Skip to main content

Role of Stromal Variables in Development and Progression of Colorectal Cancer

  • Chapter
Colorectal Cancer

Part of the book series: Methods of Cancer Diagnosis, Therapy, and Prognosis ((HAYAT,volume 4))

  • 2082 Accesses

Majority of cancer researchers have concentrated their efforts on tumor cells themselves to study tumor biology, morphology, and functions during tumor development and progression. However, tumor stromal variables, such as blood and lymph vessels, various stromal cells and proteins around tumor cells, have not drawn enough attention although they are at least equally important in tumor development, progression, and even tumor therapy. Tumor angiogenesis and lymphangiogenesis are the processes for formation of new blood or lymph vessels within and around tumor mass. Stromal cells consist of various cell types such as infiltrating immune cells, fibroblasts, and endothelial cells. Extracellular matrix (ECM) is a complex structural entity around the tumor cells, and often referred to connective tissue or ground substance. The ECM is composed of three major classes of structural proteins (collagen and elastin), specialized proteins (fibrillin, fibronectin and laminin) and pro-teoglycans (van den Hooff, 1988).

It is of importance to understand the role of stromal variables in tumor development and progression in order to design appropriate therapy against angiogenesis and other stromal proteinases. Based on the knowledge gained from this field, a number of anti-angiogenesis elements and matrix metalloproteinases (MMPs) inhibitors have been recently developed for clinical trials. Inactivation of stromal proteins inhibits angiogenesis, lymphangiogenesis, tumor growth, invasion, and metastasis. Consequently, this can stabilize and inhibit the tumor growth. In addition, stromal cells, compared to the tumor cells, are unlikely to develop drug resistance, although some stromal proteins are tumor-derived. In ger-enal, most of the stromal proteins are the products of stromal cells. One of the problems with traditional chemotherapy and radiotherapy is that they indiscriminately affect both growing normal and tumor tissue. Therefore, a therapy targeted to the stromal will minimize the side-effects of anti-cancer therapy. Several characteristics of stromal variables make them to be attractive therapeutic targets.

In this chapter, we focus on clinicopathological aspects of tumor stromal variables, such as angiogenesis, lymphangiogenesis, inflammatory infiltration, and particularly interesting new cysteine-histidine rich proteins (PINCH) and stromelysin-3 (ST3) in colorectal cancer (CRC).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Acikalin, M.F., Oner, U., Topcu, I., Yasar, B., Kiper, H., and Colak, E. 2005. Tumour angiogenesis and mast cell density in the prognostic assessment of colorec-tal carcinomas. Dig. Liver Dis. 37: 162–169.

    Article  PubMed  CAS  Google Scholar 

  • Akagi, K., Ikeda, Y., Miyazaki, M., Abe, T., Kinoshita, J., Maehara, Y., and Sugimachi, K. 2000. Vascular endothelial growth factor-C (VEGF-C) expression in human colorectal cancer tissues. Br. J. Cancer 83: 887–891.

    Article  PubMed  CAS  Google Scholar 

  • Basset, P., Bellocq, J.P., Wolf, C., Stoll, I., Hutin, P., Limacher, J.M., Podhajcer, O.L., Chenard, M.P., Rio, M.C., and Chambon, P. 1990. A novel metalloproteinase gene specifically expressed in stromal cells of breast carcinomas. Nature 348: 699–704.

    Article  PubMed  CAS  Google Scholar 

  • Björndahl, M. 2005. Lymphanginogenesis and lymphatic metastasis. Thesis; ISBN: 91-7140-562-3.

    Google Scholar 

  • Bossi, P., Viale, G., Lee, A.K., Alfano, R., Coggi, G., and Bosari, S. 1995. Angiogenesis in colorectal tumors: microvessel quantitation in adenomas and carcinomas with clinicopathological correlations. Cancer Res. 55: 5049–5053.

