Skip to main content

The Embryo Lethal System

  • Chapter
Conifer Reproductive Biology

Summary

Outcrossing, wind-pollinated members of the Pinaceae have high self-pollination rates yet produce few selfed seedlings. Avoiding self-pollen capture is incomplete so how are self-pollinated ovules or seeds selectively eliminated? Barriers to selfing have long been considered to be either competition via simple polyembryony and death to selfed embryos during seed maturation. Experimental results show that simple polyembrony is a weak barrier against selfed embryos. By far, the most effective barrier is the enigmatic mechanism(s) that cause recognition and death to selfed embryos. A survey shows that extreme inbreeding depression occurs in some species but not in others so this is not a feature of conifers as a group. Only five of the 11 genera within the Pinaceae (Abies, Larix, Picea, Pinus and Pseudotsuga) have been well-characterized with respect to self-pollinated embryo deaths. Molecular dissection methods have been used to infer severity and distribution of lethal factors; to date, most are semi- lethal rather than fully lethal. These range from partially dominant to overdominant or perhaps balanced lethals.

Some selfed embryos die at all stages of seed development but a second death pattern has been detected in some Pinus and Picea spp species: a large proportion of selfed embryo deaths peak during early embryogeny. Are these dual death patterns present in other genera and if so, what genetic models might account for them? This chapter is a case study which integrates not only what was introduced in previous chapters but also shows how knowledge of the conifer mating system contributes to the broader understanding of eukaryotic systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bernasconi G., T. Ashman et al. 2004. Evolutionary ecology of the prezygotic stage. Science 303: 971–975.

    Article  PubMed  CAS  Google Scholar 

  • Bishir, J. and G. Namkoong. 1987. Unsound seed in conifers: estimation of numbers of lethal alleles and of magnitudes of effects associated with the maternal parent. Silvae Genetica 36: 180–185.

    Google Scholar 

  • Bramlett, D. and F. Bridgwater. 1986. Segregation of recessive embryonic lethal alleles in a F1 population of Virginia pine. IUFRO Conference on Breeding Theory, Williamburg VA.

    Google Scholar 

  • Bramlett, D. and T. Popham. 1971. Model relating unsound seed and embryonic lethals in self-pollinated pines. Silvae Genetica 20: 192–193.

    Google Scholar 

  • Buchholz J. 1918. Suspensor and early embryo of Pinus. Botantical Gazette 66: 185–228.

    Article  Google Scholar 

  • Buchholz, J. 1920. Embryo development and polyembryony in relation to the phylogeny of conifers. American Journal of Botany 7: 125–145.

    Article  Google Scholar 

  • Buchholz, J. 1922. Developmental selection in vascular plants. Bot. Gaz. 73: 249–286.

    Article  Google Scholar 

  • Cavalli-Sforza, L. and W. Bodmer. 1971. The genetics of human populations. San Francisco, Freeman.

    Google Scholar 

  • Crow, J. 1991. Why is Mendelian segregation so exact? Bioessays 13: 305–312.

    Article  PubMed  CAS  Google Scholar 

  • Dogra, P. 1967. Seed sterility and disturbances in embryogeny in conifers with particular reference to seed testing and tree breeding in Pinaceae. Studia Forestalia Suecica 45: 1–97.

    Google Scholar 

  • Filonova L.H., von Arnold S. et al. 2002. Programmed cell death eliminates all but one embryo in a polyembryonic plant seed. Cell Death and Differentiation 9: 1057–1062.

    Article  PubMed  CAS  Google Scholar 

  • Fowler, D. 1965a. Natural self-fertilization in three jack pines and its implications in seed orchard management. For. Sci. 11: 55–58.

    Google Scholar 

  • Fowler, D. 1965b. Effects of inbreeding in red pine, Pinus resinosa Ait. Silv. Genet. 12: 12–23.

    Google Scholar 

  • Franklin, E. 1969. Inbreeding depression in metrical traits of loblolly pine (Pinus taeda L.) as a result of self-pollination. Ph.D. Dissertation, Raleigh NC., School of Forest Resources, North Carolina State University.

    Google Scholar 

  • Franklin, E. 1972. Genetic load in loblolly pine. Amer. Nat. 106: 262–265.

    Article  Google Scholar 

  • Fu, Y-B and K. Ritland. 1994a. Evidence for the partial dominance of viability of viability genes contributing to inbreeding depression in Mimulus guttatus. Genet. 136: 323–331.

    CAS  Google Scholar 

  • Fu, Y-B and K. Ritland 1994b. On estimating the linkage of marker genes to viability genes controlling inbreeding depression. Theor. Appl. Genet. 88: 925–932.

    Article  Google Scholar 

  • Fu, Y.B., D. Charlesworth et al. 1997. Point estimation and graphical inference of marginal dominance for two viability loci controlling inbreeding depression. Genet. Res. 70: 143–153.

    Article  PubMed  CAS  Google Scholar 

  • Gifford, E. and A. Foster. 1989. Morphology and evolution of vascular plants. W.H. Freeman Company, New York.

