Skip to main content

Genetic Engineering

  • Chapter
The Sweetpotato

Genetic transformation through direct gene transfer methods holds promise for introducing novel traits to sweetpotato in cases where no solutions by conventional breeding are available. This may be if the trait is not known in sweetpotato or it is governed by complex inheritance. Sweetpotato is clonally propagated, highly heterozygous, polyploid and out-crossing – in other words, a challenging crop to breed. Combined with the low fertility found in sweetpotato, even introgression of dominant single gene traits may present a challenge.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Al-Mazrooei, S., Bhatti, M.H., Henshaw, G.G., Taylor, N.J. and Blakesley, D. (1997) Optimisation of somatic embryogenesis in fourteen cultivars of sweet potato [Ipomoea batatas (L.) Lam.]. Plant Cell Rep. 16 :710–714

    Article  CAS  Google Scholar 

  • Andersson, M., Melander, M., Pojmark, P., Larsson, H., Bülow, L. and Hofvander, P. (2006) Targeted gene suppression by RNA interference: An efficient method for production of high-amylose potato lines. J. Biotech. 123 :137–148

    Article  CAS  Google Scholar 

  • Atkinson, H.J., Grimwood, S., Johnston, K. and Green, J. (2004) Prototype demonstration of transgenic resistance to the nematode Radopholus similis conferred on banana by a cystatin. Transgenic Res. 13 :135–142

    Article  PubMed  CAS  Google Scholar 

  • Brummell, D.A., Balint-Kurti, P.J., Harpster, M.H., Palys, J.M., Oeller, P.W. and Gutterson, N. (2003) Inverted repeat of a heterologous 30-untranslated region for high-efficiency, high-throughput gene silencing. Plant J. 33 :793–800

    Article  PubMed  CAS  Google Scholar 

  • Cavalcante Alves, J.M., Sihachakr, D., Allot M., Tizroutine, S., Mussio, I., Servaes, A. and Ducreux, G. (1994) Isozyme modifications and plant regeneration through somatic embryogenesis in sweet potato [Ipomoea batatas (L.) Lam.]. Plant Cell Rep. 13 :437–441

    Article  CAS  Google Scholar 

  • Chee, R.P. and Cantliffe, D.J. (1989) Composition of embryogenic suspension cultures of Ipomoea batatas Poir. and production of individualized embryos. Plant Cell Tissue Organ Cult. 17 :39–52

    Google Scholar 

  • Chee, R.P., Schultheis, J.R. and Cantliffe, D.J. (1990) Plant recovery from sweetpotato somatic embryos. HortScience 25 :795–797

    CAS  Google Scholar 

  • Chen, L., Bhagsari, A. and Carter, J. (2006). Effects of medium composition and culture duration on in vitro morphogenesis of sweetpotato. Biologia Plant. 50 :114–117

    Article  CAS  Google Scholar 

  • Cipriani, G., Fuentes, S., Bello, V., Salazar, L.F., Ghislain, M. and Zhang, D.P. (2001) Transgene expression of rice cysteine proteinase inhibitors for the development of resistance against sweetpotato feathery mottle virus. In: CIP program report 1999–2000. International Potato Center, Lima, pp. 267–271

    Google Scholar 

  • Cipriani, G., Michaud, D., Brunelle, F., Golmirzaie, A. and Zhang, D.P. (1999) Expression of soybean proteinase inhibitor in sweetpotato. In: CIP program report 1997–1998. International Potato Center, Lima, pp. 271–277

    Google Scholar 

  • Desamero, N.V., Rhodes, B.B., Decoteau, D.R. and Bridges, W.C. (1994) Picolinic acid induced direct somatic embryogenesis in sweetpotato. Plant Cell Tissue Organ Cult. 37 :103–110

    Article  CAS  Google Scholar 

  • Dhir, S.K., Oglesby, J. and Bhagsari, A.S. (1998) Plant regeneration via somatic embryogenesis, and transient gene expression in sweet potato protoplasts. Plant Cell Rept. 17 :665–669

