Global Biogeochem Cycles 14:127-138

    Article  CAS  Google Scholar 

  • Aitkenhead-Peterson JA, Alexander JE, Clair TA (2005) Dissolved organic carbon and dissolved organic nitrogen export from forested watersheds in Noca Scotia: identifying controlling factors. Global Biogeochem Cycles 19:GB4016

    Google Scholar 

  • Anisimov OA, Belolutskaya MA (2004) Modeling of anthropogenic warming impact on permafrost: reflection of vegetation effect. Meteorologia i hydrologia 11:73-82 (in Russian)

    Google Scholar 

  • Carey SK, Woo MK (2001) Slope runoff processes and flow generation in a subarctic, subalpine environment. J Hydrol 253:110-129

    Article  Google Scholar 

  • Christ MJ, David MB (1996) Temperature and moisture effects on the production of dissolved organic carbon in a Spodosol. Soil Biol Biochem 289:1191-1199

    Article  Google Scholar 

  • Conard SG, Sukhinin AI, Stocks BJ, Cahoon DR, Davidenko EP, Ivanova GA (2002) Determining effects of area burned and fire severity on carbon cycling and emissions in Siberia. Clim Change 55:197-211

    Article  CAS  Google Scholar 

  • Cory RM, Green SA, Pregitzer KS (2004) Dissolved organic matter concentration and composition in the forests and streams of Olympic National Park, WA. Biogeochemistry 67:269-288

    Article  CAS  Google Scholar 

  • Currie WS (1999) The responsive C and N biogeochemistry of the temperate forest floor. Trends Ecol Evol 14:316-320

    Article  PubMed  Google Scholar 

  • Dittmar T, Kattner G (2003) The biogeochemistry of the river and shelf ecosystem of the Arctic Ocean: a review. Marine Chem 83:103-120

    Article  CAS  Google Scholar 

  • Finlay J, Neff J, Zimov S, Davydova A, Davydov S (2006) Snowmelt dominance of dissolved organic carbon in high-latitude watersheds: implications for characterization and flux of river DOC. Geophys Res Lett 33:L10401

    Google Scholar 

  • Gibson JJ, Edwards TWD, Prowse TD (1993) Runoff generation in a high boreal wetland in Northern Canada. Nordic Hydrol 24:213-224

    Google Scholar 

  • Gleixner G, Poirier N, Bol R, Balesdent J (2002) Molecular dynamics of organic matter in a cultivated soil. Org Geochem 33:357-366

    Article  CAS  Google Scholar 

  • Gordeev VV, Martin JM, Sidorov IS, Sidorova MV (1996) A reassessment of the Eurasian river input of water, sediment, major elements, and nutrients to the Arctic Ocean. Am J Sci 296:664-691

    Article  CAS  Google Scholar 

  • Guggenberger G, Kaiser K (2003) Dissolved organic matter in soil: challenging the paradigm of sorptive preservation. Geoderma 113:293-310

    Article  CAS  Google Scholar 

  • Guggenberger G, Zech W, Schulten HR (1994) Formation and mobilization pathways of dissolved organic-matter - Evidence from chemical structural studies of organic-matter fractions in acid forest floor solutions. Org Geochem 21:51-66

    Article  CAS  Google Scholar 

  • Hobbie SE (1996) Temperature and plant species control over litter decomposition in Alaskan tundra. Ecol Monogr 66:503-522

    Article  Google Scholar 

  • Hobbie SE, Trumbore SJP, SE RJR (2000) Controls over carbon storage and turnover in high-latitude soils. Global Change Biol 6:196-210

    Article  Google Scholar 

  • Hongve D, Van Hees PAW, Lunsdrom D (2000) Dissolved components in precipitation water percolated through forest litter. Europ J Soil Sci 51:667-677

    CAS  Google Scholar 

  • Kaiser K, Guggenberger G (2000) The role of DOM sorption to mineral surfaces in the preservation of organic matter in soils. Organic Geochem 31:711-725

    Article  CAS  Google Scholar 

  • Kaiser K, Guggenberger G (2003) Mineral surfaces and soil organic matter. Eur J Soil Sci 54: 219-236

    Google Scholar 

  • Kaiser K, Haumaier L, Zech W (2000) The sorption of organic matter in soils as affected by the nature of soil carbon. Soil Sci 165:305-313

    Article  CAS  Google Scholar 

  • Kalbitz K, Solinger S, Park JH, Michalzik B, Matzner E (2000) Controls on the dynamics of dissolved organic matter in soils: a review. Soil Sci 165:277-304

    Article  CAS  Google Scholar 

  • Kalbitz K, Schwesig D, Rethemeyer J, Matzner E (2005) Stabilization of dissolved organic matter by sorption to the mineral soiol. Soil Biol Biochem 37:1319-1331

    Article  CAS  Google Scholar 

  • Kawahigashi M, Kaiser K, Kalbitz K, Rodionov A, Guggenberger G (2004) Dissolved organic matter in small streams along a gradient from discontinuous to continuous permafrost. Global Change Biol 10:1576-1586