    Google Scholar 

  • Griffin, R. and D. Lindgren. 1985. Effect of inbreeding on production of filled seed in Pinusradiata, — experimental results and a model of gene action. Theor. Appl. Genet. 71: 334–343.

    Google Scholar 

  • Hagman, M. and L. Mikkola. 1963. Observations on cross-, self- and interspecific pollinations in Pinus peuce Griseb. Silv. Genet. 12: 73–79.

    Google Scholar 

  • Haig D. 1992. Brood reduction in gymnosperms. In Cannibalism: Ecology and Evolution among Diverse Taxa. Edited by M. Elgar and B. Crespi. pp. 63–84. Oxford University Press.

    Google Scholar 

  • Hauser, T. and V. Loeschcke. 1994. Inbreeding depression and mating distance dependent offspring fitness in large and small populations of Lynchis floscuculi (Caryophyllaceae). J. Evol.Biol. 7: 609–622.

    Article  Google Scholar 

  • Hedrick, P. and O. Muona. 1990. Linkage of viability genes to marker loci in selfing organisms. Hered. 64: 67–72.

    Article  Google Scholar 

  • Husband, B. and D. Schemske. 1996. Evolution and timing of inbreeding depression in plants. Evol. 50: 54–70.

    Article  Google Scholar 

  • Kärkkäinen, K., H. Kuittinen et al. 1999. Genetic basis of inbreeding depression in Arabis petraea. Evol. 53: 1354–1365.

    Article  Google Scholar 

  • Kang, H., C. Hardner et al. 1994. Lethal loci and lethal equivalents in willow, Salix viminalis.Silv. Genet. 43: 138–145.

    Google Scholar 

  • Kormutak, A. and D. Lindgren. 1996. Mating system and empty seed in silver fir (Abies alba Mill.). For. Genet. 3: 231–235.

    Google Scholar 

  • Koski, V. 1971. Embryonic lethals of Picea abies and Pinus sylvestris. Commun. Institute of Forestalia Fennica 75: 1–30.

    Google Scholar 

  • Koski, V. 1973. On self-pollination, genetic load and subsequent inbreeding in some conifers. Communicationes Instituti Forestalis Fenniae 78: 1–42.

    Google Scholar 

  • Krebs, S. and J. Hancock. 1991. Embryonic genetic load in the highbush blueberry, Vaccinium corymbosum (Ericaceae). Amer. J. Bot. 78: 1427–1437.

    Article  Google Scholar 

  • Kuang, H., T. Richardson et al. 1999. Genetic analysis of inbreeding depression in plus tree 850.55 of Pinus radiata D. Don. II. Genetics of viability genes. Theor. Appl. Genet. 99:140–146.

    Article  Google Scholar 

  • Lande, R. and D. Schemske. 1985. The evolution of self-fertilization and inbreeding depression in plants. I. Genetic models. Evol. 39: 24–40.

    Google Scholar 

  • Lande, R., D. Schemske et al. 1994. High inbreeding depression, selective interference among loci, and the threshold selfing rate for purging recessive lethal mutations. Evol. 48: 965–978.

    Article  Google Scholar 

  • Latta, R. and K. Ritland. 1994. The relationship between inbreeding depression and prior inbreeding among populations of four Mimulus taxa. Evol. 48: 806–817.

    Article  Google Scholar 

  • Levin, D. 1991. The effect of inbreeding on seed survivorship in Phlox. Evol. 45: 1047–1049.

    Article  Google Scholar 

  • Lewontin, R. 1974. The genetic basis of evolutionary change. N Y, Columbia University Press.

    Google Scholar 

  • Libby, W., B. McCutchan et al. 1981. Inbreeding depression in selfs of redwood. Silv. Genet. 30: 15–25.

    Google Scholar 

  • Lindgren, D. 1975. The relationship between self-fertilization, empty seeds and seeds originating from selfing as a consequence of polyembryony. Studia Forestalia Suecica 126: 1–24.

    Google Scholar 

  • McCune, A., R. Fuller et al. 2002. A low genomic number of recessive lethals in natural populations of bluefin killifish and zebrafish. Science 296: 2398–2401.

    Article  PubMed  CAS  Google Scholar 

  • Mergen F., J. Burley et al.1965. Embryo and seedling development in Picea glauca (Moench) Voss after self-, cross-, and wind-pollination. Silv. Genet. 14: 188–194.

    Google Scholar 

  • Miklos G. and G. Rubin. 1996. The role of genome project in determining gene function insights from model organisms. Cell 86: 521–529.

    Article  PubMed  CAS  Google Scholar 

  • Morton, N., J. Crow et al.1956. An estimate of the mutational damage in man from data on consanguineous marriages. Proc. Natl Acad. USA 42: 855–863.

    Article  CAS  Google Scholar 

  • Muller, H. 1950. Our load of mutations. Am. J. Hum. Genetics 2: 111–176.

    CAS  Google Scholar 

  • Namkoong, G. and J. Bishir. 1987. Frequency of lethal alleles in forest tree populations. Evol. 41: 1123–1127.

    Article  Google Scholar 

  • O'Connell, L. and Ritland K. 2005. Post-pollination mechanisms promoting outcrossing in a self- fertile conifer, Thuja plicata (Cupressaceae). Can.J. Bot. 83: 335–342.

    Article  Google Scholar 

  • Orr-Ewing, A. 1957. A cytological study of the effects of self-pollination on Pseudotsuga men-ziesii (Mirb.) Franco. Silv. Genet. 6: 179–185.

    Google Scholar 

  • Ouborg, N. and R. von Treuren. 1994. The significance of genetic erosion in the process of extinction. IV. Inbreeding load and heterosis in relation to population size in the mint Salvia pratensis. Evol. 48: 996–1008.

    Article  Google Scholar 

  • Owens J., A. Colangeli et al. 1990. The effect of self-, cross- and no pollination in ovule, embryo, seed and cone development in westen red cedar (Thuja plicata). Can.J. For. Res. 20: 66–75.

    Article  Google Scholar 

  • Park, Y. and D. Fowler. 1982. Effects of inbreeding and genetic variances in a natural population of tamarack (Larix laricina (Du Roi) K. Koch) in eastern Canada. Silv. Genet. 31: 21–26.

    Google Scholar 

  • Porcher E. and Lande R. 2005. Reproductive compensation in the evolution of plant mating systems. New Phytol. 166: 673–684.

    Article  PubMed  Google Scholar 

  • Ralls, K., J. Ballou et al. 1988. Estimates of lethal equivalents and the cost of inbreeding in mammals. Conserv. Biol. 2: 185–193.

    Article  Google Scholar 

  • Remington D. and D. O'Malley. 2000a. Whole-genome characterization of embryonic stage inbreeding depression in a selfed loblolly pine family. Genet. 155: 337–348.

    CAS  Google Scholar 

  • Remington, D. and D. O'Malley 2000b. Evaluation of major genetic loci contributing to inbreeding depression for survival and early growth in a selfed family of Pinus taeda. Evol. 54: 1580–1589.

    CAS  Google Scholar 

  • Ritland K. 1996. Inferring the genetic basis of inbreeding depression in plants. Genome 39: 1–8.

    Article  PubMed  CAS  Google Scholar 

  • Sarvas, R. 1962. Investigations on the flowering and seed crop of Pinus silvestris. Institute Forestalis Fennica Comm. 53: 1–198.

    Google Scholar 

  • Savolainen, O., K. Kärkkäinen et al. 1992. Estimating numbers of embryonic lethals in conifers. Heredity 69: 308–314.

    Google Scholar 

  • Sittman, K., B. Abplanalp et al. 1966. Inbreeding depression in the Japanese quail. Genetics 54: 371–379.

    Google Scholar 

  • Skinner D. 1992. Ovule and embryo development, seed production and germination in orchard grown control pollinated loblolly pine (Pinus taeda L.) from coastal South Carolina. M.Sc. Thesis, University of Victoria, Victoria B.C. Canada.

    Google Scholar 

  • Sorensen, F. 1967. Linkage between marker genes and embryonic lethal factors may cause disturbed segregation ratios. Silv. Genet. 16: 132–134.

    Google Scholar 

  • Sorensen, F. 1969. Embryonic genetic load in coastal Douglas fir, Pseudotsuga menziesii var. menziesii. Amer. Nat. 103: 389–398.

    Article  Google Scholar 

  • Sorensen, F. 1971. Estimate of self-fertility of Douglas-fir from inbreeding studies. Silv. Genet. 20: 115–120.

    Google Scholar 

  • Sorensen, F. 1982. The roles of polyembryony and embryo viability in the genetic system of conifers. Evol. 36: 725–733.

    Article  Google Scholar 

  • Vogl C. and S. Xu. 2000. Multiple-point mapping of viability and segregation distorting loci using molecular markers. Genetics 155: 1439–1447.

    PubMed  CAS  Google Scholar 

  • Williams, C., R. Barnes et al. 1999. Embryonic lethal load for a neotropical conifer, Pinus patula Schiede and Deppe. J. Hered. 90: 394–398.

    Article  Google Scholar 

  • Williams, C. and O. Savolainen. 1996. Inbreeding depression in conifers: implications for breeding strategy. For. Sci. 42: 102–117.

    Google Scholar 

  • Williams, C., Y. Zhou et al. 2001. A chromosomal region promoting outcrossing in a conifer. Genetics 159: 1283–1289.

    PubMed  CAS  Google Scholar 

  • Williams, C., L. Auckland et al. 2003. Overdominant lethals as part of the conifer embryo lethal system. Heredity 91: 584–592.

    Article  PubMed  CAS  Google Scholar 

  • Williams, C. 2007. Re-thinking the embryo lethal system within the Pinaceae. Canadian Journal of Botany 85: 667–677.

    Article  Google Scholar 

  • Williams C. 2008. Selfed embryo death in Pinus taeda: a phenotypic profile. New Phytologist 178: 210–222.

    Article  PubMed  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

(2009). The Embryo Lethal System. In: Conifer Reproductive Biology. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9602-0_9

Download citation

Publish with us

Policies and ethics