    Article  CAS  Google Scholar 

  • Dodds, J.H., Merzdorf, C., Zambrano, V., Sigüeñas, C. and Jaynes, J. (1991) Potential use of agrobacterium-mediated gene transfer to confer insect resistance in sweetpotato. In: Sweetpotato pest management: A global perspective, R.K. Jansson and K.V. Raman (Eds), West view Press, Oxford, UK, pp. 203–219

    Google Scholar 

  • Benavides, J., Buitron, F., Medina, F. and Sigueñas, C. (1992) Biotechnology applied to sweetpotato improvement. In: Sweetpotato technology for the 21st century. W.A. Hill, C.K. Bonsi and P.A. Loretan (Eds), Tuskegee Univ., Tuskegee, Ala. pp 7–19

    Google Scholar 

  • Gama, M., Leite, R.P., Cordeiro, A.R. and Cantliffe, D.J. (1996) Transgenic sweet potato plants obtained by Agrobacterium tumefaciens-mediated transformation. Plant Cell Tissue Organ Cult. 46 :237–244

    Article  CAS  Google Scholar 

  • Garcia, R., Moràn, R., Mena, J., Somontes, D., Pimentel, E., Aldùa, Z., Lòpez, A. and Garcia M. (2000) Sweet potato (Ipomoea batatas L.) regeneration and transformation technology to provide weevil (Cylas formicarius) resistance. Field trial results. In: Plant Genetic Engineering: Towards the Third Millenium. A.D. Arencibia (Ed), Elsevier Science BV, Amsterdam, pp . 112–117

    Chapter  Google Scholar 

  • Gibson, R.W., Mpembe, I., Alicai, T., Carey, E.E., Mwanga, R.O.M., Seal, S.E. and Vetten, H.J. (1998) Symptoms, aetiology and serological analysis of sweet potato virus disease in Uganda. Plant Pathol. 47 :95–102

    Article  Google Scholar 

  • Gosukonda, R.M., Porobo Dessai, A., Blay, E., Channapatna, S., Prakash, Peterson, C.M. (1995a) Thidiazuron-induced advetitious shoot regeneration of sweetpotato (Ipomoea batatas). in vitro Cell Devel. Biol. 31 :65–71

    Article  CAS  Google Scholar 

  • Gosukonda, R.M., Prakash, C.S. and Porobo Dessai, A. (1995b) Shoot regeneration in vitro from diverse genotypes of sweetpotato and multiple shoot production per explant. HortScience 30 :1074–1077

    Google Scholar 

  • Gutièrrez, D.L., Fuentes, S. and Salazar, L.F. (2003) Sweetpotato virus disease (SPVD): distribution, incidence, and effect on sweetpotato yield in Peru. Plant Dis. 87 :297–302

    Article  Google Scholar 

  • Gutierrez-Campos, R., Torres-Acosta, J.A., Saucedo-Arias, L.J. and Gomez-Lim, M.A. (1999) The use of cysteine proteinase inhibitors to engineer resistance against potyviruses in transgenic tobacco plants. Nat. Biotech. 17 :1223–1226

    Article  CAS  Google Scholar 

  • Haasnoot, J., Westerhout, E.M. and Berkhout, B. (2007) RNA interference against viruses: strike and counterstrike. Nat. Biotech. 12 :1435–1443

    Article  Google Scholar 

  • Hahn, S.K. (1979) Effect of virus (SPVD) on growth and yield of sweetpotato. Exp. Agr. 15 :253–256

    Article  Google Scholar 

  • Hartemink, A.E., Poloma, S., Maino, M., Powell, K.S., Egenae, J. and O’Sullivan, J.N. (2000) Yield decline of sweet potato in the humid lowlands of Papua New Guinea. Agr. Ecosys. Environ. 79 :259–269

