Skip to main content

Soil Protection Through Organic Farming: A Review

  • Chapter
  • First Online:
Organic Farming, Pest Control and Remediation of Soil Pollutants

Part of the book series: Sustainable Agriculture Reviews ((SARV,volume 1))

Abstract

About 17% of the total land area in Europe is affected by erosion, and an estimated 45% of European soils have low organic matter content. Because agriculture occupies the largest proportion of land, agricultural management is decisive for soil conservation and soil quality. Here we evaluate, on the basis of published research, whether or not organic farming might be a way to maintain and restore soil quality. Results of field experiments and studies of practical farms show concordantly that soil organic matter typically increases or is conserved better with organic than with conventional farming practices, with differences becoming exceedingly pronounced with time. Soil organic carbon was 6–34% higher under organic than under conventional management, with two studies finding no pronounced differences and two studies with very old organic farms exhibiting 50–70% more soil organic C than their conventional neighbors. This goes along with an increase in soil total nitrogen content of up to 21% (47% on one of the old organic farms), which nevertheless was shown not to lead to increased nitrogen losses to the groundwater due to nitrogen-conserving practices used in organic farming. In the “plant available” soil contents of phosphorus and potassium, there appears to be no general trend under “organic” as compared to conventional management.

Soil structure is typically positively affected by organic farming practices. There were up to 70% more stable macroaggregates in organic farming, and infiltration rates were up to twice as high as under conventional management. Soil water content increased by 5–72% in the studies analyzed, and an increased soil water content was reported to account for 30% higher yields in the organic systems during the extremely dry years experienced during the Rodale Farming Systems Trial. Erosion, as assessed by measuring topsoil thickness, was lower under organic management, resulting in 2–16 cm thicker topsoils. When the universal soil loss equation (USLE) method was used to model erosion, between 15% and 30% less erosion under organic management was reported.

In summary, the research analyzed shows that organic management protects and improves soil quality. The main factors responsible for these benefits were identified as larger inputs of organic matter (manure, compost); more diverse crop rotations, including cover crops and green manures; and a longer time span of soil cover. Because organic farming is the only farming system that is legally defined and controlled, these benefits of organic farming can be relied on, although there is some differentiation within organic farming by different farm types and production intensities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arden-Clarke C., Hodges R. (1987) The environmental effects of conventional and organic/biological farming systems. I. Soil erosion, with special reference to Britain. Biol. Agric. Hortic. 4, 309–357.

    Google Scholar 

  • Armstrong Brown S., Cook H., Lee H. (2000) Topsoil characteristics from a paired farm survey of organic versus conventional farming in southern England. Biol. Agr. Hort. 18, 37–54.

    Google Scholar 

  • Askegaard M., Eriksen J. (2002) Exchangeable potassium in soil as indicator of potassium status in an organic crop rotation on loamy sand. Soil Use Managem. 18, 84–90.

    Article  Google Scholar 

  • Auerswald K., Kainz M., Fiener P. (2003) Soil erosion potential of organic versus conventional farming evaluated by USLE modelling of cropping statistics for agricultural districts in Bavaria. Soil Use Managem. 19, 305–311.

    Article  Google Scholar 

  • Bauchhenss J., Herr S. (1986) Vergleichende Untersuchungen der Individuendichte, Biomasse, Artendichte und Diversität von Regenwurmpopulationen auf konventionell und alternativ bewirtschafteten Flächen. Bayerisches Landwirtschaftliches Jahrbuch 63, 1002–1012.

    Google Scholar 

  • Berg, M., Haas, G., Köpke, U. (1999) Flächen- und produktbezogener Nitrataustrag bei Integriertem und Organischem Landbau in einem Wasserschutzgebiet am Niederrhein. In: Hoffmann H., Müller S. (Hrsg.), Vom Rand zur Mitte: Beiträge zur 5. Wissenschaftstagung zum Ökologischen Landbau, 23.–25. 2. 1999 in Berlin. Köster Verlag, Berlin, pp.239–242.