    Article  Google Scholar 

  • Kawahigashi M, Kaiser K, Rodionov A, Guggenberger G (2006) Sorption of dissolved organic matter by mineral soils of the Siberian forest tundra. Global Change Biol 12:1868-1877

    Article  Google Scholar 

  • Knorre AA, Kirdyanov AV, Vaganov EA (2006) Climatically induced interannual variability in aboveground production in forest-tundra and northern taiga of central Siberia. Oecologia 147:86-95

    Article  PubMed  Google Scholar 

  • Kracht O, Gleixner G (2000) Isotope analysis of pyrolysis products from Sphagnum peat and dissolved organic matter from bog water. Org Geochem 31:645-654

    Article  CAS  Google Scholar 

  • MacLean R, Oswood MW, Irons JG III, McDowell WH (1999) The effect of permafrost on stream biogeochemistry: a case study of two streams in the Alaskan (U.S.A.) taiga. Biogeochemistry 47:239-267

    Article  CAS  Google Scholar 

  • McDowell WH (2003) Dissolved organic matter in soils - future directions and unanswered questions. Geoderma 113:179-186

    Article  CAS  Google Scholar 

  • McDowell WH, Likens GE (1988) Origin, composition, and flux of dissolved organic-carbon in the Hubbard Brook Valley. Ecol Monogr 58:177-195

    Article  Google Scholar 

  • Michalzik B, Matzner E (1999) Fluxes and dynamics of dissolved organic nitrogen and carbon in a spruce (Picea abies Karst.) forest ecosystem. Eur J Soil Sci 50:579-590

    Article  Google Scholar 

  • Michalzik B, Kalbitz K, Park JH, Solinger S, Matzner E (2001) Fluxes and concentrations of dissolved organic carbon and nitrogen - a synthesis for temperate forests. Biogeochemistry 52:173-205

    Article  Google Scholar 

  • Michalzik B, Tipping E, Mulder J, Lancho JFG, Matzner E, Bryant CL, Clarke N, Lofts S, Esteban MAV (2003) Modelling the production and transport of dissolved organic carbon in forest soils. Biogeochemistry 66:241-264

    Article  CAS  Google Scholar 

  • Neff JC, Asner GP (2001) Dissolved organic carbon in terrestrial ecosystems: synthesis and a model. Ecosystems 4:29-48

    Article  CAS  Google Scholar 

  • Neff JC, Hooper DU (2002) Vegetation and climate controls on potential CO2, DOC and DON production in northern latitude soils. Global Change Biol 8:872-884

    Article  Google Scholar 

  • Neff JC, Finlay JC, Zimov SA, Davydov SP, Carrasco JJ, Schuur EAG, Davydova AI (2006) Seasonal changes in the age and structure of dissolved organic carbon in Siberian rivers and streams. Geophys Res Lett 33:L23401

    Article  Google Scholar 

  • Nikolaev AN, Fedorov PP (2004) The influence of climatic factors and thermal regime of permafrost-affected soils on radial increment of pine and larch trees in Central Yakutia. Lesovedenie 6:3-13 (in Russian)

    Google Scholar 

  • Peterson BJ, Holmes RM, McClelland JW, Vorosmarty CJ, Lammers RB, Shiklomanov AI, Shiklomanov IA, Rahmstorf S (2002) Increasing river discharge to the Arctic Ocean. Science 298:2171-2173

    Article  CAS  PubMed  Google Scholar 

  • Pokrovsky OS, Schott J, Kudryavtzev DI, Dupre B (2005) Basalt weathering in Central Siberia under permafrost conditions. Geochim Cosmochim Acta 69:5659-5680

    Article  CAS  Google Scholar 

  • Prokushkin AS, Guggenberger G (2007) Role of climate in removing dissolved organic matter from cryolithozone watersheds in central Siberia. Russian Meteorol Hydrol 32:404-412

    Article  Google Scholar 

  • Prokushkin AS, Shibata H, Prokushkin SG, Matsuura Y, Abaimov AP (2001) Dissolved organic carbon in coniferous forests of Central Siberia. Eurasian J For Res 2:45-58

    Google Scholar 

  • Prokushkin AS, Kajimoto T, Prokushkin SG, McDowell WN, Abaimov AP, Matsuura Y (2005a) Climatic factors influencing fluxes of dissolved organic carbon from the forest floor in a continuous-permafrost Siberian watershed. Can J For Res 35:2129-2139

    Article  Google Scholar 

  • Prokushkin AS, Tokareva IV, Prokushkin SG, Abaimov AP (2005b) Input of dissolved organic carbon to soil of larch ecosystems in continuous permafrost region of Central Siberia. Lesovedenie 5:1-8 (in Russian)