    Article  Google Scholar 

  • Herman, M., Ambarwati, A.D. and Sisharmini A. (2003) Developing transgenic sweetpotato for resistance to insect pests and diseases. In: Progress in potato and sweetpotato research in Indonesia: Proceedings of the CIP-Indonesia Research Review Workshop 2002. K.O. Fuglie (Ed), CIP-ESEAP, Bogor, Indonesia pp. 201–209. http://www.eseap.cipotato.org/MF-ESEAP/Publications/PSP-2003/PSPReport-2003.htm

  • Ihemere, U., Arias-Garzon, D., Lawrence, S. and Sayre, R. (2006) Genetic modification of cassava for enhanced starch production. Plant Biotech. J. 4 :453–465

    Article  CAS  Google Scholar 

  • Jiang, S.Y., Lu., Q.C., Zhai., H., Wu., L.S. and Wang, Y.P. (2004). Regeneration of sweet potato transgenic plants with oryzacystatin-I (OCI) gene. Chinese J. Agric. Biotech. 1 :99–102

    Article  CAS  Google Scholar 

  • Jones, A.L., Johansen, E.I., Bean, S.J., Bach, I. and Maule, A.J. (1998) Specificity of the resistance to pea seed-borne mosaic potyvirus in transgenic peas expressing the viral replicase (NIb) gene. J. Gen. Virol. 79 :3129–3137

    PubMed  CAS  Google Scholar 

  • Karyeija, R.F., Kreuze, J.F., Gibson, R.W. and Valkonen, J.P.T. (2000) Synergistic interactions of a potyvirus and a phloem-limited crinivirus in sweet potato plants. Virology 269 :26–36

    Article  PubMed  CAS  Google Scholar 

  • Kimura, T., Otani, M., Noda, T., Ideta, O., Shimada, T. and Saito, A. (2001) Absence of amylose in sweet potato [Ipomoea batatas (L.) Lam.] following the introduction of granule-bound starch synthase I cDNA. Plant Cell Rep. 20 :663–666

    CAS  Google Scholar 

  • Kreuze, J.F., Samolski Klein, I., Untiveros Lazaro, M., Cuellar Chuquiyuri, W., Lajo Morgan, G., Cipriani Mejìa, P.G., Ghislain, M. and Valkonen, J.P.T. (2008) RNA silencing mediated resistance to a crinivirus (Closteroviridae) in cultivated sweetpotato (Ipomoea batatas) and development of sweetpotato virus disease following co-infection with a potyvirus. Mol. Plant Pathol. 9 :589–598

    Article  PubMed  CAS  Google Scholar 

  • Latham, J.R. and Wilson, A.K. (2008) Transcomplementation and synergism in plants: implications for viral transgenes? Mol. Plant Pathol. 9 :85–103

    PubMed  Google Scholar 

  • Lawton, R., Winfield, S. and Daniell, H. (2000) Expression of green-fluorescent protein gene in sweet potato tissues. Plant Mol. Biol. Rep. 18 :139a–139i

    Article  Google Scholar 

  • Lea, P.J. and Leegood, R.C. (1999) Plant biochemistry and molecular biology, 2nd edition. John Wiley & Sons, Chichester. ISBN 0-471-97683-0

    Google Scholar 

  • Lii, C.Y., Tsai, K.H. (1996) Effect of amylose content on the rheological properties of rice starch. Cereal Chem. 73 :415–420

    CAS  Google Scholar 

  • Lim, S., Kim, Y.H., Kim, S.H., Kwon, S.Y., Lee, H.S., Kim, J.S., Cho, K.Y., Paek, K.Y. and Kwak, S.S. (2007) Enhanced tolerance of transgenic sweetpotato plants that express both CuZnSOD and APX in chloroplasts to methyl viologen-mediated oxidative stress and chilling. Mol. Breed. 19 :227–239