    Google Scholar 

  • Berner A., Hildermann I., Fliessbach A., Pfiffner L., Niggli U., Mäder P. (2008) Crop yield and soil fertility response to reduced tillage under organic management. Soil Tillage Res. 101, 89–96.

    Google Scholar 

  • Beste A. (2005) Landwirtschaftlicher Bodenschutz in der Praxis. Verlag Dr. Köster, Berlin.

    Google Scholar 

  • Bio Austria (2006) Bio Austria Produktionsrichtlinien für die biologische Landwirtschaft in Österreich. Bio Austria, Linz.

    Google Scholar 

  • Bohne H. (1991) Stabilität des Bodengefüges unter Einfluß der Bodennutzung – Voraussetzungen, Anforderungen, Möglichkeiten. In: BMELF (Hrsg.), Bodennutzung und Bodenfruchtbarkeit 2, Bodengefüge. Landwirtschaftsverlag Münster-Hiltrup (Berichte über Landwirtschaft, Sdh. 204), pp. 43–54.

    Google Scholar 

  • Brady N. C., Weil R. R. (1999) The nature and properties of soils. 12th ed., Prentice Hall, NJ.

    Google Scholar 

  • Chaney K., Swift R. (1984) The influence of organic matter on aggregate stability in some British soils. J. Soil Sci. 35, 223–230.

    Article  CAS  Google Scholar 

  • Clark M. S., Horwath W. R., Shennan C., Scow K. M. (1998) Changes in soil chemical properties resulting from organic and low-input farming practices. Agron. J. 90, 662–671.

    Article  Google Scholar 

  • Colla G., Mitchell J., Joyce B., Huyck L., Wallender W., Temple S., Hsiao T., Poudel D. (2000) Soil physical properties and tomato yield and quality in alternative cropping systems. Agron. J. 92, 924–932.

    Article  Google Scholar 

  • Diez T., Bihler E., Krauss M. (1991) Auswirkungen abgestufter Intensitäten im Pflanzenbau auf Lebensgemeinschaften des Ackers, Bodenfruchtbarkeit und Ertrag. IV. Auswirkungen abgestufter Pflanzenbauintensitäten auf Bodenkennwerte und Nährstoffbilanz. Bayer. Landw. Jahrb. 68(3), 354–361.

    Google Scholar 

  • Ebertseder T. (1997) Qualitätskriterien und Einsatzstrategien für Komposte aus Bioabfall auf landwirtschaftlich genutzten Flächen. Dissertation TU München. Shaker Verlag, Aachen.

    Google Scholar 

  • EEA (2003) Europe`s environment: the third assessment. Environmental assessment report No. 10, Copenhagen.

    Google Scholar 

  • Eichler-Loebermann B., Schnug E. (2006) Crop plants and the availability of phosphorus in soil. In: Lal R. (Ed.): Encyclopedia of Soil Science, Taylor & Francis, London. Vol. 1, pp. 348–350.

    Google Scholar 

  • Ekwue E. (1992) Effect of organic and fertiliser treatments on soil physical properties and erodibility. Soil & Tillage Res. 22, 199–209.

    Article  Google Scholar 

  • Eltun, R. (1995) Comparisons of Nitrogen Leaching in Ecological and Conventional Cropping Systems. Biol. Agri. Hortic. 11, 103–114.

    Google Scholar 

  • Emmerling C., Hampl U. (2002) Wie sich reduzierte Bodenbearbeitung auswirkt. Ökologie Landbau 124, 19–23.

    Google Scholar 

  • Erhart E., Feichtinger F., Hartl W. (2007) Nitrogen leaching losses under crops fertilized with biowaste compost compared with mineral fertilization. J. Plant Nutr. Soil Sci. 170, 608–614.

    Article  CAS  Google Scholar 

  • EU Commission (2006) ‘Thematic strategy for soil protection’, Communication from the commission to the council, the European parliament, the European economic and social committee and the committee of the regions. COM(2006)231 final.

    Google Scholar 

  • Fliessbach A., Hany R., Rentsch D., Frei R., Eyhorn F. (2000) DOC trial: soil organic matter quality and soil aggregate stability in organic and conventional soils. In: Alföldi T., Lockeretz W., Niggli U. (Hrsg.): Proceedings 13th International IFOAM Scientific Conference. vdf Hochschulverlag, Zürich, Switzerland.

