Skip to main content

Parasitic Plants in Agriculture: Chemical Ecology of Germination and Host-Plant Location as Targets for Sustainable Control: A Review

  • Chapter
  • First Online:
Organic Farming, Pest Control and Remediation of Soil Pollutants

Part of the book series: Sustainable Agriculture Reviews ((SARV,volume 1))

Abstract

Parasitic plants are among the most problematic pests of agricultural crops worldwide. Effective means of control are generally lacking, in part because of the close physiological connection between the established parasite and host plant hindering efficient control using traditional methods. Seed germination and host location are critical early-growth stages that occur prior to host attachment, and provide promising targets for ecologically sound management of parasitic weeds. Knowledge of parasite-host interactions, particularly chemical cues that induce parasite seed germination and mediate host location, should facilitate the development of novel management approaches. In parasitic plants that attach to host roots—e.g., Striga and Orobanche spp.—seed germination is known to occur only in the presence of chemical stimulants released from plant roots. The recent finding that these same chemicals promote the colonization of beneficial fungi has potentially important implications for the control of parasitic plants. Far less is known about the early stages of parasitic plants that attach above-ground to host shoots—e.g., Cuscuta spp. Seeds of these parasites lack germination stimulants, and it was only recently shown that foraging C. pentagona seedlings use airborne cues to locate and select among hosts. We review research on seed germination and host location by the major parasitic weeds that attack agricultural crops, and discuss the implications of recent findings for the development of sustainable and effective management strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahonsi M.O., Berner D.K., Emechebe A.M., Lagoke S.T., Sanginga N. (2003) Potential of ethylene-producing pseudomonads in combination with effective N2-fixing bradyrhizobial strains as supplements to legume rotation for Striga hermonthica control, Biol. Control 28, 1–10.

    Article  CAS  Google Scholar 

  • Akiyama K., Matsuzaki K., Hayashi H. (2005) Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi, Nature 435, 824–827.

    Article  PubMed  CAS  Google Scholar 

  • Babalola O.O., Sanni A.I., Odhiambo G.D., Torto B. (2007) Plant growth-promoting rhizobacteria do not pose any deleterious effect on cowpea and detectable amounts of ethylene are produced, World J. Microbiol. Biotechnol. 23, 747–752.

    Article  Google Scholar 

  • Barbiker A.G.T., Hamdoun A.M., Rudwan A., Mansi N.G., Faki H.H. (1987) Influence of soil moisture on activity and persistence of the strigol analog GR 24, Weed Res. 27, 173–178.

    Article  Google Scholar 

  • Benvenuti S., Dinelli G., Bonetti A., Catizone P. (2005) Germination ecology, emergence and host detection in Cuscuta campestris, Weed Res. 45, 270–278.

    Article  Google Scholar 

  • Berner D.K., Kling J.G., Singh B.B. (1995) Striga research and control – A perspective from Africa, Plant Dis. 79, 652–660.

    Article  Google Scholar 

  • Berner D.K., Schaad N.W., Volksch B. (1999) Use of ethylene-producing bacteria for stimulation of Striga spp. seed germination, Biol. Control 15, 274–282.

    Article  Google Scholar 

  • Bernhard R.H., Jensen J.E., Andreasen C. (1998) Prediction of yield loss caused by Orobanche spp. in carrot and pea crops based on the soil seedbank, Weed Res. 38, 191–197.

    Article  Google Scholar 

  • Besserer A., Puech-Pagès V., Kiefer P., Gomez-Roldan V., Jauneau A., Roy S., Portais J.C., Roux C., Bécard G., Séjalon-Delmas N. (2006) Strigolactones stimulate arbuscular mycorrhizal fungi by activating mitochondria, PLoS Biol. 4, e266.

    Article  Google Scholar 

  • Botanga C.J., Alabi S.O., Echekwu C.A., Lagoke S.T.O. (2003) Genetics of suicidal germination of Striga hermonthica (Del.) Benth by cotton, Crop Sci. 43, 483–488.

    Article  Google Scholar 

  • Bouwmeester H.J., Matusova R., Zhongkui S., Beale M.H. (2003) Secondary metabolite signaling in host-parasitic plant interactions, Curr. Opin. Plant Biol. 6, 358–364.

    Article  Google Scholar 

  • Bouwmeester H.J., Roux C., Lopez-Raez J.A., Bécard G. (2007) Rhizosphere communication of plants, parasitic plants and AM fungi, Tends Plant Sci. 12, 224–230.

    Article  CAS  Google Scholar 

  • Cook C.E., Whichard L.P., Turner B., Wall M.E. (1966) Germination of witchweed (Striga lutea Lour.) – isolation and properties of a potent stimulant, Science 154, 1189–1190.