    PubMed  CAS  Google Scholar 

  • Boulay, A., Masson, R., Chenard, M.P., El.Fahime, M., Cassard, L., Bellocq, J.P., Sautes-Fridman, C., Basset, P., and Rio, MC. 2001. High cancer cell death in syngeneic tumors developed in host mice deficient for the stromelysin-3 matrix met-alloproteinase. Cancer Res. 61: 2189–2193.

    PubMed  CAS  Google Scholar 

  • Burridge, K., and Chrzanowska-Wodnicka, M. 1996. Focal adhesions, contractility, and signaling. Annu. Rev. Cell Dev. Biol. 12: 463–518.

    Article  PubMed  CAS  Google Scholar 

  • Cascinu, S., Staccioli, M.P., Gasparini, G., Giordani, P., Catalano, V., Ghiselli, R., Rossi, C., Baldelli, A.M., Graziano, F., Saba, V., Muretto, P., and Catalano, G. 2000. Expression of vascular endothelial growth factor can predict event-free survival in stage II colon cancer. Clin. Cancer Res. 6: 2803–2807.

    PubMed  CAS  Google Scholar 

  • Choi, H.J., Hyun, M.S., Jung, G.J., Kim, S.S., and Hong, S.H. 1998. Tumor angiogenesis as a prognostic predictor in colorectal carcinoma with special reference to mode of metastasis and recurrence. Oncology 55: 575–581.

    Article  PubMed  CAS  Google Scholar 

  • Dimitriadou, V., and Koutsilieris, M. 1997. Mast cell-tumor cell interactions: for or against tumour growth and metastasis? Anticancer Res. 17: 1541–1549.

    PubMed  CAS  Google Scholar 

  • Dundas, S.A., Laing, R.W., O'Cathain, A., Seddon, I., Slater, D.N., Stephenson, T.J., and Underwood, J.C. 1988. Feasibility of new prognostic classification for rectal cancer. J. Clin. Pathol. 41: 1273–1276.

    Article  PubMed  CAS  Google Scholar 

  • Egeblad, M., and Werb, Z. 2002. New functions for the matrix metalloproteinases in cancer progression. Nat. Rev. Cancer 2: 161–174.

    Article  PubMed  CAS  Google Scholar 

  • Fogt, F., Zimmerman, R.L., Ross, H.M., Daly, T., and Gausas, R.E. 2004. Identification of lymphatic vessels in malignant, adenomatous and normal colonic mucosa using the novel immunostain D2–40. Oncol. Rep. 11: 47–50.

    PubMed  CAS  Google Scholar 

  • Fossum, B., Gedde-Dahl, T. 3rd., Breivik, J., Eriksen, J.A., Spurkland, A., Thorsby, E., and Gaudernack, G. 1994. p21-ras-peptide-specific T-cell responses in a patient with colorectal cancer. CD4 + and CD8 + T cells recognize a peptide corresponding to a common mutation (13Gly— > Asp). Int. J. Cancer 56: 40–45.

    Article  PubMed  CAS  Google Scholar 

  • Fox, S.H., Whalen, G.F., Sanders, M.M., Burleson, J.A., Jennings, K., Kurtzman, S., and Kreutzer, D. 1998. Angiogenesis in normal tissue adjacent to colon cancer. J. Surg. Oncol. 69: 230–234.

    Article  PubMed  CAS  Google Scholar 

  • Fujita, S., Shimoda, T., Yoshimura, K., Yamamoto, S., Akasu, T., and Moriya, Y. 2003. Prospective evaluation of prognostic factors in patients with colorectal cancer undergoing curative resection. J. Surg. Oncol. 84: 127–131.

    Article  PubMed  Google Scholar 

  • Gao, J., Arbman, G., Rearden, A., and Sun, X.F. 2004. Stromal staining for PINCH is an independent prognostic indicator in colorectal cancer. Neoplasia 6: 796–801.