    Google Scholar 

  • Fliessbach A., Mäder P. (2000) Microbial biomass and size-density fractions differ between soils of organic and conventional agricultural systems. Soil Biol. Biochem. 32, 757–768.

    Article  CAS  Google Scholar 

  • Fliessbach A., Oberholzer H.-R., Gunst L., Mäder P. (2007) Soil organic matter and biological soil quality indicators after 21 years of organic and conventional farming. Agric. Ecosyst. Env. 118, 273–284.

    Article  Google Scholar 

  • Frielinghaus M. (1998) Bodenbearbeitung und Bodenerosion. In: Kuratorium für Technik und Bauwesen in der Landwirtschaft e. V. (KTBL) (Hrsg.), Bodenbearbeitung und Bodenschutz: Schlußfolgerung für die gute fachliche Praxis. KTBL-Arbeitpapier Nr. 266. KTBL-Schriften-Vertrieb im Landwirtschaftsverl. Darmstadt – Münster-Hiltrup, pp. 31–55.

    Google Scholar 

  • Gerzabek M., Kirchmann H., Pichlmayer F. (1995) Response of soil aggregate stability to manure amendments in the Ultuna long-term soil organic matter experiment. Z. Pflanzenern. Bodenk. 158, 257–260.

    Article  CAS  Google Scholar 

  • Gisi U., Schenker R., Schulin R., Stadelmann F. X., Sticher H. (1997) Bodenökologie. 2. Aufl., Thieme Verlag, Stuttgart, New York.

    Google Scholar 

  • Giusquiani P., Pagliai M., Gigliotti G., Businelli D., Benetti A. (1995) Urban waste compost: effects on physical, chemical, and biochemical soil properties. J. Environ. Qual. 24, 175–182.

    Article  CAS  Google Scholar 

  • Gunnarsson S., Marstorp H. (2002): Carbohydrate composition of plant materials determines N mineralisation. Nutr. Cycl. Agroecosys. 62, 175–183.

    Article  CAS  Google Scholar 

  • Hampl U. (2005) 10 Jahre differenzierte Grundbodenbearbeitung im Ökologischen Landbau – Methoden und Ergebnisse. In: Heß J., Rahmann G. (Eds.), Ende der Nische – Beiträge zur 8. Wissenschaftstagung Ökologischer Landbau, Kassel university press GmbH, Kassel, pp. 13–14.

    Google Scholar 

  • Hansen B., AlrØe H., Kristensen E. (2001) Approaches to assess the environmental impact of organic farming with particular regard to Denmark. Agric., Ecosyst. Env. 83, 11–26.

    Article  Google Scholar 

  • Hartl W. (2006) Organic soil fertility improvement. In: Radics L., Kormány A., Ertsey K., Szalay I., von Fragstein und Niemsdorff P., Glemnitz M., Hartl W. (Eds.), Summarised results of the CHANNEL project (FOOD-CT-2004-003375). Szaktudás Kiadó Ház, Budapest, pp. 93–108.

    Google Scholar 

  • Hartl W., Erhart E. (2003) Long term fertilization with compost – effects on humus content and cation exchange capacity. Ecol. Future Bulg. J. Ecol. Sci. 2, 38–42.

    Google Scholar 

  • Hartl W., Erhart E. (2005) Crop nitrogen recovery and soil nitrogen dynamics in a 10 year field experiment with biowaste compost. J. Plant Nutr. Soil Sci. 168, 781–788.

    Article  CAS  Google Scholar 

  • Haynes R., Naidu R. (1998) Influence of lime, fertilizer and manure applications on soil organic matter content and soil physical conditions: a review. Nutr. Cycl. Agroecosyst. 51, 123–137.

    Article  Google Scholar 

  • Hege U., Weigelt H. (1991) Nährstoffbilanzen alternativ bewirtschafteter Betriebe. Bayer. Landw. Jahrb. 68, 401–407.