    Article  CAS  Google Scholar 

  • Lin, K.H., Fu, H., Chan, C.H., Lo, H.F., Shih, M.C., Chang, Y.M. and Chen, L.F.O. (2008) Generation and analyses of the transgenic potatoes expressing heterologous thermostable β-amylase. Plant Sci. 174 :649–657

    Article  CAS  Google Scholar 

  • Liu, J.R. and Cantliffe, D.J. (1984) Somatic embryogenesis and plant regeneration in tissue cultures of sweetpotato (Ipomoea batatas Poir.). Plant Cell Rep. 3 :112–115

    Article  Google Scholar 

  • Liu, Q.C., Zhai, H., Lu, D.H., Wang, Y. and Zhang, D.P. (1999) An efficient system of embryogenic suspension cultures and plant regeneration in sweetpotato. In: CIP Program Report, 1997–1998. International Potato Center, Lima, Peru, pp. 265–270

    Google Scholar 

  • Liu, Q.C., Zhai, H., Wang, Y. and Zhang, D.P. (2001) Efficient plant regeneration from embryogenic suspension cultures of sweetpotato. In Vitro Cell Dev. Biol. Plant 37 :564–567

    Google Scholar 

  • Luo, H.R., Santa Maria, M., Benavides, J., Zhang, D.P., Zhang, Y.Z. and Ghislain, M. (2006) Rapid genetic transformation of sweetpotato (Ipomoea batatas (L.) Lam) via organogenesis. Afr. J. Biotech. 19 :1851–1857

    Google Scholar 

  • Maingi, D., Sivasupramaniam, S., Brown, G., Wagner, R., and Folk, W.R. (2002) Bacillus thuringiensis and cholesterol oxidase activity against the sweet potato weevil (Coleoptera: Curculionidae) in semi artificial diet assays. In Proceedings of the 5th Annual meeting of the Entomological Society of America, 2002

    Google Scholar 

  • McKibbin, R.S., Muttucumaru, N., Paul, M.J., Powers, S.J., Burrell, M.M., Coates, S., Purcell, P.C., Tiessen, A., Geigenberger, P. and Halford, N.G. (2006) Production of high-starch, low-glucose potatoes through over-expression of the metabolic regulator SnRK1. Plant Biotech. J. 4 :409–418

    Article  CAS  Google Scholar 

  • Medina, L.F. (1991) Organogenesis “in vitro” a partir de entrenudos, Raices y hojas de nueve cultivares de camote (Ipomoea batatas Lam.) aspectos hormonales e histologicos. Universidad Peruana Cayetano Heredia, Lima, Peru

    Google Scholar 

  • Miano, D.W., LaBonte, D.R. and Clark, C.A. (2008) Identification of molecular markers associated with sweet potato resistance to sweet potato virus disease in Kenya. Euphytica 160 :15–24

    Article  CAS  Google Scholar 

  • Moar, W.J., Mwanga, R.O.M., Odongo, B., Ekobu, M., Solera, M., and Ghislain, M. (2007) Progress towards engineering resistance to weevil in sweetpotato using Bt gene technology, In Biotechnology, Breeding and Seed Systems for African Crops. Maputo, Mozambique, The Rockefeller Foundation, NY, pp. 162

    Google Scholar 

  • Moràn, R., Garcìa, R., Lòpez, A., Zaldùa, Z., Mena, J., Garcìa, M., Armas, R., Somonte, D., Rodrìguez, J., Gòmez, M. and Pimentel, E. (1998) Transgenic sweet potato plants carrying the delta-endotoxin gene from Bacillus thuringiensis var. tenebrionis. Plant Sci. 139 :175–184

    Article  Google Scholar 

  • Mukasa, S.B, Rubaihayo, P.R. and Valkonen, J.P.T. (2006) Interations between a crinivirus, an impomovirus and a potyvirus in coinfection sweetpotato plants. Plant Pathol. 53 :458–467

    Article  Google Scholar 

  • Murata, T, Fukuoka, H. and Kishimoto, M. (1994) Plant regeneration from mesophyll and cell suspension of sweet potato, Ipomoea batatas (L.) Lam. Breeding Sci. 44 :35–40

    Google Scholar 

  • Mwanga, R.O.M., Kriegner, A., Cervantes-Flores, J.C., Zhang, D.P., Moyer J.W. and Yencho, G.C. (2002) Resistance to sweetpotato chlorotic stunt virus and sweetpotato feathery mottle virus is mediated by two separate recessive genes in sweetpotato. J. Am. Soc. Hort. Sci. 127 :798–806

    CAS  Google Scholar 

  • Nakashima, J.T. (1993) Studies on the Peruvian C1 isolate of Sweet Potato feathery Mottle Potyvirus. PhD Thesis, University of Birmingham, UK

    Google Scholar 

  • Newell, C.A., Lowe, J.M., Merryweather, A., Rooke, L.M. and Hamilton, W.D.O. (1995) Transformation of sweet potato (Ipomoea batatas (L.) Lam.) with Agrobacterium tumefaciens and regeneration of plants expressing cowpea trypsin inhibitor and snowdrop lectin. Plant Sci. 107 :215–227

    Article  CAS  Google Scholar 

  • Njeru, R.W., Mburu, M.W.K., Cheramgon, E., Gibson, R.W., Obudho, E. and Yobera, D. (2004) Studies on the physiological effects of viruses on sweet potato yield in Kenya. Ann. Appl. Biol. 145 :71–76

    Article  Google Scholar 

  • Noda, T., Takahata, Y., Sato, T., Suda, I., Morishita, T., Ishiguro, K., and Yamakawa, O. (1998) Relationships between chain length distribution of amylopectin and gelatinization properties within the same botanical origin for sweet potato and buckwheat. Carbohydrate Polymers 37 :153–158

    Article  CAS  Google Scholar 

  • Okada, Y., Nishiguchi, M., Saito, A., Kimura, T., Mori, M., Hanada, K., Sakai, J., Matsuda, Y. and Murata, T. (2002) Inheritance and stability of the virus-resistant gene in the progeny of transgenic sweet potato. Plant Breed. 121 :249–253

    Article  CAS  Google Scholar 

  • Okada, Y., Saito, A., Nishiguchi, M., Kimura, T., Mori, M., Hanada, K., Sakai, J., Miyazaki, C., Matsuda, Y. and Murata, T. (2001) Virus resistance in transgenic sweetpotato [Ipomoea batatas L. (Lam)] expressing the coat protein gene of sweet potato feathery mottle virus. Theor. Appl. Genet. 103 :743–751

    Article  CAS  Google Scholar 

  • Otani, M., Mii, M., Handa, T., Kamada, H. and Shimada, T. (1993) Transformation of sweet potato (Ipomoea batatas (L.) Lam.) plants by Agrobacterium rhizogenes. Plant Sci. 94 :151–159

    Article  CAS  Google Scholar 

  • Otani, M., Masahiro, M. and Shimada, T. (1996) High frequency plant regeneration from leaf calli in sweet potato cv. Chugoku 25. Plant Tissue Culture Lett. 13 :23–27

    Google Scholar 

  • Otani, M., Shimada, T., Kimura, T. and Saito, A. (1998) Transgenic plant production from embryogenic callus of sweet potato (Ipomoea batatas (L.) Lam.) using Agrobacterium tumefaciens. Plant Biotech. 15 :11–16

    CAS  Google Scholar 

  • Otani, M., Wakita, Y. and Shimada, T. (2003) Production of herbicide-resistant sweetpotato (Ipomoea batatas (L) Lam.) plants by Agrobacterium tumefaciens-mediated transformation. Breed. Sci. 53 :145–148

    Article  CAS  Google Scholar 

  • Perera, S.C. and Ozias-Akins, P. (1991) Regeneration from sweetpotato protoplasts and assessment of growth conditions from flowsorting of fusion mixtures. J. Amer. Soc. Hort. Sci. 116 :917–922