    Article  PubMed  CAS  Google Scholar 

  • Dawson J.H., Musselman L.J., Wolswinkel P., Dörr I. (1994) Biology and control of Cuscuta, Rev Weed Sci 6, 265–317.

    Google Scholar 

  • De Moraes C.M., Lewis W.J., Paré P.W., Alborn H.T., Tumlinson J.H. (1998) Herbivore-infested plants selectively attract herbivores, Nature 393, 570–573.

    Article  Google Scholar 

  • De Moraes C.M., Mescher M.C., Tumlinson J.H. (2001) Caterpillar-induced nocturnal volatiles repel conspecific females, Nature 410, 577–580.

    Article  PubMed  Google Scholar 

  • Degen T., Dillmann C., Marion-Poll F., Turlings T.C.J. (2004) High genetic variability of herbivore-induced volatile emission within a broad range of maize inbred lines, Plant Physiol. 135, 1928–1938.

    Article  PubMed  CAS  Google Scholar 

  • Dubé M.P., Olivier A. (2001) Striga gesnerioides and its host, cowpea: interaction and methods of control, Can. J. Bot. 79, 1225–1240.

    Article  Google Scholar 

  • El-Halmouch Y., Benharrat H., Thalouarn P. (2006) Effect of root exudates from different tomato genotypes on broomrape (O. aegyptiaca) seed germination and tubercle development, Crop Prot. 25, 501–507.

    Article  Google Scholar 

  • Evidente A., Andolfi A., Fiore M., Boari A., Vurro M. (2006) Stimulation of Orobanche ramosa seed germination by fusicoccin derivatives: a structure-activity relationship study, Phytochemistry 67, 19–26.

    Article  PubMed  CAS  Google Scholar 

  • Fate G., Chang M., Lynn D.G. (1990) Control of germination in Striga asiatica: chemistry of spatial definition, Plant Physiol. 93, 201–207.

    Article  PubMed  CAS  Google Scholar 

  • Fenández-Aparicio M., Sillero J.C., Rubiales D. (2007) Intercropping with cereals reduces infection of Orobanche crenata in legumes, Crop Prot. 26, 1166–1172.

    Article  Google Scholar 

  • Gbèhounou G., Adango E. (2003) Trap crops of Striga hermonthica: in vitro identification and effectiveness in situ, Crop Prot. 22, 395–404.

    Article  Google Scholar 

  • Goldwasser Y., Yoder J.I. (2001) Differential induction of Orobanche seed germination by Arabidopsis thaliana, Plant Sci. 160, 951–959.

    Article  PubMed  CAS  Google Scholar 

  • Goldwasser Y., Lanini W.T., Wrobel R.L. (2001) Tolerance of tomato varieties to lespedeza dodder, Weed Sci. 49, 520–523.

    Article  CAS  Google Scholar 

  • Gressel J., Hanafi A., Head G., Marasas W., Babatunde Obilana A., Ochanda J., Souissi T., Tzotzos G. (2004) Major heretofore intractable biotic constraints to African food security that may be amenable to novel biotechnological solutions, Crop Prot. 23, 661–689.

    Article  Google Scholar 

  • Hauck C., Müller S., Schildknecht H. (1992) A germination stimulant for parasitic flowering plants from Sorghum bicolor, a genuine host plant, J. Plant Physiol. 139, 474–478.

    CAS  Google Scholar 

  • Haussmann B.I.G., Hess D.E., Welz H.G., Geiger H.H. (2000) Improved methodologies for breeding Striga-resistant sorghums, Field Crops Res. 66, 195–211.

    Article  Google Scholar 

  • Humphrey A.J., Galster A.M., Beale M.H. (2006) Strigolactones in chemical ecology: waste products or vital allelochemicals?, Nat. Prod. Rep. 23, 592–614.

    Article  PubMed  CAS  Google Scholar 

  • Joel D.M. (2000) The long-term approach to parasitic weeds control: manipulation of specific developmental mechanisms of the parasite, Crop Prot. 19, 753–758.

    Article  Google Scholar 

  • Kelly C.K. (1990) Plant foraging: a marginal value model and coiling response in Cuscuta subinclusa, Ecology 7, 1916–1925.

    Article  Google Scholar 

  • Kelly C.K. (1992) Resource choice in Cuscuta europaea, Proc. Nat. Acad. Sci. USA 89, 12194–12197.

    Article  PubMed  CAS  Google Scholar 

  • Khan Z.R., Pickett J.A., van den Berg J., Wadhams L.J., Woodcock C.M. (2000) Exploiting chemical ecology and species diversity: stem borer and striga control for maize and sorghum in Africa, Pest Manag. Sci. 56, 957–962.

    Article  CAS  Google Scholar 

  • Khan Z.R., Hassanali A., Overholt W., Khamis T.M., Hooper A.M., Pickett J.A., Wadhams L.J., Woodcock C.M. (2002) Control of witchweed Striga hermonthica by intercropping with Desmodium spp., and the mechanism defined as allelopathic, J. Chem. Ecol. 28, 1871–1885.

    Article  PubMed  CAS  Google Scholar 

  • Khan Z.R., Midega C.A.O., Hassanali A., Pickett J.A., Wadhams L.J. (2007) Assessment of different legumes for control of Striga hermonthica in maize and sorghum, Crop Sci. 47, 730–736.

    Article  Google Scholar 

  • Koch M.A., Binder C., Sanders R.A. (2004) Does the generalist parasitic plant Cuscuta campestris selectively forage in heterogeneous communities?, New Phytol. 162, 147–155.

    Article  Google Scholar 

  • Kuijt J. (1969) The Biology of Parasitic Flowering Plants, University of California Press, Berkeley.

    Google Scholar 

  • Lane J.A., Bailey J.A., Butler R.C., Terry P.J. (1993) Resistance of cowpea Vigna unguiculata (L.) Walp to Striga gesnerioides (Willd) Vatke, a parasitic angiosperm, New Phytol. 125, 405–412.

    Article  Google Scholar 

  • Lendzemo V.W., Kuyper T.W., Kropff M.J., van Ast A. (2005) Field inoculation with arbuscular mycorrhizal fungi reduces Striga hermonthica performance on cereal crops and has the potential to contribute to integrated Striga management, Field Crops Res. 91, 51–61.

    Article  Google Scholar 

  • Lendzemo V.W, Kuyper T.W., Matusova R., Bouwmeester H.J., Ast A.V. (2007) Colonization by arbuscular mycorrhizal fungi of sorghum leads to reduced germination and subsequent attachment and emergence of Striga hermonthica, Plant Signal. Behav. 2, 58–62.

    PubMed  Google Scholar 

  • Lins R.D., Colquhoun J.B., Mallory-Smith C.A. (2006) Investigation of wheat as a trap crop for control of Orobanche minor, Weed Res. 46, 313–318.

    Article  Google Scholar 

  • Logan D.C., Stewart G.R. (1991) Role of ethylene in the germination of the hemiparasite Striga hermonthica, Plant Physiol. 97, 1435–1438.

    Article  PubMed  CAS  Google Scholar 

  • Mangnus E.M., Zwanenburg B. (1992) Tentative molecular mechanism for germination stimulation of Striga and Orobanche seeds by strigol and its synthetic analogs, J. Agric. Food Chem. 40, 1066–1070.

    Article  CAS  Google Scholar 

  • Matusova R., van Mourik T., Bouwmeester H.J. (2004) Changes in the sensitivity of parasitic weed seeds to germination stimulants, Seed Sci. Res. 14, 335–344.

    Article  CAS  Google Scholar 

  • Matusova R., Rani K., Verstappen F.W.A., Franssen M.C.R., Beale M.H., Bouwmeester H.J. (2005) The strigolactone germination stimulants of the plant-parasitic Striga and Orobanche spp. are derived from the carotenoid pathway, Plant Physiol. 139, 920–934.

    Article  PubMed  CAS  Google Scholar 

  • Mescher M.C., Runyon J., De Moraes C.M. (2006) Plant host finding by parasitic plants: a new perspective on plant to plant communication, Plant Signal. Behav. 1, 284–286.

    PubMed  Google Scholar 

  • Musselman L.J., Yoder J.I., Westwood J.H. (2001) Parasitic plants major problem of food crops, Science 293, 1434.

    Article  PubMed  CAS  Google Scholar 

  • Nickrent D.L. (2007) Parasitic plant genera and species. Parasitic plant connection, http://www.parasiticplants.siu.edu/

  • Nickrent D.L., Duff R.J., Colwell A.E., Wolfe A.D., Young N.D., Steiner K.E., dePamphilis C.W. (1998) Molecular phylogenetic and evolutionary studies of parasitic plants, in: Soltis D.E., Soltis P.S., Doyle J.J. (Eds.), Molecular Systematics of Plants II. DNA Sequencing, Kluwer Academic Publishers, Boston, Massachusetts, USA, pp. 211–241.

    Google Scholar 

  • Oswald A. (2005) Striga control – technologies and their dissemination, Crop Prot. 24, 333–342.

    Article  Google Scholar 

  • Parker C. (1991) Protection of crops against parasitic weeds, Crop Prot. 10, 6–22.

    Article  CAS  Google Scholar 

  • Parker C., Riches C.R. (1993) Parasitic Weeds of the World: Biology and Control, CAB International, Wallingford, UK.

    Google Scholar 

  • Plenchette C., Clermont-Dauphin C., Meynard J.M., Fortin J.A. (2005) Managing arbuscular mycorrhizal fungi in cropping systems, Can. J. Plant Sci. 85, 31–40.

    Google Scholar 

  • Press M.C, Graves J.D. (1995) Parasitic Plants, Chapman and Hall, London, UK.

    Google Scholar 

  • Rispail N., Dita M.A., González-Verdejo C., Pérez-de-Luque A., Castillejo M.A., Prats E., Román B., Jorrín J., Rubiales D. (2007) Plant resistance to parasitic plants: molecular approaches to an old foe, New Phytol. 173, 703–712.

    Article  PubMed  CAS  Google Scholar 

  • Rubiales D. (2003) Parasitic plants, wild relatives and the nature of resistance, New Phytol. 160, 459–461.

    Article  Google Scholar 

  • Runyon J.B., Mescher M.C., De Moraes C.M. (2006) Volatile chemical cues guide host location and host selection by parasitic plants, Science 313, 1964–1967.

    Article  PubMed  CAS  Google Scholar 

  • Sanders I.R., Koide R.T., Shumway D.L. (1993) Mycorrhizal stimulation of plant parasitism, Can. J. Bot., 71, 1143–1146.

    Google Scholar 

  • Serghini K., Pérez-de-Luque A., Castejón-Muñoz M., García-Torres L., Jorrín J.V. (2001) Sunflower (Helianthus annuus L.) response to broomrape (Orobanche cernua Loefl.) parasitism: induced synthesis and excretion of 7-hydroxylated simple coumarins, J. Exp. Bot. 52, 2227–2234.

    PubMed  CAS  Google Scholar 

  • Siame B.A., Weerasuriya Y., Wood K., Ejeta G., Butler L.G. (1993) Isolation of strigol, a germination stimulant for Striga asiatica, from host plants, J. Agric. Food Chem. 41, 1486–1491.

    Article  CAS  Google Scholar 

  • Tooker J.F., De Moraes, C.M. (2007) Feeding by Hessian fly [Mayetiola destructor (Say)] larvae does not induce plant indirect defences, Ecol. Entomol. 32,153–161.

    Article  Google Scholar 

  • Tooker J.F., Rohr J.R., Abrahamson W.G., De Moraes C.M. (2008) Gall insects can avoid and alter indirect plant defenses. New Phytol. 178, 657–672.

    Google Scholar 

  • Turlings T.C.J., Ton J. (2006) Exploiting scents of distress: the prospect of manipulating herbivore-induced plant odours to enhance the control of agricultural pests, Curr. Opin. Plant Biol. 9, 421–427.

    Article  PubMed  Google Scholar 

  • Vurro M., Boari A., Pilgeram A.L., Sands D.C. (2006) Exogenous amino acids inhibit seed germination and tubercle formation of Orobanche ramosa (Broomrape): Potential application for management of parasitic weeds, Biol. Control 36, 258–265.

    Article  CAS  Google Scholar 

  • Wigchert S.C.M., Kuiper E., Boelhouwer G.J., Nefkens G.H.L., Verkleij J.A.C., Zwanenburg B. (1999) Dose-response of seeds of the parasitic weeds Striga and Orobanche toward the synthetic germination stimulants GR 24 and Nijmegen 1, J. Agric. Food Chem. 47, 1705–1710.

    Article  PubMed  CAS  Google Scholar 

  • Yokota T., Sakai H., Okuno K., Yoneyama K., Takeuchi Y. (1998) Alectrol and orobanchol, germination stimulants for Orobanche minor, from its host red clover, Phytochemistry 49, 1967–1973.

    Article  CAS  Google Scholar 

  • Yoneyama K., Ogasawara M., Takeuchi Y., Konnai M., Sugimoto Y., Seto H., Yoshida S. (1998) Effect of jasmonates and related compounds on seed germination of Orobanche minor Smith and Striga hermonthica (Del.) Benth, Biosci. Biotechnol. Biochem. 62, 1448–1450.

    Article  CAS  Google Scholar 

  • Yoneyama K., Yoneyama K., Takeuchi Y., Sekimoto H. (2007) Phosphorus deficiency in red clover promotes exudation of orobanchol, the signal for mycorrhizal symbionts and germination stimulant for root parasites, Planta 225, 1031–1038.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Consuelo M. De Moraes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Runyon, J.B., Tooker, J.F., Mescher, M.C., De Moraes, C.M. (2009). Parasitic Plants in Agriculture: Chemical Ecology of Germination and Host-Plant Location as Targets for Sustainable Control: A Review. In: Lichtfouse, E. (eds) Organic Farming, Pest Control and Remediation of Soil Pollutants. Sustainable Agriculture Reviews, vol 1. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9654-9_8

Download citation

Publish with us

Policies and ethics