    Google Scholar 

  • Prokushkin AS, Gavrilenko IV, Abaimov AP, Prokushkin SG, Samusenko AV (2006a) Dissolved organic carbon in upland forested watersheds underlain by continuous permafrost in Central Siberia. Mitig Adapt Strateg Glob Change 11:223-240

    Article  Google Scholar 

  • Prokushkin AS, Gleixner G, McDowell WH, Ruehlow S, Schulze E-D (2007) Source- and substrate-specific export of dissolved organic matter from permafrost-dominated forested watershed in central Siberia. Global Biogeochem Cycles 21:GB4003

    Google Scholar 

  • Prokushkin AS, Tokareva IV, Prokushkin SG, Abaimov AP, Guggenberger G (2008) Fluxes of dissolved organic matter in larch forests of permafrost zone of Siberia. Russian J Ecol 39:153-161

    Google Scholar 

  • Prokushkin AS, Kawahigashi M, Tokareva IV (2009) Global warming and dissolved organic carbon release from permafrost soils. In: Margesin R (ed) Permafrost soils. Series soil biology, vol 16. Springer, Berlin, pp 237-250

    Google Scholar 

  • Prokushkin SG, Abaimov AP, Prokushkin AS, Masyagina OV (2006b) Biomass of ground vegetation and litter in larch forests of cryolithozone of Central Siberia. Sibirskiy Ekologicheskiy Zhurnal 2:131-139 (in Russian)

    Google Scholar 

  • Quinton WL, Gray DM, Marsh P (2000) Subsurface drainage from hummock-covered hillslopes in the arctic tundra. J Hydrol 237:113-125

    Article  Google Scholar 

  • Randerson JT, Liu H, Flaner MG, Chambers SD, Jin Y, Hess PG, Pfister G, Mack MC, Treseder KK, Welp LR, Chapin FS, Harden JW, Goulden ML, Lyons E, Neff JC, Schuur EAG, Zender CS (2006) The impact of boreal forest fire on climate warming. Science 314:1130-1132

    Article  CAS  PubMed  Google Scholar 

  • Schulten HR, Gleixner G (1999) Analytical pyrolysis of humic substances and dissolved organic matter in aquatic systems: structure and origin. Water Res 3311:2489-2498

    Article  Google Scholar 

  • Schulze E-D, Freibauer A (2005) Environmental science - carbon unlocked from soils. Nature 437:205-206

    Article  CAS  PubMed  Google Scholar 

  • Shibata H, Petrone KC, Hinzman LD, Boone RD (2003) Effect of fire on dissolved organic carbon and inorganic solutes in spruce forest in the permafrost region of interior Alaska. Soil Sci Plant Nutr 49:25-29

    Google Scholar 

  • Sofronov MA, Volokitina AV, Kajimoto T, Matsuura Y, Uemura S (2000) Zonal peculiarities of forest vegetation controlled by fires in northern Siberia. Eurasian J For Res 1:51-57

    Google Scholar 

  • Sondergaard M, Stedmon CA, Borch NH (2003) Fate of terrigenous dissolved organic matter (DOM) in estuaries: aggregation and bioavailability. Ophelia 57:161-176

    Google Scholar 

  • Sorokin ND, Evgrafova SY (1999) Biological activity of forest cryogenic soils in Central Evenkia. Eurasian Soil Sci 32:578-582

    Google Scholar 

  • Striegl RG, Dornblaser MM, Aiken GR, Wickland KP, Raymond PA (2007) Carbon export and cycling by the Yukon, Tanana, and Porcupine rivers, Alaska, 2001-2005. Water Resour Res 43(2):W02411

    Google Scholar 

  • Tokareva IV, Prokushkin SG, Prokushkin AS (2006) Water soluble organic carbon on a forested watershed underlain by continuous permafrost and its export to stream. Forest Sci Tech 2:92-101

    Google Scholar 

  • Van Cleave K, Yarie J (1986) Interaction of temperature, moisture and soil chemistry in controlling nutrient cycling and ecosystem development in the taiga of Alaska. In: Van Cleve K, Chapin FS III, Flanagan PW, Viereck LA, Dyrness CT (eds) Forest ecosystems in the Alaskan taiga. Springer, Berlin, pp 234-245

    Google Scholar 

  • White D, Yoshikawa K, Garland DS (2002) Use of dissolved organic matter to support hydrologic investigations in a permafrost-dominated watershed. Cold Regions Sci Tech 35:27-33

    Article  Google Scholar 

  • Woo MK, Winter TC (1993) The role of permafrost and seasonal frost in the hydrology of northern wetland in North America. J Hydrol 141:5-31

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Prokushkin, A.S., Hobara, S., Prokushkin, S.G. (2010). Behavior of Dissolved Organic Carbon in Larch Ecosystems. In: Osawa, A., Zyryanova, O., Matsuura, Y., Kajimoto, T., Wein, R. (eds) Permafrost Ecosystems. Ecological Studies, vol 209. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9693-8_11

Download citation

Publish with us

Policies and ethics