    CAS  Google Scholar 

  • Porobo Dessai, A., Gosukonda, R.M., Blay, E., Korsi Dumenyo, C., Medina-Bolivar, F. and Prakash, C.S. (1995) Plant regeneration of sweetpotato (Ipomoea batatas L.) from leaf explants in vitro using a two-stage protocol. Scient. Hort. 62 :217–224

    Article  Google Scholar 

  • Prakash, C.S. and Varadarajan, U. (1992) Genetic transformation of sweetpotato. In: Sweetpotato Technology for the 21st Century. W.A. Hill, C.K. Bonsi and P.A. Loretan (Eds), Tuskegee University, Tuskegee, Ala. pp. 27–37

    Google Scholar 

  • Qaim, M. (2001). A prospective evaluation of biotechnology in semi-subsistence agriculture. Agric. Econ. 25 :165–175

    Article  Google Scholar 

  • Richardson, P.H., Jeffcoat, R., and Shi, Y-C. (2000) High-amylose starches: from biosynthesis to their use as fFood ingedients. M.R.S. Bull. 25 :20–24

    CAS  Google Scholar 

  • Satin, M. (2005) Functional properties of starches. FAO (http://www.fao.org/ag/ags/agsi/ starch41.htm)

  • Schwachtje, J., Minchin, P.E.H., Jahnke, S., van Dongen, J.T., Schittko, U. and Baldwin, I.T. (2006) SNF1-related kinases allow plants to tolerate herbivory by allocating carbon to roots. Proc. Natl. Acad. Sci. USA 103 :12935–12940

    Article  PubMed  CAS  Google Scholar 

  • Schwall, G., Safford, R., Westcott, R.J., Jeffcoat, R., Tayal, A.,Shi, Y-C., Gidley, M.J. and Jobling, S.A. (2000) Production of very-high-amylose potato starch by inhibition of SBE A and B. Nature Biotechnol. 18 :551–554

    Article  CAS  Google Scholar 

  • Sheffield, F.M.L. (1953) Virus diseases of sweetpotato in parts of Africa. Emp. J. Exp. Agric. 21 :184–189

    Google Scholar 

  • Shimada, T., Otani, M., Hamada, T. and Kim, S-H. (2006) Increase of amylose content of sweetpotato starch by RNA interference of the starch branching enzyme II gene (IbSBEII). Plant Biotechnol. 23 :85–90

    CAS  Google Scholar 

  • Sihachakr, D. and Ducreux, G.C. (1987) Plant regeneration from protoplast culture of sweet potato (Ipomoea batatas Lam.) Plant Cell Rep. 6 :326–328

    Article  Google Scholar 

  • Sihachakr, D., Haicour, R., Cavalcante Alves, J.M., Umboh, I., Nzohgè, D., Servaes, A. and Ducreaux, G. (1997) Plant Regeneration in sweetpotato (Ipomoea batatas L., Convolvulaceae). Euphytica 96 :143–152

    Article  Google Scholar 

  • Smit, N.E.J.M. (1997). The effect of the indigenous cultural practices of in-ground storage and piecemeal harvesting of sweetpotato on yield and quality losses caused by sweetpotato weevil in Uganda. Agric. Ecosys. Environ. 64 :191–200

    Article  Google Scholar 

  • Song, G-Q., Honda, H. and Yamaguchi, K-H. (2004). Efficient Agrobacterium tumefaciens-mediated transformation of sweet potato (Ipomoea batatas (L.) Lam.) from stem explants using a two-step Kanamycin–Hygromycin selection method. In Vitro Cell Dev. Biol. Plant 40 :359–365