    Article  PubMed  CAS  Google Scholar 

  • Gao, J., Arbman, G., Wadhra, T.I., Zhang, H., and Sun, X.F. 2005. Relationships of tumor inflammatory infiltration and necrosis with microsatel-lite instability in colorectal cancers. World. J. Gastroenterol. 11: 2179–2183.

    PubMed  CAS  Google Scholar 

  • Guo, L., and Wu, C. 2002. Regulation of fibronectin matrix deposition and cell proliferation by the PINCH-ILK-CH-ILKBP complex. FASEB. J. 16: 1298–1300.

    PubMed  CAS  Google Scholar 

  • Hanrahan, V., Currie, M.J., Gunningham, S.P., Morrin, H.R., Scott, P.A., Robinson, B.A., and Fox, S.B. 2003. The angiogenic switch for vascular endothelial growth factor (VEGF)-A, VEGF-B, VEGF-C, and VEGF-D in the adenoma-carcinoma sequence during colorectal cancer progression. J. Pathol. 200: 183–194.

    Article  PubMed  CAS  Google Scholar 

  • Kaattari, S., Scibienski, R.J, and Benjamini, E. 1980. The immunoregulatory role of antigen-antibody complexes. I. Assessment of B and T-cell responses. Immunology 40: 9–16.

    PubMed  CAS  Google Scholar 

  • Khorana, A.A., Ryan, C.K., Cox, C., Eberly, S., and Sahasrabudhe, D.M. 2003. Vascular endothelial growth factor, CD68, and epidermal growth factor receptor expression and survival in patients with Stage II and Stage III colon carcinoma: a role for the host response in prognosis. Cancer 97: 960–968.

    Article  PubMed  Google Scholar 

  • Knutsen, A., Adell, G., and Sun, X.F. 2006. Inflammatory infiltration, fibrosis, necrosis and mucinous content in relation to clinicopathological and molecular factors in rectal cancers with or without preoperative radiotherapy. Oncol. Rep. 16: 231–237.

    Google Scholar 

  • Koukourakis, M.I., Giatromanolaki, A., Sivridis, E., Gatter, K.C., and Harris, A.L. 2005. Tumour and Angiogenesis Research Group. Tumour and Angiogenesis Research Group. Inclusion of vasculature-related variables in the Dukes staging system of colon cancer. Clin. Cancer Res. 11: 8653–8660.

    Article  PubMed  Google Scholar 

  • Kuramochi, H., Hayashi, K., Uchida, K., Miyakura, S., Shimizu, D., Vallbohmer, D., Park, S., Danenberg, K.D., Takasaki, K., and Danenberg, P.V. 2006. Vascular endothelial growth factor messenger rna expression level is preserved in liver metastases compared with corresponding primary colorectal cancer. Clin. Cancer Res. 12: 29–33.

    Article  PubMed  CAS  Google Scholar 

  • Kuroyama, S., Kobayashi, N., Ohbu, M., Ohtani, Y., Okayasu, I., and Kakita, A. 2005. Enzyme histochemical analysis of lymphatic vessels in colon carcinoma: occurrence of lymphangiogen-esis within the tumor. Hepatogastroenterology 52: 1057–1061.

    PubMed  Google Scholar 

  • Li, C., Gardy, R., Seon, B.K., Duff, S.E., Abdalla, S., Renehan, A., O'Dwyer, S.T., Haboubi, N., and Kumar, S. 2003. Both high intratumoral microvessel density determined using CD105 antibody and elevated plasma levels of CD105 in colorectal cancer patients correlate with poor prognosis. Br. J. Cancer 88: 1424–1431.

    Article  PubMed  CAS  Google Scholar 

  • Manes, S., Mira, E., Barbacid, M.M., Cipres, A., Fernandez-Resa, P., Buesa, J.M., Merida, I., Aracil, M., Marquez, G., and Martinez-A, C. 1997. Identification of insulin-like growth factor-binding protein-1 as a potential physiological substrate for human strome-lysin-3. J. Biol. Chem. 272: 25706–25712.

