Skip to main content

Pollination and Fertilization

  • Chapter
Conifer Reproductive Biology

Summary

All conifers rely on wind to move pollen to ovule but form matters as much as chance; pollination is more akin to coordination and synchrony than it resembles a stochastic process. During female strobilus receptivity, ovules exude a localized pollination drop at night. By early morning, the pollination drop retracts, pulling its captured grains inside the micropylar arms, closer to the spongy nucel-lus. Hydrated by the pollination drop, the pollen grain now germinates into the spongy nucellar tissue. The pollen tube then halts its growth midway through the nucellus during the lengthy interval between pollination and fertilization. During this interval, the female gametophyte completes its development, slowly expanding to its maximum size and forming multiple archegonia. The duration of the pollination-fertilization interval is taxon-specific, lasting many months. The pollen grain resumes its growth a few days before fertilization then delivers one or two male gametes to the egg cell. The close synchrony between male and female reproduction is a sharp contrast to heterospory-induced divergence.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Baird, A. M. 1953. A life history of Callitris. Phytomorphology 3: 258–284.

    Google Scholar 

  • Bramlett, D. and C. O'Gwynn. 1980. Recognizing developmental stages in southern pine flowers: the key to controlled pollinations, USDA Forest Service Southeastern Experiment Station, 14 pages.

    Google Scholar 

  • Brown, S. and F. Bridgwater. 1987. Observations on pollination in loblolly pine. Canadian Journal of Forest Research 17: 299–303.

    Article  Google Scholar 

  • Breiteneder, H. 2004. Thaumatin-like proteins — a new family of pollen and fruit allergens. Allergy 59: 479–481.

    Article  PubMed  Google Scholar 

  • Canini, A., J. Giovinazzi, et al. 2004. Localisation of a carbohydrate epitope recognised by human IgE in pollen of Cupressaceae. Journal of Plant Research 117: 147–153.

    Article  PubMed  CAS  Google Scholar 

  • Cortegano, I., E. Civantos, et al. 2004. Cloning and expression of a major allergen from Cupressus arizonica pollen, Cup a 3, a PR-5 protein expressed under polluted environment. Allergy 59: 485–490.

    Article  PubMed  CAS  Google Scholar 

  • Dumont-BeBoux, N., W. Weber, et al. 1998. Intergeneric pollen-megagametophyte relationships of conifers in vitro. Theor. Appl. Genet. 97: 881–887.

    Article  Google Scholar 

  • Doak, C. 1932. Multiple male cells in Cupressus arizonica. Botanical Gazette 94: 168–182.

    Article  Google Scholar 

  • Doyle, J. and M. O'Leary. 1935. Pollination in Pinus. Sci. Proc. Roy. Dublin Soc. 21: 181–190.

    Google Scholar 

  • Fernando, D., J. Owens, et al. 2001. RNA and protein synthesis during in vitro pollen germination and tube elongation in Pinus monticola and other conifers. Sexual Plant Reproduction 13: 259–264.

    Article  CAS  Google Scholar 

  • Friedman, W. 1992. Double fertilization in nonflowering plants and its relevance to the origin of flowering plants. International Review of Cytology 140: 319–355.

    Article  Google Scholar 

  • Gelbart, G. and P. von Aderkas. 2002. Ovular secretions as part of pollination mechanisms in conifers. Annals of Forest Science 59: 345–357.

    Article  Google Scholar 

  • Gifford, E. and A. Foster. 1989. Morphology and Evolution of Vascular Plants. W.H. Freeman, New York.

    Google Scholar 

  • Goddard, R. and F. Matthews. 1981. Pollen testing. Editor: E.C. Franklin. In: Pollen Management Handbook. Agricultural Handbook 587, Washington, DC, pp. 40–43.

    Google Scholar 

  • Greenwood, M. 1986. Gene exchange in loblolly pine: the relation between pollination mechanisms, female receptivity and pollen viability. American Journal of Botany 73: 1433–1451.

    Article  Google Scholar 

  • Justus, C., P. Anderhag, et al. 2004. Microtubules and microfilaments coordinate to direct a fountain streaming pattern in elongating conifer pollen tube tips. Planta 219: 103–109.

    Article  PubMed  CAS  Google Scholar 

  • Konar, R. and A. Moitra. 1980. Ultrastructure, cyto- and histochemistry of female gametophyte of gymnosperms. Gamete Research 3: 67–97.

    Article  CAS  Google Scholar 

  • Konar, R. and Y. Oberoi. 1969. Recent work on reproductive structures of living conifers and taxads — a review. Botanical Review 35: 89–116.

    Article  Google Scholar 

  • Labandeira, C., J. Kvacek et al. 2007. Pollination drops, pollen and insect pollination of Mesozoic gymnosperms. Taxon: 56: 663–695.

    Google Scholar 

  • Lazarro, M. 1996. The actin microfilament network within the elongating pollen tubes of the gymnosperm Picea abies (Norway spruce). Protoplasma 194: 186–194.

    Article  Google Scholar 

  • Lazarro, M. 1998. The spermatagenous body cell of the conifer body cell of the conifer Picea abies (Norway spruce) contains actin microfilaments. Protoplasma 201: 194–201.

    Article  Google Scholar 

  • Lee, C. 1955. Fertilization in Gingko biloba. Botanical Gazette 117: 79–100.

    Article  Google Scholar 

  • McWilliam, J. 1958. The role of micropyle in the pollination of Pinus. Botanical Gazette 120: 109–117.

    Article  CAS  Google Scholar 

  • Midoro-Horiuti, T., R. Goldblum, et al. 1999. Molecular cloning of the mountain cedar (Juniperus ashei) pollen major allergen, Jun a 1. Journal of Allergy and Clinical Immunology 104: 613–617.

    Article  CAS  Google Scholar 

  • Midoro-Horiuti, T., R. Goldblum, et al. 2001. Identification of mutations in the genes for the pollen allergens of eastern red cedar (Juniperus virginiana). Clinical and Experimental Allergy 31: 771–778.

    Article  PubMed  CAS  Google Scholar 

  • Mugnaini, S., M. Nepi, et al. 2007. Pollination drop in Juniperus communis: response to deposited material. Annals of Botany 100: 1475–1481.

    Article  PubMed  Google Scholar 

  • O'Leary, S. and P. von Aderkas. 2006. Postpollination drop production in hybrid larch is not related to the diurnal pattern of xylem water potential. Tree 20: 61–66.

    Article  Google Scholar 

  • Ottley, A. 1909. The development of the gametophytes and fertilization in Juniperus communis and Juniperus virginiana. Botanical Gazette 48: 31–46.

    Article  Google Scholar 

  • Owens, J. and S. Morris. 1990. Cytological basis for cytoplasmic inheritance in Pseudotsuga men-ziesii. I. Pollen tube and archegonial development. American Journal of Botany 77: 433–445.

    Article  Google Scholar 

  • Owens, J., T. Takaso, et al. 1998. Pollination mechanisms in conifers. Trends in Plant Science 3: 479–485.

    Article  Google Scholar 

  • Pattison, J., J. Burley, et al. 1969. Development of the ovule strobilus in Pinus kesiya Royle ex Gordon (syn. P. khasya Royle) in relation to controlled pollination in Zambia. Silvae Genetica 18: 108–111.

    Google Scholar 

  • Pettit, J. 1985. Pollen tube development and characteristics of the protein emission in conifers. Annals of Botany 56: 379–397.

    Google Scholar 

  • Poort, R., H. Visscher, et al. 1996. Zoidogamy in fossil gymnosperms: the centenary of a concept, with special reference to prepollen of late Paleozoic conifers. Proceedings National Academy of Sciences USA 93: 11713–11717.

    Article  CAS  Google Scholar 

  • Runions, C. and J. Owens. 1999. Sexual reproduction of interior spruce (Pinaceae). I. Pollen germination to archegonial maturation. Intl. J. Plant Sci. 160: 631–640.

    Article  Google Scholar 

  • Singh, H. 1978. Embryology of gymnosperms. Berlin, Gebruder Borntraeger.

    Google Scholar 

  • Suarez-Cervera, M., Y. Takahashi, et al. 2003. Immunocytochemical localization of Cry j 1, the major allergen of Cryptomeria japonica (Taxodiaceae) in Cupressus arizonica and Cupressus sempervirens (Cupressaceae) pollen grains. Sexual Plant Reproduction 16: 9–15.

    Google Scholar 

  • Takaso, T. and J. Owens. 1996. Effects of ovular secretions on pollen in Pseudotsuga menziesii (Pinaceae). American Journal of Botany 81: 504–513.

    Article  Google Scholar 

  • Takaso, T., P. von Aderkas, et al. 1995. Prefertilization events in ovules of Pseudotsuga: ovular secretion and its influence on pollen tubes. Canadian Journal of Botany 74: 1214–1219.

    Article  Google Scholar 

  • Terasaka, O. and T. Niitsu. 1994. Differential roles of microtubules and actin-myosin cytoskeleton in the growth of Pinuspollen tubes. Sexual Plant Reproduction 7: 264–272.

    Article  Google Scholar 

  • Tomlinson, P. 1994. Functional morphology of saccate pollen in conifers with special reference to the Podocarpaceae. International Journal of Plant Sciences 155: 699–715.

    Article  Google Scholar 

  • Tomlinson, P., J. Braggins, et al. 1997. Contrasted pollen capture mechanisms in Phyllocladaceae and certain Podocarpaceae (Coniferales). American Journal of Botany 84: 214–223.

    Article  Google Scholar 

  • von Aderkas, P. and C. Leary. 1999. Micropylar exudates in Douglas fir — timing and volume of production. Sexual Plant Reproduction 11: 354–356.

    Article  Google Scholar 

  • Wagner, R., S. Mugnaini et al. 2007. Proteomic evaluation of gymnosperm pollination drop proteins indicates highly conserved and complex biological functions. Sexual Plant Reproduction 20: 181–189.

    Article  CAS  Google Scholar 

  • Williams C. 2008. Selfed embryo death in Pinus taeda: a phenotypic profile. New Phytologist 178: 210–222.

    Article  PubMed  Google Scholar 

  • Willson, M. and N. Burley. 1983. Mate choice in plants. Princeton NJ, Princeton University Press.

    Google Scholar 

  • Wilhelmi, L. and D. Preuss. 1999. The mating game: pollination and fertilization in flowering plants. Current Opinions in Plant Biology 2: 18–22.

    Article  CAS  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

(2009). Pollination and Fertilization. In: Conifer Reproductive Biology. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9602-0_6

Download citation

Publish with us

Policies and ethics