    Article  CAS  Google Scholar 

  • Sugiyama, M. (1999) Organogenesis in vitro. Curr. Opin. Plant Biol. 2 :61–64

    Article  PubMed  CAS  Google Scholar 

  • Tairo, F., Mukasa, S.B., Jones, R.A., Kullaya, A., Rubaihayo, P.R. and Valkonen, J.P.T. (2005) Unravelling the genetic diversity of the three main viruses involved in sweetpotato virus disease (SPVD), and its practical implications. Mol. Plant Pathol. 6 :199–211

    Article  CAS  Google Scholar 

  • Thompson, P.G., Schneider, J.C. and Graves, B. (1994) Genetic variance component and heritability estimates of freedom from weevil injury to sweet potato. J. Am. Soc. Hort. Sci. 119 :620–623

    Google Scholar 

  • Thompson, P.G., Schneider, J.C., Graves, B. and Sloan, R.C. (1999) Insect resistance in sweetpotato plant introductions. HortScience 34 :711–714

    Google Scholar 

  • Untiveros, M., Fuentes, S. and Salazar, L.F. (2007) Synergistic Interaction of Sweet potato chlorotic stunt virus (Crinivirus) with carla-, cucumo-, ipomo-, and potyviruses infecting sweet potato. Plant Dis. 91 :669–676

    Article  Google Scholar 

  • Urwin, P.E., Atkinson, H.J., Waller, D.A. and McPherson, M.J. (1995) Engineered oryzacystatin-I expressed in transgenic hairy roots confers resistance to Globodera pallida. Plant J. 8 :121–131

    Google Scholar 

  • Voinnet, O. (2005) Induction and suppression of RNA silencing: Insights from viral infections. Nature Rev. Genet. 6 :206–220

    Article  CAS  Google Scholar 

  • Wakita, Y., Otani, M., Hamada, T., Iba, K. and Shimada, T. (2001) A tobacco microsomal ω-3 fatty acid desaturase gen increases the linolènico acid content in transgenic sweet potato (Ipomoea batatas). Plant Cell Rep. 20 :244–249

    Article  CAS  Google Scholar 

  • Wesley, S.V., Helliwell, C.A., Smith, N.A., Wang, M-B., Rouse, D.T., Liu, Q., Gooding, P.S., Singh, S.P., Abbott, D., Stoutjesdijk, P.A., Robinson, S.P., Gleave, A.P., Green, A.G. and Waterhouse, P.M. (2001) Construct design for efficient, effective and high-throughput gene silencing in plants. The Plant J. 27 :581–590

    Article  CAS  Google Scholar 

  • Yi, G., Shin, Y.M., Choe, G., Shin, B., Kim, Y.S. and Kim, K.M. (2007) Production of herbicide-resistant sweet potato plants transformed with the bar gene. Biotechnol. Lett. 29 :669–675

    Article  PubMed  CAS  Google Scholar 

  • Yu, B., Zhai, H., Wang, Y., Zang, N., He, S. and Liu, Q. (2007) Efficient Agrobacterium tumefaciens-mediated transformation using embryogenic suspension cultures in sweetpotato, Ipomoea batatas (L.) Lam. Plant Cell Tissue Organ Cult. 90 :265–273

    Article  CAS  Google Scholar 

  • Zhang, D., Cipriani, G., Rety, I., Golmirzae, A., Smit, N. and Michaud, D. (2000) Expression of protease inhibitors in sweetpotato. In: Recombinant Protease Inhibitors in Plants. D. Michaud (Ed), Landes Bioscience, Georgetown, Texas, pp. 167–178

    Google Scholar 

  • Zheng, Q., Dessai, A.P. and Prakash, C.S. (1996) Rapid and repetitive plant regeneration in sweetpotato via somatic embryogenesis. Plant Cell Rep. 15 :381–385

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Kreuze, J., Valkonen, J., Ghislain, M. (2009). Genetic Engineering. In: Loebenstein, G., Thottappilly, G. (eds) The Sweetpotato. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9475-0_5

Download citation

Publish with us

Policies and ethics