    Article  PubMed  CAS  Google Scholar 

  • Menon, A.G., Janssen-van Rhijn, C.M., Morreau, H., Putter, H., Tollenaar, R.A., van de Velde, C.J., Fleuren, G.J., and Kuppen, P.J. 2004. Immune system and prognosis in colorectal cancer: a detailed immunohistochemical analysis. Lab. Invest. 84: 493–501.

    Article  PubMed  CAS  Google Scholar 

  • Onogawa, S., Tanaka, S., Oka, S., Morihara, M., Kitadai, Y., Sumii, M., Yoshihara, M., Shimamoto, F., Haruma, K., and Chayama, K. 2002. Clinical significance of angiogenesis in rectal carcinoid tumors. Oncol. Rep. 9: 489–494.

    PubMed  Google Scholar 

  • O'Reilly, M.S., Holmgren, L., Shing, Y., Chen, C., Rosenthal, R.A., Moses, M., Lane, W.S., Cao, Y., Sage, E.H., and Folkman, J. 1994. Angiostatin: a novel angiogenesis inhibitor that mediates the uppression of metastases by a Lewis lung carcinoma. Cell 79: 315–328.

    Article  PubMed  Google Scholar 

  • Porte, H., Chastre, E., Prevot, S., Nordlinger, B., Empereur, S., Basset, P., Chambon, P., and Gespach, C. 1995. Neoplastic progression of human colorectal cancer is associated with over expression of the stromelysin-3 and BM-40/SPARC genes. Int. J. Cancer 64: 70–75.

    Article  PubMed  CAS  Google Scholar 

  • Rearden, A. 1994. A new LIM protein containing an autoepitope homologous to “senescent cell antigen”. Biochem. Biophys. Res. Commun. 201: 1124–1131.

    Article  PubMed  CAS  Google Scholar 

  • Shan, Y.S., Lee, J.C., Chow, N.H., Yang, H.B., and Wang, S.T. 2003. Immunohistochemical micro-vessel count is not a reliable prognostic predictor in colorectal carcinoma. Hepatogastroenterology 50: 1316–1320.

    PubMed  Google Scholar 

  • Sharma, R.A., Dalgleish, A.G., Steward, W.P., and O'Byrne, K.J. 2003. Angiogenesis and the immune response as targets for the prevention and treatment of colorectal cancer. Oncol. Rep. 10: 1625–1631.

    PubMed  CAS  Google Scholar 

  • Sivridis, E., Giatromanolaki, A., and Koukourakis, M.I. 2004. “Stromatogenesis” and tumor progression. Int. J. Surg. Pathol. 12: 1–9.

    Article  PubMed  Google Scholar 

  • Skobe, M., Hawighorst, T., Jackson, D.G., Prevo, R., Janes, L., Velasco, P., Riccardi, L., Alitalo, K., Claffey, K., and Detmar, M. 2001. Induction of tumor lymphangiogenesis by VEGF-C promotes breast cancer metastasis. Nat. Med. 7: 192–198.

    Article  PubMed  CAS  Google Scholar 

  • Skoglund, J., Emterling, A., Arbman, G., Anglard, P., and Sun, X.F. 2004. Clinicopathological significance of stromelysin-3 expression in colorectal cancer. Oncology 67: 67–72.

    Article  PubMed  CAS  Google Scholar 

  • Stacker, S.A., Caesar, C., Baldwin, M.E., Thornton, G.E., Williams, R.A., Prevo, R., Jackson, D.G., Nishikawa, S., Kubo, H., and Achen, M.G. 2001. VEGF-D promotes the metastatic spread of tumor cells via the lymphatics. Nat. Med. 7: 186–191.