    Google Scholar 

  • Hofmann U. (1995) Auswirkungen von weinbaulichen Anbauverfahren am Beispiel Mariannenaue – Vergleich von herkömmlicher, integrierter und ökologischer Wirtschaftsweise. Ökologie Forum Hessen. Hessisches Ministerium des Innern, Landwirtschaft, Forsten und Naturschutz.

    Google Scholar 

  • Hoyer U., Lemnitzer B., Hülsbergen K.-J. (2007) Impact of organic farming on different pools of soil organic matter and conclusions on humus balancing. pp. 9–12. In: Zikeli S., Claupein W., Dabbert S., Kaufmann B., Müller T., Valle Zárate A. (Eds.), Zwischen Tradition und Globalisierung. Beiträge zur 9. Wissenschaftstagung Ökologischer Landbau. Universität Hohenheim. Verlag Dr. Köster, Berlin.

    Google Scholar 

  • Hudson B. D. (1994) Soil organic matter and available water capacity. J. Soil Water Cons. 49, 189–194.

    Google Scholar 

  • IFOAM (2005) Principles of organic agriculture. IFOAM, Bonn.

    Google Scholar 

  • Kainz M., Kimmelmann S., Reents H.-J. (2003) Bodenbearbeitung im Ökolandbau – Ergebnisse und Erfahrungen aus einem langjährigen Feldversuch. In: Freyer B. (Ed.), Beiträge zur 7. Wissenschaftstagung Ökologischer Landbau. Univ. f. Bodenkultur, Wien, pp. 33–36.

    Google Scholar 

  • Kainz M., Gerl G., Lemnitzer B., Bauchenß J., Hülsbergen K.-J. (2005) Effects of different tillage systems in the long-term field experiment Scheyern. In: Heß J., Rahmann G. (Eds.), Ende der Nische – Beiträge zur 8. Wissenschaftstagung Ökologischer Landbau. Kassel university press GmbH, Kassel, pp. 1–4.

    Google Scholar 

  • Kleyer M., Babel U. (1984) Gefügebildung durch Bodentiere in “konventionell” und ”biologisch” bewirtschafteten Ackerböden. Z. Pflanzenernaehr. Bodenk. 147, 98–109.

    Article  Google Scholar 

  • Kloepfer F. (2007) Grundboden- und Stoppelbearbeitung im ökologischen Landbau. KTBL, Darmstadt.

    Google Scholar 

  • König W., Sunkel R., Necker U., Wolff-Straub R., Ingrisch S., Wasner U., Glück E. (1989) Alternativer und konventioneller Landbau – Vergleichsuntersuchungen von Ackerflächen auf Lößstandorten im Rheinland. Schriftenreihe der LÖLF (Landesanstalt für Ökologie, Landschaftsentwicklung und Forstplanung Nordrhein-Westfalen) 11, Recklinghausen.

    Google Scholar 

  • Kromp B., Pfeiffer L., Meindl P., Hartl W., Walter B. (1996) The effects of different fertilizer regimes on the populations of earthworms and beneficial arthropods found in a wheat field. In: IOBC/WPRS-Bulletin 19(11) Working Group Meeting ‘Integrated Control in Field Vegetable Crops’, Nov. 6–8, 1995, Giutte, France, pp. 184–190.

    Google Scholar 

  • Lampkin N. (2002) Organic farming. 1. publ., repr. with amendments. Farming press, Ipswich.

    Google Scholar 

  • Liebig M., Doran J. (1999) Impact of organic production practices on soil quality indicators. J. Environ. Qual. 28, 1601–1609.

    Article  CAS  Google Scholar 

  • Lindenthal T. (2000) Phosphorvorräte in Böden, betriebliche Phosphorbilanzen und Phosphorversorgung im Biologischen Landbau. Dissertation, Univ. f. Bodenkultur, Wien.

    Google Scholar 

  • Lockeretz W., Shearer G., Kohl D. (1981) Organic farming in the corn belt. Science 211, 540–547.

    Article  PubMed  CAS  Google Scholar 

  • Lockeretz W., Shearer G., Sweeney S., Kuepper G., Wanner D., Kohl D. (1980) Maize yields and soil nutrient levels with and without pesticides and standard commercial fertilizers. Agron. J. 72, 65–72.

    Google Scholar 

  • Mäder P., Fließbach A., Dubois D., Gunst L., Fried P., Niggli U. (2002) Soil fertility and biodiversity in organic farming. Science 296, 1694–1697.

    Article  PubMed  Google Scholar 

  • Maidl F. X., Demmel M., Fischbeck G. (1988) Vergleichende Untersuchungen ausgewählter Parameter der Bodenfruchtbarkeit auf konventionell und alternativ bewirtschafteten Standorten. Bayer. Landw. Forsch. 41, 231–245.

    CAS  Google Scholar 

  • Melero S., Porras J., Herencia J., Madejon E. (2006) Chemical and biochemical properties in a silty loam soil under conventional and organic management. Soil Tillage Res. 90, 162–170.

    Article  Google Scholar 

  • Meyer D., Jungk A. (1992) Freisetzungsraten von austauschbarem und nichtaustauschbarem Kalium in Beziehung zur Kaliumaufnahme von Weizen und Zuckerrübe. VDLUFA-Schriftenreihe Bd. 35. VDLUFA-Verlag, Darmstadt, pp. 135–138.

    Google Scholar 

  • Moritz C., Zimmermann M., Damitz U., Papaja S. (1994) Stickstoffdynamik in der ungesättigten Zone – Ergebnisse von Tiefenbohrungen auf Dauerfeldversuchen sowie auf ökologisch und konventionell bewirtschafteten Schlägen. In: Übertragung von Lysimetereregebnissen auf landwirtschaftlich genutzte Flächen und Regionen. 4. Gumpensteiner Lysimetertagung, BAL Gumpenstein, pp.113–123.

    Google Scholar 

  • Mulla D., Huyck L., Reganold J. (1992) Temporal variation in aggregate stability on conventional and alternative farms. Soil Sci. Soc. Am. J. 56, 1620–1624.

    Article  Google Scholar 

  • Müller M., Sundman V., Soininvaara O., Meriläinen A. (1988) Effect of chemical composition on the release of nitrogen from agricultural plant materials decomposing in soil under field conditions. Biol. Fertil. Soils 6, 78–83.

    Article  Google Scholar 

  • Munro T., Cook H., Lee H. (2002) Sustainability indicators used to compare properties of organic and conventionally managed topsoils. Biol. Agr. Hort. 20, 201–214.

    Google Scholar 

  • Nelson N., Janke R. (2007) Phosphorus sources and management in organic production systems. HortTechnology 17, 442–454.

    CAS  Google Scholar 

  • Nichols K., Wright S. (2004) Contributions of fungi to soil organic matter in agroecosystems. In: Magdoff F., Weil R. R. (Eds.), Soil organic matter in sustainable agriculture. CRC Press, Boca Raton, pp. 179–198.

    Google Scholar 

  • Oberson A., Fardeau J.-C., Besson J., Sticher H. (1993) Soil phosphorus dynamics in cropping systems managed according to conventional and biological agricultural methods. Biol. Fertil. Soils 16, 111–117.

    Article  CAS  Google Scholar 

  • Öborn I., Andrist-Rangel Y., Askegaard M., Grant C., Watson C., Edwards A. (2005) Critical aspects of potassium management in agricultural systems. Soil Use Managem. 21, 102–112.

    Google Scholar 

  • Peigné J., Aveline A., Cannavaciuolo M., Giteau J.-L., Gautronneau Y. (2007) Soil structure and earthworm activity under different tillage systems in organic farming. In: Niggli U., Leifert C., Alföldi T., Lück L., Willer H. (Eds.), Proceedings of the 3rd international congress of the European integrated project quality low input food (QLIF). Univ. Hohenheim, Stuttgart, Germany, March 20–23, 2007. FiBL, Frick (CH).

    Google Scholar 

  • Pekrun C., Schneider N., Wüst C., Jauss F., Claupein W. (2003) Einfluss reduzierter Bodenbearbeitung auf Ertragsbildung, Unkrautdynamik und Regenwurmpopulationen im Ökologische Landbau. In: Freyer B. (Ed.), Beiträge zur 7. Wissenschaftstagung Ökologischer Landbau. Univ. f. Bodenkultur, Wien, pp. 21–24.

    Google Scholar 

  • Peters S., Wander M., Saporito L., Harris G., Friedman D. (1997) Management impacts on SOM and related soil properties in a long-term farming systems trial in Pennsylvania: 1981–1991. In: Paul E. A. (Ed.), Soil organic matter in temperate agroecosystems: long-term experiments in North America. CRC Press, Boca Raton. pp. 183–196.

    Google Scholar 

  • Petersen P., Tardin J., Marochi F. (1999) Participatory development of no-tillage systems without herbicides for family farming: the experience of the center-south region of Paraná. Environ. Deve Sustain. 1, 235–252.

    Article  Google Scholar 

  • Pimentel D., Hepperly P., Hanson J., Douds D., Seidel R. (2005) Environmental, energetic, and economic comparisons of organic and conventional farming systems. BioScience 55, 573–582.

    Article  Google Scholar 

  • Pulleman M., Jongmans A., Marinissen J., Bouma J. (2003) Effects of organic versus conventional farming on soil structure and organic matter dynamics in a marine loam in the Netherlands. Soil Use Managem. 19, 157–165.

    Article  Google Scholar 

  • Raupp J. (2002) Wie die Humusentwicklung langfristig sichern? Ökologie Landbau 124(4), 9–11.

    Google Scholar 

  • Raupp J., Oltmanns M. (2006) Soil properties, crop yield and quality with farmyard manure with and without biodynamic preparations and with inorganic fertilizers. In: Raupp J., Pekrun C., Oltmanns M., Köpke U. (Eds.), Long-term field experiments in organic farming. ISOFAR Scientific Series 1. Verlag Dr. Köster, Berlin, pp. 135–155.

    Google Scholar 

  • Reganold J., Elliott L., Unger Y. (1987) Long-term effects of organic and conventional farming on soil erosion. Nature 330, 370–372.

    Article  Google Scholar 

  • Rusch H.-P. (1978) Bodenfruchtbarkeit. Verlag Haug, Heidelberg.

    Google Scholar 

  • Schachtschabel P., Blume H.-P., Brümmer G., Hartge K. H., Schwertmann U. (1998) Lehrbuch der Bodenkunde. 14. Aufl., Ferd. Enke Verlag, Stuttgart.

    Google Scholar 

  • Schnug E., Haneklaus S. (2002) Landwirtschaftliche Produktionstechnik und Infiltration von Böden – Beitrag des ökologischen Landbaus zum vorbeugenden Hochwasserschutz. Landbauforschung Völkenrode 52, 197–203.

    Google Scholar 

  • Schnug E., Rogasik J., Panten K., Paulsen H., Haneklaus S. (2004) Ökologischer Landbau erhöht die Versickerungsleistung von Böden. Ökologie Landbau 132, 53–55.

    Google Scholar 

  • Scullion J., Neale S., Philipps L. (2002) Comparisons of earthworm populations and cast properties in conventional and organic arable rotations. Soil Use Managem. 18, 293–300.

    Article  Google Scholar 

  • Shepherd M., Harrison R., Webb J. (2002) Managing soil organic matter – implications for soil structure on organic farms. Soil Use Managem. 18, 284–192.

    Google Scholar 

  • Siebrecht N., Kainz M., Hülsbergen K.-J. (2007) Effects of ecological agriculture on soil erosion by water. In: Zikeli S., Claupein W., Dabbert S., Kaufmann B., Müller T., Valle Zárate A. (Eds.), Zwischen Tradition und Globalisierung. Beiträge zur 9. Wissenschaftstagung Ökologischer Landbau. Universität Hohenheim, 20.–23. März 2007. Verlag Dr. Köster, Berlin, pp. 859–862.

    Google Scholar 

  • Siegrist S., Schaub D., Pfiffner L., Mäder P. (1998) Does organic agriculture reduce soil erodibility? The results of a long-term field study on loess in Switzerland. Agric. Ecosyst. Environ. 69, 253–264.

    Article  Google Scholar 

  • Steffens D., Mengel K. (1979) Das Aneignungsvermögen von Lolium perenne im Vergleich zu Trifolium pratense für Zwischenschicht-Kalium der Tonminerale. Landw. Forsch. Sonderh. 36, 120–127.

    Google Scholar 

  • Stockdale E., Shepherd M., Fortune S., Cuttle S. (2002) Soil fertility in organic farming systems – fundamentally different? Soil Use Managem. 18, 301–308.

    Article  Google Scholar 

  • Stolze M., Piorr A., Häring A., Dabbert S. (2000) The environmental impacts of organic farming in Europe. Organic farming in Europe: Economics and Policy Vol. 6. Universität Hohenheim, Stuttgart-Hohenheim.

    Google Scholar 

  • Stopes C., Lord E., Philipps L., Woodward L. (2002) Nitrate leaching from organic farms and conventional farms following best practice. Soil Use Managem. 18, 256–263.

    Article  Google Scholar 

  • Syers J. K. (1998) Soil and plant potassium in agriculture. The International Fertilizer Society – Proceedings No. 411.

    Google Scholar 

  • Tisdall J. M., Oades J. M. (1982) Organic matter and water-stable aggregates in soils. J. Soil Sci. 33, 141–163.

    Article  CAS  Google Scholar 

  • Trolove S., Hedley M., Caradus J., Mackay A. (1996) Uptake of phosphorus from different sources by Lotus pedunculatus and three genotypes of Trifolium repens. 2. Forms of phosphate utilised and acidification of the rhizosphere. Aust. J. Soil Res. 34, 1027–1040.

    Article  CAS  Google Scholar 

  • Van der Werff P., Baars A., Oomen G. (1995) Nutrient balances and measurement of nitrogen losses on mixed ecological farms on sandy soils in the Netherlands. Biol. Agric. Hortic. 11, 41–50.

    Google Scholar 

  • Wander M., Traina S. (1996) Organic matter fractions from organically and conventionally managed soils: I. Carbon and nitrogen distribution. Soil Sci. Soc. Am. J. 60, 1081–1087.

    Article  CAS  Google Scholar 

  • Watson C., Atkinson D., Gosling P., Jackson L., Rayns F. (2002) Managing soil fertility in organic farming systems. Soil Use Managem. 18, 239–247.

    Article  Google Scholar 

  • Watts C., Dexter A. (1997) The influence of organic matter in reducing the destabilization of soil by simulated tillage. Soil Tillage Res. 42, 253–275.

    Article  Google Scholar 

  • Weil R., Magdoff F. (2004) Significance of soil organic matter to soil quality and health. In: Magdoff F., Weil R. (Eds.), Soil organic matter in sustainable agriculture. CRC Press, Boca Raton, pp. 1–43.

    Google Scholar 

  • Weiss K. (1990) Bodenuntersuchungen aus Vergleichsflächen von alternativ und konventionell bewirtschafteten Böden in Baden-Württemberg. Schriftenreihe der Landbauforschung Völkenrode Sonderheft 113, 103–116.

    Google Scholar 

  • Wivstad M. (1999) Nitrogen mineralization and crop uptake of N from decomposing 15N labelled red clover and yellow sweetclover plant fractions of different age. Plant Soil 208, 21–31.

    Article  CAS  Google Scholar 

  • Wivstad M., Dahlin A., Grant C. (2005) Perspectives on nutrient management in arable farming systems. Soil Use Managem. 21, 113–121.

    Google Scholar 

  • Wulff F., Schulz V., Jungk A., Claassen N. (1998) Potassium fertilization on sandy soils in relation to soil test, crop yield and K-leaching. J. Plant Nutr. Soil Sci. 161, 591–599.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eva Erhart .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Erhart, E., Hartl, W. (2009). Soil Protection Through Organic Farming: A Review. In: Lichtfouse, E. (eds) Organic Farming, Pest Control and Remediation of Soil Pollutants. Sustainable Agriculture Reviews, vol 1. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9654-9_11

Download citation

Publish with us

Policies and ethics