    Article  PubMed  CAS  Google Scholar 

  • Sun, Y., Cheung, J.M., Martel-Pelletier, J., Pelletier, J.P., Wenger, L., Altman, R.D., Howell, D.S., and Cheung, H.S. 2000. Wild type and mutant p53 differentially regulate the gene expression of human collagenase-3 (hMMP-13). J. Biol. Chem. 275: 11327–11332.

    Article  PubMed  CAS  Google Scholar 

  • Sun, X, F., and Zhang, H. 2006. Clinicopathological significance of stromal variables: angiogenesis, lymphangiogenesis, inflammatory infiltration, MMP, and PINCH in Colorectal carcinomas. Mol. Cancer 5: 43–63

    Article  PubMed  CAS  Google Scholar 

  • Thewes, M., Pohlmann, G., Atkinson, M., Mueller, J., Putz, B., and Hofler, H. 1996. Stromelysin-3 (ST3) mRNA expression in colorectal carcinomas. Diagn. Mol. Pathol. 5: 284–290.

    Article  PubMed  CAS  Google Scholar 

  • van den Hooff, A. 1988. Stromal involvement in malignant growth. Adv. Cancer Res. 50: 159–196.

    Article  PubMed  Google Scholar 

  • Varani, J. 1987. Interaction of tumor cells with the extracellular matrix. Revis. Biol. Celular. 12: 1–113.

    PubMed  CAS  Google Scholar 

  • Vermeulen, P.B., Van den Eynden, G.G., Huget, P., Goovaerts, G., Weyler, J., Lardon, F., Van Marck, E., Hubens, G., and Dirix, L.Y. 1999. Prospective study of intratumoral microvessel density, p53 expression and survival in colorectal cancer. Br. J. Cancer 79: 316–322.

    Article  PubMed  CAS  Google Scholar 

  • Wallin, Å., Svanvik, J., Adell, G., and Sun, X.F. 2006. Expression of PRL proteins at the margin of rectal cancers in relation to preoperative radiotherapy. Int. J. Radiat. Oncol. Biol. Phys. 65: 452–458.

    PubMed  CAS  Google Scholar 

  • Wang, T.B., Huang, Y.H., Lan, P., Song, X.M., and Wang, J.P. 2005. Correlation of lymphang-iogenesis to progression of colorectal cancer. Ai Zheng 24: 1276–1279.

    PubMed  CAS  Google Scholar 

  • White, J.D., Hewett, P.W., Kosuge, D., McCulloch, T., Enholm, B.C., Carmichael, J., and Murray, J.C. 2002. Vascular endothelial growth factor-D expression is an independent prognostic marker for survival in colorectal carcinoma. Cancer Res. 62: 1669–1675.

    PubMed  CAS  Google Scholar 

  • Wlodarczyk, J., Bethke, B., Mueller, E., Stolte, M., and Mueller, J. 2001. A comparative study of E-cadherin and stromelysin-3 expression in de novo and ex adenoma carcinoma of the colorec-tum. Virchows Arch. 439: 756–761.

    PubMed  CAS  Google Scholar 

  • Zhang, Y., Chen, K., Tu, Y., and Wu, C. 2004. Distinct roles of two structurally closely related focal adhesion proteins, alpha-parvins and beta-parvins, in regulation of cell morphology and survival. J. Biol. Chem. 279: 41695–41705.

    Article  PubMed  CAS  Google Scholar 

  • Zhao, Z.R., Zhang, Z.Y., Cui, D.S., Jiang, L,. Zhang, H.J., Wang, M.W., and Sun, X.F. 2006. PINCH expression in colorectal adenocarci-noma. World J. Gastroenterol. 12: 298–301.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science + Business Media B.V.

About this chapter

Cite this chapter

Sun, XF., Zhang, H. (2009). Role of Stromal Variables in Development and Progression of Colorectal Cancer. In: Hayat, M.A. (eds) Colorectal Cancer. Methods of Cancer Diagnosis, Therapy, and Prognosis, vol 4. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9545-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-9545-0_11

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-9544-3

  • Online ISBN: 978-1-4020-9545-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics