Skip to main content

Review of Knowledge Prior to the Cassini-Huygens Mission and Concurrent Research

  • Chapter
Saturn from Cassini-Huygens

Abstract

The scientific achievements of the Cassini-Huygens mission have been based on previous decades of investigations from ground-based observations, an intensive 2-year time span of exploration by three spacecraft (Pioneer Saturn, Voyagers 1 and 2) in 1979–1981, and observations by the Infrared Space Observatory, the International Ultraviolet Explorer, and Hubble Space Telescope. We review both these and research concurrent with the nominal mission which often provided directly supporting results. Saturn's “bulk” composition remains uncertain. Its few discrete cloud features include a hexagon near the sorth pole, and a major episodic storm at the equator. A heterogeneous cloud field at depth was uncovered at 5 μm. Temperatures are enhanced at Saturn's south pole both from seasonal variations of sunlight and from dynamical forcing. Zonal winds peak near Saturn's equator. Saturn possesses a well-defined ionosphere, but with significant structure and variability. The magnetic field is aligned to within a degree of Saturn's rotation axis. An equatorial ring current of ~107 A has been inferred, with inner and outer radii of ~8 and ~16RS. Radiation belts at Saturn are well-established up to the edge of the outer rings, and the higherenergy (>1 meV) proton component is readily absorbed by the inner satellites. The magnetosphere includes both a well-developed plasma sheet and a magneto-tail. Radio emissions and plasma waves exist throughout, and the auroral kilometric radiation (SKR), modulated at 10 h 39.4 min, has been widely adopted as a measure of the internal rotation. The plasma population consists principally of protons, but with a heavier component close to the equatorial plane widely assumed to be nitrogen or oxygen. Saturn's ring system is the most accessible in the solar system and consists of three primary components, the A, B and C rings. The A ring contains a large number of spiral density wages generated by gravitational interactions with Saturn's satellites. Other rings include the tenuous D, E, and G rings, and the narrow F ring. Voyager imaging detected “spokes” in the rings and, through occultation studies, an intricate detailed radial structure. Spectroscopic information on the icy satellites reveals the presence of crystalline water ice, mixed with a non-ice surface component with strong UV absorption. Detailed information on the geology of Saturn's eight largest icy satellites before the Cassini arrival was based entirely on Voyager observations. They were found to be surprisingly heterogeneous, with implied internal activity in Ence-ladus and the dichotomous albedo of Iapetus being two of the biggest mysteries. Among the smaller satellites are those embedded in Saturn's rings and irregular captured satellites outside the orbits of the co-planar satellites.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We use hereafter this modern reference for all the solar abundances.

References

  • Acarreta, J. R. and Sanchez-Lavega, A. (1999) Vertical cloud structure in Saturn's 1990 equatorial storm. Icarus 137, 24–33.

    ADS  Google Scholar 

  • Alexander, A. F. O'D. (1962) The Planet Saturn: A History of Observation, Theory and Discovery, London, Faber & Faber.

    Google Scholar 

  • Allison, M. and Stone, P. H. (1983) Saturn meteorology — A diagnostic assessment of thin-layer configurations for the zonal flow. Icarus 54, 296–308.

    ADS  Google Scholar 

  • Allison, M., Godfrey, D. A., and Beebe, R. F. (1990) A wave dynamical interpretation of Saturn's polar hexagon. Science 247, 1061–1063.

    ADS  Google Scholar 

  • Appleby, J. F. (1984) Equilibrium models of Jupiter and Saturn. Icarus 59, 336–366.

    ADS  Google Scholar 

  • Araki, S. (1991) Dynamics of planetary rings. Am. Sci. 79, 44–59.

    ADS  Google Scholar 

  • Armstrong, T. P., Paonessa, M. T, Bell, E. V., and Krimigis, S. M. (1983) Voyager observations of Saturnian ion and electron phase space densities. J. Geophys. Res. 88, 8893–8904.

    ADS  Google Scholar 

  • Atreya, S. K., Wong, M. H., Owen, T. C, Mahaffy, P. R., Niemann, H. B., de Pater, I., Drossart, P., and Encrenaz, T. (1999) A comparison of the atmospheres of Jupiter and Saturn: Deep atmospheric composition, cloud structure, vertical mixing and origin. Planet. Space Sci. 47, 1243–1262.

    ADS  Google Scholar 

  • Atreya, S. K., Wong, A. S., Baines, K. H., Wong, M. H., and Owen, T. C. (2005) Jupiter's ammonia clouds-localized or ubiquitous? Planet Space Sci. 53, 498–507.

    ADS  Google Scholar 

  • Axel, L. (1972) Inhomogeneous models of the atmosphere of Jupiter. Astrophys. J. 173, 451–468.

    ADS  Google Scholar 

  • Baines, K. H., Carlson, R. W, and Kamp, L. W. (2002) Fresh ammonia ice clouds in Jupiter. I. Spectroscopic identification, spatial distribution, and dynamical implications. Icarus 159, 74–94.

    Google Scholar 

  • Baldwin, M. et al. (2001) The quasi-biennial oscillation. Rev. Geophys. 39, 179–230.

    ADS  Google Scholar 

  • Barbosa D. D. (1990) Auroral precipitation flux of ions and electrons in Saturn's outer magnetosphere. Planet. Space. Sci. 38, 1295–1304.

    ADS  Google Scholar 

  • Barnet, C. D., Westphal, J. A., Beebe, R. F, and Huber, L. F. (1992) Hubble Space Telescope observations of the 1990 equatorial disturbance on Saturn — Zonal winds and central meridian albedos. Icarus 100, 499–511.

    ADS  Google Scholar 

  • Baron R. L., Joseph, R. D., Owen, T, Tennyson, J., Miller, S., and Ballester, G. E. (1991) Infrared imaging of H3+ in the ionosphere of Jupiter. Nature 353, 539–542.

    ADS  Google Scholar 

  • Barshay, S. S. and Lewis, J. S. (1978) Chemical structure of the deep atmosphere of Jupiter. Icarus 33, 593–611.

    ADS  Google Scholar 

  • Beebe, R. F, Barnet, C, Sada, P. V, and Murrell, A. S. (1992) The onset and growth of the 1990 equatorial disturbance on Saturn. Icarus 95, 163–172.

    ADS  Google Scholar 

  • Behannon K. W., Lepping, R. P., and Ness, N. F. (1983) Structure and dynamics of Saturn's outer magnetosphere and boundary regions, J. Geophys. Res. 88, 8791–8800.

    ADS  Google Scholar 

  • ben Jaffel, L., Leers, V, and Sandel, B. (1995) Dark auroral oval on Saturn discovered in HST UV images. Science 269, 951–953.

    ADS  Google Scholar 

  • Berge, G. L. and Muhleman, D. O. (1973) High-angular-resolution observations of Saturn at 21.1 cm wavelength. Astrophys. J. 183, 373–381.

    ADS  Google Scholar 

  • Berge, G. L. and Read, R. B. (1968) The microwave emission of Saturn. Astrophys. J. 152, 755–764.

    ADS  Google Scholar 

  • Bézard, B., Gautier, D., and Conrath, B. (1984) A seasonal model of the Saturnian upper troposphere: Comparison with Voyager infrared measurements. Icarus 60, 274–288.

    ADS  Google Scholar 

  • Bézard, B. and Gautier, D. (1985) A seasonal climate model of the atmospheres of the giant planets at the Voyager encounter time. I —Saturn's stratosphere. Icarus 61, 296–310.

    ADS  Google Scholar 

  • Bézard, B., Drossart, P., Lellouch, E., Tarrago, G., and Maillard, J. P. (1989) Detection of arsine in Saturn. Astrophys. J. 346, 509–513.

    ADS  Google Scholar 

  • Bézard, B., Griffith, C, Lacy, J. and Owen, T. (1995) Non-detection of hydrogen cyanide on Jupiter. Icarus 118, 384, 391.

    ADS  Google Scholar 

  • Bézard, B., Feuchtgruber, H., Moses, J. I., and Encrenaz, T. (1998) Detection of methyl radicals (CH3) on Saturn. Astron. Astrophys. 334, L41–L44.

    ADS  Google Scholar 

  • Bézard, B., Drossart, P., Encrenaz, T, and Feuchtgruber, H. (2001a) Benzene on the giant llanets. Icarus 154, 492–500.

    ADS  Google Scholar 

  • Bézard, B., Moses, J., I., Lacy, J., Greathouse, T, Richter, M., and Griffith, C. (2001b) Detection of ethylene (C2H4) on Jupiter and Saturn in non-auroral regions. Bull. Amer. Astron. Soc. 33, 1079; Icarus 154, 492–500.

    ADS  Google Scholar 

  • Bjoraker, G. L., Larson, H. P., Fink, U., and Smith, H. A. (1981) A study of ethane on Saturn in the 3 (im region. Astrophys. J. 248, 856–862.

    ADS  Google Scholar 

  • Borderies, N. (1989) Ring dynamics. Celest. Mechan. 46, 207–230.

    MATH  ADS  Google Scholar 

  • Borderies, N., Goldreich, P., and Tremaine. S. (1989) The formation of sharp edges in planetary rings by nearby satellites. Icarus 80, 344–360.

    ADS  Google Scholar 

  • Brahic, A. (1984) Planetary rings. ceedings ofIAU Colloquium 75, Cepadues-Editions, Toulouse.

    Google Scholar 

  • Brault, J. W, Fox, K., Jennings, D. E., and Margolis, J. S. (1981) Anomalous 12 4, 13CH4 strengths in 3v 3. Astrophys. J. 247, L101–L104.

    ADS  Google Scholar 

  • Bregman, J., Lester, D. F, and Rank, D. M. (1975) Observations of the v 2 band of PH3 in the atmosphere of Saturn. Astrophys. J. 202, L55–L56.

    ADS  Google Scholar 

  • Bridge, H. S., Bagenal, F, Belcher, J. W., Lazarus, A. J., McNutt, R. L., Sullivan, J. D., Gazis, P. R., Hartle, R. E., Ogilvie, K. W., Scudder, J. D., Sittier, E. C, Eviatar, A., Siscoe, G. L., Goertz, C. K., and Vasyliunas, V. M. (1982) Plasma observations near Saturn: Initial results from Voyager 2. Science 215, 563–570.

    ADS  Google Scholar 

  • Briggs, F. H. and Sackett, P. D. (1989) Radio observations of Saturn as a probe of its atmosphere and cloud structure. Icarus 80, 77–103. Broadfoot et al. (1981) Extreme ultraviolet observations from Voyager 1 encounter with Saturn. Science 212, 206–211.

    ADS  Google Scholar 

  • Broadfoot et al. (1981) Extreme ultraviolet observations from Voyager 1 encounter with Saturn. Science 212, 206–211.

    ADS  Google Scholar 

  • Brown, L. W (1974) Spectral behavior of Jupiter near 1 MHz. Astrophys. J. 194, L159–L162.

    ADS  Google Scholar 

  • Brown, L. W (1975) Saturn radio emission near 1 MHz. Astrophys. J. 198, L89–L92.

    ADS  Google Scholar 

  • Bunce, E. J. and Cowley, S. W H. (2003) A note on the ring current in Saturn's magnetosphere: Comparison of magnetic field data obtained during the Pioneer-11 and Voyager-1 and -2 flybys. Ann. Geophys. 21, 661–669.

    ADS  Google Scholar 

  • Burrati, B., Veverka, J. and Thomas, P. (1983) Enceladus: Implications of its unusual photometric properties. Bull. Amer. Astron. Soc. 14, 737.

    ADS  Google Scholar 

  • Buratti, B. J., Mosher, J. A., and Johnson, T. V. (1990) Albedo and color maps of the Saturnian satellites. Icarus 87, 339–357.

    ADS  Google Scholar 

  • Burns, J. A., Hamilton, D. P., and Showalter., M. R. (2001) Dusty rings and circumplanetary dust, observations and simple physics. In Interplanetary Dust, Springer, Berlin, pp. 641–725.

    Google Scholar 

  • Caldwell, J. (1977) The atmosphere of Saturn: An infrared perspective. Icarus 30, 493–510.

    ADS  Google Scholar 

  • Caldwell, J., Gillett, F. C, Nolt, I. G., Tokunaga, A. (1978) Spatially resolved infrared observations of Saturn. I — Equatorial limb scans at 20 microns. Icarus 35, 308–312.

    ADS  Google Scholar 

  • Caldwell, J., Tokunaga, A. T, and Orton G. S. (1983) Further observations of 8-μm polar brightenings of Jupiter. Icarus 53, 133–140.

    ADS  Google Scholar 

  • Caldwell, J., Hua, X.-M., Turgeon, B., Westphal, J. A., and Barnet, C. D. (1993) The drift of Saturn's north polar spot observed by the Hubble Space Telescope. Science 260, 326–329.

    ADS  Google Scholar 

  • Carbary, J. F, Krimigis, S. M., and Ip, W. H. (1983) Energetic particle microsignatures of Saturn's satellites, J. Geophys. Res. 88, 8947–8958.

    ADS  Google Scholar 

  • Carlson, B. E., Caldwell, J., and Cess, R. D. (1980) A model of Saturn's seasonal stratosphere at the time of the Voyager encounters. J. Atmos. Sci. 37, 1883–1885.

    ADS  Google Scholar 

  • Carr, T. D., Brown, G. W., Smith, A. G., Higgins, C. S., Bollhagen, H., May, J., and Levy, J. (1964) Spectral distribution of the decametric radiation from Jupiter in 1961. Astrophys. J. 140, 778–795.

    ADS  Google Scholar 

  • Cavalié, T, Billebaud, F, Fouchet, T, Lellouch, E., Brillet, J, Dobrijevic, M. et al. (2008) Observations of CO on Saturn and Uranus at millimeter wavelengths: New upper limit determinations. Astron. Astrophys. 484, 555–561.

    ADS  Google Scholar 

  • Cess, R. D. and Caldwell, J. (1979) A Saturnian stratospheric seasonal climate model. Icarus 38, 349–357.

    ADS  Google Scholar 

  • Clark, R. N. and McCord, T. B. (1980) The rings of Saturn — New infrared reflectance measurements and a 0.326–4.08 micron summary. Icarus 43, 161–168.

    ADS  Google Scholar 

  • Clarke J. T, Moos, H. W., Atreya, S. K., and Lane, A. L. (1981) IUE detection of bursts of H Ly? emission from Saturn. Nature 290, 226–227.

    ADS  Google Scholar 

  • Clarke, J. T. and 12 co-authors (2005) Morphological differences between Saturn's ultraviolet aurorae and those of Earth and Jupiter. Nature 433, 717–719.

    ADS  Google Scholar 

  • Colwell, J. (1994) The disruption of planetary satellites and the creation of planetary rings. Planet Space Sci. 42, 1139–1149.

    ADS  Google Scholar 

  • Combes, M., Maillard, J. P., and de Bergh, C. (1977) Evidence for a telluric value of the 12C/13C ratio in the atmospheres of Jupiter and Saturn. Astron. Astrophys. 61, 531–537.

    ADS  Google Scholar 

  • Connerney, J. E. P. Acuna, M. H., and Ness, N. F (1983) Currents in Saturn's magnetosphere. J. Geophys. Res. 88, 8779–8789.

    ADS  Google Scholar 

  • Connerney, J. E. P., Davis, L. Jr., and Chenette, D. L. (1984) Magnetic field models. In Saturn (T. Gehrels, M. Matthews, Eds.), University of Arizona Press, Tucson, pp. 354–377.

    Google Scholar 

  • Conrath, B. J. and Pirraglia, J. A. (1983) Thermal structure of Saturn from Voyager infrared measurements: Implications for atmospheric dynamics. Icarus 53, 286–291.

    ADS  Google Scholar 

  • Conrath, B. J., Gautier, D., Hanel, R. A., and Hornstein, J. S. (1984) The helium abundance of Saturn from Voyager measurements. Astrophys. J. 282, 807–815.

    ADS  Google Scholar 

  • Conrath, B. J. and Gautier, D. (2000) Saturn helium abundance: A re-analysis of Voyager measurements. Icarus 144, 124–134.

    ADS  Google Scholar 

  • Conrath, B. J. and Gierasch, P. J. (1986) Retrieval of ammonia abundances and cloud opacities on Jupiter from Voyager IRIS spectra. Icarus 67, 444–455.

    ADS  Google Scholar 

  • Conrath, B. J., Gierasch, P. J., and Leroy, S. S. (1990) Temperature and circulation in the stratosphere of the outer planets. Icarus 83, 255–281.

    ADS  Google Scholar 

  • Conrath, B. J., Gierasch, P. J., and Ustinov, E. A. (1998) Thermal structure and para hydrogen fraction on the outer planets from Voyager IRIS measurements. Icarus 135, 501–517.

    ADS  Google Scholar 

  • Cooper, J. F, Eraker, J. H., and Simpson, J. A. (1985) The secondary radiation under Saturn's A–B-C rings produced by cosmic ray interactions. J. Geophys. Res. 90, 3415–3427.

    ADS  Google Scholar 

  • Courtin, R., Gautier, D., Marten, A., Bézard, B., and Hanel, R. (1984) The composition of Saturn's atmosphere at northern temperate latitudes from Voyager IRIS spectra: NH3, PH3, C2H2, C2H6, CH3D, CH4 and the Saturnian D/H isotopic ratio. Astrophys. J. 287, 899–916.

    ADS  Google Scholar 

  • Coustenis, A., Salama, A., Schulz, B., Ott, S., Lellouch, E., Encre-naz, T, Gautier, D., and Feuchtgruber, H. (2003) Titan's atmosphere from ISO mid-infrared spectroscopy. Icarus 161, 383–403.

    ADS  Google Scholar 

  • Cowley S. W. H. and Bunce, E. J. (2001) Origin of the main auroral oval in Jupiter's coupled magnetosphere-ionosphere system. Planet. Space Sci. 49, 1067–1088.

    ADS  Google Scholar 

  • Cowley, S. W. H., Bunce, E. J., and Prangé, R. (2004a) Saturn's polar ionospheric flows and their relation to the main auroral oval. Ann. Geophys. 22, 1379–1394.

    ADS  Google Scholar 

  • Cowley, S. W. H., Bunce, E. J., and O'Rourke, J. M. (2004b) A simple quantitative model of plasma flows and currents in Saturn's polar ionosphere. J. Geophys. Res. 109, 5212.

    Google Scholar 

  • Cruikshank, D. P., Veverka, J., and Lebofsky, L. A. (1984) Satellites of Saturn: Optical properties. In Saturn (T. Gehrels, M. S. Matthews, Eds.), University of Arizona Press, Tucson, pp. 640–667.

    Google Scholar 

  • Cruikshank, D. P., Owen, T. C, Dalle Ore, C, Geballe, T. R., Roush, T. L., de Bergh, C, Sandford, S. A., Poulet, F, Benedix, G. K., and Emery, J. P. (2004) A spectroscopic study of the surfaces of Saturn's large satellites: H2O ice, tholins, and minor constituents. Icarus 175, 268–283.

    ADS  Google Scholar 

  • Cruikshank, D. P., Imanaka, H., and Dalle Ore, C. M. (2005) Tholins as coloring agents on outer Solar System bodies. Adv. Space Res. 36, 178–183.

    ADS  Google Scholar 

  • Cuzzi, J. N. and Pollack, J. B. (1978) Saturn's rings: Particle composition and size distribution as constrained by microwave observations. I — Radar observations. Icarus 33, 233–262.

    Google Scholar 

  • Cuzzi, J. N., Pollack, J. B., and Summers, A. L. (1980) Saturn's rings — Particle composition and size distribution as constrained by observations at microwave wavelengths. II — Radio interferometric observations. Icarus 44, 683–705.

    ADS  Google Scholar 

  • Cuzzi, J. N. (1983) Planetary ring systems. Rev. Geophys. Space Phys. 21, 173–186.

    ADS  Google Scholar 

  • Cuzzi, J. N., Lissauer, J. J, Esposito, L. W., Holberg, J. B., Marouf, E. A., Tyler, G. L., and Boischot, A. (1984) Saturn's rings: Properties and Processes, In Planetary Rings (R. Greenberg, A. Brahic, Eds.), University of Arizona Press, Tuscon, pp. 73–200.

    Google Scholar 

  • Cuzzi, J. N. and Burns, J. A. (1988) Charged particle depletion surrounding Saturn's F ring — Evidence for a moonlet belt? Icarus 74, 284–324.

    ADS  Google Scholar 

  • Cuzzi, J. N. (1995) Evolution of planetary ring-moon systems. In Comparative Planetology, also, Earth, Moon Planet. Kluwer, Dordrecht 67, 179–208.

    Google Scholar 

  • Cuzzi, J. N. and Estrada, P. R. (1998) Compositional evolution of Saturn's rings due to meteoroid bombardment. Icarus 132, 1–35.

    ADS  Google Scholar 

  • Cuzzi, J. N. and 10 co-authors (2002) Saturn's Rings: Pre-Cassini status and mission goals. Space Sci. Rev. 104, 209–251.

    ADS  Google Scholar 

  • Davis, G. R. and 26 co-authors (1996) ISO LWS measurement of the far-infrared spectrum of Saturn. Astron. Astrophys. 315, L393–L396.

    ADS  Google Scholar 

  • Davis, L., Jr. and Smith, E. J. (1990) A model of Saturn's magneitc field based on all available data. J. Geophys. Rev. 96, 15,257–15,261.

    ADS  Google Scholar 

  • de Bergh, C, Lutz, B. L., Owen, T, Brault, J., and Chauville, J. (1986) Monodeuterated methane in the outer solar system. II Its detection on Uranus at 1.6 microns. Astrophys. J. 311, 501–510.

    ADS  Google Scholar 

  • de Graauw, T. and 18 co-authors (1997) First results of ISO-SWS observations of Saturn: Detection of CO2, CH3H2H, C4H2 and tropo-spheric H2O. Astron. Astrophys. 321, L13–L16.

    ADS  Google Scholar 

  • de Pater, I. and Dickel, J. R. (1982) New information on Saturn and its rings from VLA multifrequency data. Proceedings of Planetary Rings/Anneaux des Planètes Conference, Toulouse, France, August 1982 (abstract).

    Google Scholar 

  • de Pater, I. and Dickel, J. R. (1991) Multifrequency radio observations of Saturn at ring inclination angles between 5 and 26 degrees. Icarus 94, 474–492.

    ADS  Google Scholar 

  • Desch M. D. and Rucker, H. O. (1983) The relationship between Saturn kilometric radiation and the solar wind. J. Geophys. Res. 88, 8999–9006.

    ADS  Google Scholar 

  • Dollfus, A. (1963) Mouvements dans l'atmosphère de Saturne en 1960. Observations coordonées parl'Union Astronomique Internationale. Icarus 2, 109–114.

    ADS  Google Scholar 

  • Dones, L. (1998) The rings of the Giant Planets. In Solar System Ices (B. Schmitt, C. de Bergh, M. Festou, Eds.), Kluwer, Dordrecht, pp. 711–734.

    Google Scholar 

  • Doyle, L., Dones, R. L., and Cuzzi, J. N. (1989) Radiative transfer modeling of Saturn's outer B ring. Icarus 80, 104–135

    ADS  Google Scholar 

  • Doyle, L. R. and Grün, E. (1990) Radiative transfer modeling constraints on the size of the spoke particles in Saturn's rings. Icarus 85, 168–190.

    ADS  Google Scholar 

  • Drossart P., J-P Maillard, J. Caldwell, S. J. Kim, J. K. G. Watson, W. A. Majewski, J. Tennyson, S. Miller, S. K. Atreya, J. T. Clarke, J. H. Waite Jr., and R. Wagener (1989) Detection of H3+ on Jupiter, Nature 240, 539–541.

    ADS  Google Scholar 

  • Dulk, G. A. and Eddy, J. A. (1966) A new search for visual aurora on Jupiter. Astron. J. 71, 160.

    Google Scholar 

  • Dungey, J. W. (1961) The steady state of the Chapman-Ferraro problem in two dimensions. J. Geophys. Res. 66, 1043.

    ADS  Google Scholar 

  • Durisen, R. H., Cramer, N. L., Murphy, B. W., Cuzzi, J. N. Mulikin, T. L., and Cederbloom, S. E. (1989) Ballistic transport in planetary ring systems due to particle erosion mechanisms. I — Theory, numerical methods, and illustrative examples. Icarus 80, 136–166.

    ADS  Google Scholar 

  • Edgington, S. (1997) Latitude variations of the abundances of ammonia, acetylene, and phosphine and vertical mixing in the atmospheres of Jupiter and Saturn. PhD Thesis. Univ. of Michigan. 243 pp..

    Google Scholar 

  • Emery, J. P., Burr, D. M., Cruikshank, D. P., Brown, R. H., and Dalton, J. B. (2005) Near-infrared (0.8–4.0 μm) spectroscopy of Mimas, Enceladus, Tethys, and Rhea. Astron. Astrophys. 435, 353–362.

    ADS  Google Scholar 

  • Epstein, E. E., Janssen, M. A., and Cuzzi, J. N. (1984) Saturn's rings — 3-mm low-inclination observations and derived properties. Icarus 58, 403–411.

    ADS  Google Scholar 

  • Espinosa, S. A., Southwood, D. J., and Dougherty, M. K. (2003) How can Saturn impose its rotation period in a noncorotating magne-toshere? J. Geophys. Res. 108, NO. A2.

    Google Scholar 

  • Esposito, L. W., O'Callaghan, M., and West, R. A. (1983) The structure of Saturn's rings — Implications from the Voyager stellar occultation. Icarus 56, 439–452.

    ADS  Google Scholar 

  • Esposito, L. W., Cuzzi, J. N., Holberg, J. E., Marouf, E. A., Tyler, G. L., and Porco, C. C. (1984) Saturn's rings: Structure, dynamics, and particle properties. In Saturn (T. Gehrels, M. Matthews, Eds.), University of Arizona Press, Tuscon, pp. 463–545.

    Google Scholar 

  • Esposito, L. W. (1993) Understanding planetary rings. Ann. Rev. Earth Planet. Sci. 21, 487–523.

    ADS  Google Scholar 

  • Esposito, L. W. and 15 co-authors. (2005) Ultraviolet imaging spectroscopy shows an active Saturnian system. Science 307, 1251–1255.

    ADS  Google Scholar 

  • Estrada, P. R. and Cuzzi, J. N. (1996) Voyager observations of the color of Saturn's rings. Icarus 122, 251–272.

    ADS  Google Scholar 

  • Estrada, P. R., Cuzzi, J. N., and Showalter, M. R. (2003) Voyager color photometry of Saturn's main rings: a correction. Icarus 166, 212–222.

    ADS  Google Scholar 

  • Fegley, B. and Prinn, R. G. (1985) Equilibrium and nonequilibrium chemistry of Saturn's atmosphere — Implications for the observability of PH3, N2, CO, and GeH4. Astrophys. J. 299, 1067–1078.

    ADS  Google Scholar 

  • Feibelman, W. A. (1967) Concerning the “D” ring of Saturn. Nature 214, 793–794.

    ADS  Google Scholar 

  • Festou, M. C. and Atreya, S. K. (1982) Voyager ultraviolet stellar occultation measurements of the composition and thermal profiles of the Saturnian upper atmosphere. Geophys. Res. Lett. 9, 1147–1152.

    ADS  Google Scholar 

  • Feuchtgruber, H., Lellouch, E., de Graauw, T, Bézard, B., Encrenaz, T, and Griffin, M. (1997) External supply of oxygen to the atmospheres of the giant planets. Nature 389, 159–162.

    ADS  Google Scholar 

  • Fillius, W., Ip, W J., McIlwain, C. E. (1980) Trapped radiation belts of Saturn: First look. Science 207, 425–431.

    ADS  Google Scholar 

  • Fink, U., Larson, H. P., Bjoraker, G. L., and Johnson, J. R. (1983) The NH3 spectrum in Saturn's 5–μm window. Astrophys. J. 268, 880–888.

    ADS  Google Scholar 

  • Fletcher, L. N., and 13 co-authors (2008) Temperature and composition of Saturn's polar hot spots and hexagon. Science 319, 79–81.

    ADS  Google Scholar 

  • Fortney, J. and Hubbard, W B. (2003) Phase separation in giant planets: Inhomogeneous evolution of Saturn. Icarus 164, 228–243.

    ADS  Google Scholar 

  • Fouchet, T, Lellouch, E., Bézard, B., Feuchtgruber, H., Drossart, P., and Encrenaz, T. (2000) Jupiter's hydrocarbons observed with ISO-SWS: Vertical profiles of C2H6 and C2H2, detection of CH3C2H. Astron. Astrophys. 355, L13–L17.

    ADS  Google Scholar 

  • Fouchet, T, Guerlet, S., Strobel, D. F, Simon-Miller, A. A. Bézard, B., and Flasar, F M. (2008) An equatorial oscillation in Saturn's middle atmosphere. Nature 453, 200–202.

    ADS  Google Scholar 

  • Flynn, B. C. and Cuzzi, J. N. (1989) Regular structure in the inner Cassini Division of Saturn's rings. Icarus 82, 180–199.

    ADS  Google Scholar 

  • Frank, L., Burek, B., Ackerson, K., Wolfe, J., and Mihalov, J. (1980) Plasmas in Saturn's Magnetosphere, J. Geophys. Res. 85 (A11), 5695–5708.

    ADS  Google Scholar 

  • French, R. C. and Nicholson P. D. (2000) Saturn's rings II. Particle sizes inferred from stellar occultation data. Icarus 145, 502–523.

    Google Scholar 

  • Friedson, A. J. (1999) New observations and modeling of a QBO-like oscillation in Jupiter's stratosphere. Icarus 137, 34–55.

    ADS  Google Scholar 

  • Geballe, T. R., Jagod, M. -F, and Oka, T. (1993) Detection of H3 + infrared emission lines in Saturn. Astrophys. J. 408, L109–L112.

    ADS  Google Scholar 

  • Gehrels, T. and 22 co-authors (1980) Imaging Photopolarimeter on Pioneer Saturn. Science 207, 434–439.

    ADS  Google Scholar 

  • Gehrels, T. and Matthews, M. S., Eds. (1984) Saturn, University of Arizona Press, Tucson.

    Google Scholar 

  • Gérard J. -C. and Singh, V. (1982) A model of energy deposition of energetic electrons and EUV emission in the Jovian and Saturnian atmospheres and implications. J. Geophys. Res. 87, 4525–4532.

    ADS  Google Scholar 

  • Gérard, J. -C. et al. (1995) Simultaneous observations of the Saturnian aurora and polar haze with the HST FOC. Geophys. Res. Lett. 22, 2685–2688.

    ADS  Google Scholar 

  • Gérard, J. -C. and 10 co-authors. (2006) Saturn's auroral morphology and activity during quiet magnetospheric conditions. J. Geophys. Res. 111, A12210.

    ADS  Google Scholar 

  • Gezari, D. Y., Mumma, M. J., Espenak, F, Deming, D., Bjoraker, G., Woods, L., and Folz, W. (1991) New features in Saturn's atmosphere reveled by high-resolution thermal infrared images. Nature 342, 777–780.

    ADS  Google Scholar 

  • Giampieri, G. and Dougherty, M. K. (2004a) Rotation rate of Saturn's interior from magnetic field observations. Geophys. Res. Lett. 31, 16701.

    ADS  Google Scholar 

  • Giampieri, G. and Dougherty, M. K. (2004b) Modelling of the ring current in Saturn's magnetosphere Ann. Geophys., 22, 653–659.

    Google Scholar 

  • Gierasch, P. J. (1983) Dynamical consequences of orthohydrogen-parahydrogen disequilibrium in Jupiter and Saturn. Science 219, 847–849.

    ADS  Google Scholar 

  • Gierasch, P. J. and Goody, R. M. (1969) Radiative time constants in the atmosphere of Jupiter. J. Atmos. Sci. 26, 979–980.

    ADS  Google Scholar 

  • Gillett, F. C and Forrest, W J. (1974) The 7.5- to 13.5 micron spectrum of Saturn. Astrophys. J. 187, L37–L38.

    ADS  Google Scholar 

  • Gillett, F. C. and Orton, G. S. (1975) Center-to-limb observations of Saturn in the thermal infrared. Astrophys. J. 195, L47–L49.

    ADS  Google Scholar 

  • Godfrey, D. A. (1988) A hexagonal feature around Saturn's North Pole. Icarus 76, 335–356.

    ADS  Google Scholar 

  • Goldstein, R. M. and Morris, G. A. (1973) Radar observations of the rings of Saturn. Icarus 20, 249–283.

    Google Scholar 

  • Goldstein, R. M., Green, R. R., Pettengill, G. H., and Campbell, D. B. 1977. The rings of Saturn: Two-frequency radar observations. Icarus 30, 104–110.

    ADS  Google Scholar 

  • Greathouse, T. K., Lacy, J. H., Bezard, B., Moses, J. I. Griffith, C. A., and Richter, M. J. (2005) Meridional variations of temperature, C2H2 and C2H6 abundances in Saturn's stratosphere at southern summer solstice. Icarus 177, 18–31.

    ADS  Google Scholar 

  • Greathouse, T. K., Lacy, J. H., Bezard, B., Moses, J. I., Richter, M. J., and Knez, C. (2006) First detection of propane on Saturn. Icarus 181, 266–271.

    ADS  Google Scholar 

  • Greenberg, R. and Brahic, A., Eds. (1984) Planetary Rings. University of Arizona Press, Tucson.

    Google Scholar 

  • Grevesse, N., Asplund, M., and Sauval, A. J. (2007) The solar chemical composition. Space Sci. Rev. 130, 104–114.

    ADS  Google Scholar 

  • Griffin, M. J. and 27 co-authors (1996) First detection of the 56-μm rotational line of HD in Saturn's atmosphere. Astron. Astrophys. 315, L389–L392.

    ADS  Google Scholar 

  • Grossman, A. W., Muhleman, D. O., and Berge, G. L. (1989) High-resolution microwave images of Saturn. Science 245, 1211–1215.

    ADS  Google Scholar 

  • Grün, E., Garneau, G. W., Terrile, R. J., Johnson, and T. V. Morfill, G. E. (1984) Kinematics of Saturn's spokes. Adv. Space Res. 4, 143–148.

    ADS  Google Scholar 

  • Guerin, P. (1970) Sur la mise en evidence d'un quartrième anneau et d'une nouvelle division obscure dans le système des anneaux de Sat-urne. Comtes Res. Serie. B. Sci. Phys. 270, 125–128.

    Google Scholar 

  • Guillot, T, Gautier, D., Chabrier, G., and Mosser, B (1994) Are the giant planets fully convective? Icarus 12, 337–353.

    ADS  Google Scholar 

  • Guillot, T. (1999a) A comparison of the interiors of Jupiter and Saturn. Planet. Space Sci. 47, 1183–1200.

    ADS  Google Scholar 

  • Guillot, T. (1999b) Interior of giant planets inside and outside the solar system. Science 286, 72–77.

    ADS  Google Scholar 

  • Guillot, T, Stevenson, D. J., Hubbard, W. B., and Saumon, D. (2004) The interior of Jupiter. In Jupiter, The Planet, Satellites, and Magnetosphere (F. Bagenal, W. McKinnon, T. Dowling, Eds.), Cambridge Univ. Press, Cambridge.

    Google Scholar 

  • Guillot, T. (2005) The interiors of giant planets. Ann. Rev. Earth Planet. Sci. 33, 493–530.

    ADS  Google Scholar 

  • Gurnett, D. A., Kurth, W. S., Scarf, F. L. (1981) Narrowband electromagnetic emission from Saturn's magnetosphere. Nature 292, 733–737.

    ADS  Google Scholar 

  • Haff, P. K., Siscoe, G. L., and Eviatar, A. (1983) Ring and plasma- The enigmae of Enceladus. Icarus 56, 425–438.

    ADS  Google Scholar 

  • Hanel, R. A. and 12 co-authors (1979) Infrared observations of the Jovian system from Voyager 1. Science 204, 972–976.

    ADS  Google Scholar 

  • Hanel, R. A. and 12 co-authors (1980) Infrared observations of the Jovian system from Voyager 2. Science 206, 962–956.

    Google Scholar 

  • Hanel, R. A. and 15 co-authors (1981) Infrared observations of the Sat-urnian system from Voyager 1. Science 212, 192–200.

    ADS  Google Scholar 

  • Hanel, R. A. and 12 coauthors (1982) Infrared observations of the Sat-urnian system from Voyager 2. Science 215, 544–548.

    ADS  Google Scholar 

  • Hanel, R. A., Conrath, B. J, Herath, L., Kunde, V. G., and Pirraglia, J. A. (1983) Albedo, internal heat flux and energy balance of Saturn. Icarus 53, 262–285.

    ADS  Google Scholar 

  • Hapke, B. (1981) Bidirectional reflectance spectroscopy. 1. Theory. J. Geophys. Res. 86, 3039–3054.

    ADS  Google Scholar 

  • Harris, A. W. (1984) The origin and evolution of planetary rings. In Planetary Rings (R. Greenberg, A. Brahic, Eds.), University of Arizona Press, Tuscon.

    Google Scholar 

  • Hill, T. W. (1979.) Inertial limit on corotation. J. Geophys. Res. 84, 6554–6558.

    ADS  Google Scholar 

  • Hill, T. W. (2001) The jovian auroral oval. J. Geophys. Res. 106, 8101–8108.

    ADS  Google Scholar 

  • Hill, T. W. (2005) Rotationally-driven dynamics in the magnetospheres of Jupiter and Saturn. In Magnetospheres of the Outer Planets meeting, Leicester, August 12, 2005.

    Google Scholar 

  • Holberg, J. B., Forrester, W. T., and Lissauer, J. J. (1982) Identification of resonance features within the rings of Saturn. Nature 297, 115–120.

    ADS  Google Scholar 

  • Hubbard, W. B. and Stevenson, D. J. 1984. Interior structure of Saturn. In Saturn (T. Gehrels, M. Matthews, Eds.), University of Arizona Press, Tucson, pp. 47–87.

    Google Scholar 

  • Horn, L. J. (1997) Planetary rings. In Encyclopedia of Planetary Sciences (J. H. Shirley, R. W. Fairbridge, Eds.), Chapman & Hall, London, pp. 602–607.

    Google Scholar 

  • Hueso, R. and Sánchez-Lavega, A. (2004) A three-dimensional model of moist convection for the giant planets II. Saturn's water and ammonia moist convective storms. Icarus 172, 255–271.

    ADS  Google Scholar 

  • Ingersoll, A. P., Orton, G. S., Münch, G., Neugebauer, G., and Chase, S. C. (1980) Science 207, 439–443.

    ADS  Google Scholar 

  • Ingersoll, A. P., Beebe, R., F., Conrath, B. J., and Hunt, G. E. (1984) Structure and dynamics of Saturn's atmosphere. In Saturn (T. Gehrels, M. S. Matthews, Eds.), pp 195–238.

    Google Scholar 

  • Ingersoll A. P., Vasavada, A. R., Little, B., Anger, C. D., Bolton, S. J. Alexander, C., Klaasen, K. P., and Tobiksa, W. K. (1998) Imaging Jupiter's aurora at visible wavelengths. Icarus 135, 251–264.

    ADS  Google Scholar 

  • Ip, W.-H. (1997) On the neutral cloud distribution in the Saturnian magnetosphere. Icarus 126, 42–57.

    ADS  Google Scholar 

  • Isbell J., Dessler, A. J., and Waite, J. H. (1984) Magnetospheric energization by interaction between planetary spin and the solar wind. J. Geophys. Res. 89, 10716–10722.

    ADS  Google Scholar 

  • Judge, D. L., Wu, F.-M., and Carlson, R. W. (1980) Ultraviolet spectrometer observations of the Saturnian system. Science 207, 431–434.

    ADS  Google Scholar 

  • Kaiser, M. L., Desch, M. D., and Lecacheux, A. (1981) Saturn kilomet-ric radiation: statistical properties and beam geometry. Nature 292, 731–733.

    ADS  Google Scholar 

  • Kaiser, M. L., Desch, M. D., Burth, W. S., Lecacheux, A., Genova, F., Pedersen, B. M., and Evans D. R. (1984) Saturn as a radio source. In Saturn (T. Gehrels, M. Matthews, Eds.), University of Arizona Press, Tucson, pp. 378–415.

    Google Scholar 

  • Kalogerakis, K. S., Marschall, J., Oza, A. U., Engel, P. A., Meharchand, R. T., and Wong, M. H. (2008) The coating hypothesis for ammonia ice particles in Jupiter: Laboratory experiments and optical modeling. Icarus 196, 202–215.

    ADS  Google Scholar 

  • Karkoschka, E. and Tomasko, M. G. (1992) Saturn's upper troposphere 1986–1989. Icarus 97, 161–181.

    ADS  Google Scholar 

  • Karkoschka, E. and Tomasko, M. G. (1993) Saturn's upper atmospheric hazesobserved by the Hubble Space Telescope. Icarus 106, 421–441.

    ADS  Google Scholar 

  • Karkoschka, E. (1994) Spectrophotometry of the Jovian planets and Titan at 300–1000 nm wavelength; The methane spectrum. Icarus 111, 174–192.

    ADS  Google Scholar 

  • Karkoschka, E. and Tomasko, M. (2005) Saturn's vertical and latitudinal cloud structure 1991–2004 from HST imaging in 30 filters. Icarus 179, 195–221.

    ADS  Google Scholar 

  • Kim, J. H., Kim, S. J., Geballe, T. R., Kim, S. S., and Brown, L. R. (2006) High-resolution spectroscopy of Saturn at 3 microns: CH4, CH3D, C2H2, C2H6, PH3, clouds and haze. Icarus 185, 476–486.

    ADS  Google Scholar 

  • Kirsch, E., Krimigis, S. M., Ip, W. -H., and Gloeckler, G. (1981) X-ray and energetic neutral particle emission from Saturn's magnetosphere. Nature 292, 718–721.

    ADS  Google Scholar 

  • Kliore, A. J., Lindal, G. F., Patel, I. R., Sweetnam, D. N., Hotz, H. B., and McDonough. T. R. (1980a) Vertical structure of the ionosphere and the upper neutral atmosphere of Saturn from the Pioneer radio occultation. Science 207, 446–449.

    ADS  Google Scholar 

  • Kliore, A. J, Patel, I. R., Lindal, G. F., Sweetnam, D. N, Hotz, H. B., Waite, J. H., and McDonough, T. R. (1980b) Structure of the iono- sphere and atmosphere of Saturn from Pioneer 11 Saturn radio oc-cultation. J. Geophys. Res. 85, 5857–5870.

    ADS  Google Scholar 

  • Kolvoord, R. A., Burns, J. A., and Showalter, M. R. (1990) Periodic features in Saturn's F ring – Evidence for nearby moonlets. Nature 345, 695–697.

    ADS  Google Scholar 

  • Krimigis, S. M. and Armstrong, T. P., (1982) Two-component proton spectra in the inner Saturnian magnetosphere, Geophys. Res. Lett., 9, 1143–1146.

    ADS  Google Scholar 

  • Krimigis, S. M., Carbary, J. F., Keath, E. P., Armstrong, T. P., Lanzerotti, L. J., and Gloeckler, G. (1983) General characteristics of hot plasma and energetic particles in the Saturnian magnetosphere: Results from the Voyager spacecraft, J. Geophys. Res., 88, 8871–8892.

    ADS  Google Scholar 

  • Krimigis, S. M., Mitchell, D. G., Hamilton, D. C., Livi, S., Dandouras, J., Jaskulek, S., Armstrong, T. P., Cheng, A. F., Gloeckler, G., Hsieh, K. C., Ip, W. -H., Keath, E. P., Kirsch, E., Krupp, N., Lanzerotti, L. J., Mauk, R. B. H., McEntire, W., Roelof, E. C., Tossman, B. E., Wilken, B., and Williams, D. J. (2004) Magnetosphere Imaging Instrument (MIMI) on the Cassini Mission to Saturn/Titan, Space Sci. Rev., 114, 233–329.

    ADS  Google Scholar 

  • Kuiper, G. P., Cruikshank, D. P., and Fink, U. (1970) Sky & Telescope 39, 80.

    Google Scholar 

  • Lam, H. A., Achilleos, N., Miller, S., Tennyson, J., Trafton, L. M., Geballe, T. R., and Ballester, G. (1997) A baseline spectroscopic study of the infrared aurorae of Jupiter. Icarus, 127, 379–393.

    ADS  Google Scholar 

  • Lane, A. L., Hord, C. W., West, R. A., Esposito, L. W., Coffeen, D. L., Sato, M., Simmons, K. E., Pomphrey, R. B., and Morris, R. B. (1982) Photopolarimetry from Voyager 2 – Preliminary results on Saturn, Titan, and the rings. Science 215, 537–543.

    ADS  Google Scholar 

  • Larson, H. P., Fink, U., Treffers, R., and Gautier, T. N. (1975) Detection of water vapor on Jupiter. Astrophys. J. 197, L137–L140.

    ADS  Google Scholar 

  • Larson, H. P., Fink, U., Smith, H. A., and Davis, D. S. (1980) The middle-infrared spectrum of Saturn – Evidence for phosphine and upper limits to other trace atmospheric constituents. Astrophys. J. 240, 327–337.

    ADS  Google Scholar 

  • Lebovsky, L. A., Johnson, T.V., and McCord, T. B. (1970) Saturn's rings: Spectral reflectivity and compositional implications. Icarus 13, 226–230.

    ADS  Google Scholar 

  • Lecluse, C., Robert, F., Gautier, D., and Guiraud, M. (1996) Deuterium enrichment in giant planets. Planet. Space Sci. 44, 1579–1592.

    ADS  Google Scholar 

  • Lellouch, E., Bézard, B., Fouchet, T., Feuchtgruber, H., Encrenaz, T., and de Graauw, T. (2001) The deuterium abundance in Jupiter and Saturn from ISO-SWS observations. Astron. & Astrophys. 370, 610–622.

    ADS  Google Scholar 

  • Leovy, C. B., Friedson, A. J., and Orton, G. S. (1991) The quasiqua-drennial oscillation of Jupiter's equatorial stratosphere. Nature 354, 380–382.

    ADS  Google Scholar 

  • Lewis, J. S. and Fegley, M. B. (1984) Vertical distribution of disequilibrium species in Jupiter's troposphere. Space Sci. Rev. 39, 163–192.

    ADS  Google Scholar 

  • Macy, W. (1977) Inhomogeneous models of the atmosphere of Saturn. Icarus 32, 328–347.

    ADS  Google Scholar 

  • Magalhâes, J. A., Weir, A. L., Conrath B. J., Gierasch, P. J., and Leroy, S. S. (1990) Zonal motion and structure in Jupiter's upper troposphere from Voyager infrared and imaging observations. Icarus 88, 39–72.

    ADS  Google Scholar 

  • Marouf, E. A., Tyler, G. L., Zebker, H. A., Simpson, R. A., and Eshle-man, V. R. (1983) Particle size distributions in Saturn's rings from Voyager 1 radio occultation. Icarus 54, 189–211.

    ADS  Google Scholar 

  • Marouf, E. A., Tyler, G. L., and Rosen, P. A. (1986) Profiling Saturn's rings by radio occultation. Icarus 68, 120–166.

    ADS  Google Scholar 

  • Marouf, E. A. and Tyler, G. L. (1986) Detection of two satellites in the Cassini division of Saturn's rings. Nature 323, 31–35.

    ADS  Google Scholar 

  • Massie, S. T. and Hunten, D. M. (1982) Conversion of para and ortho hydrogen in the giant planets. Icarus 49, 213–226.

    ADS  Google Scholar 

  • Mauk, B. H., Krimigis, S. M., and Lepping, R. P. (1985) Particle and field stress balance within a planetary magnetosphere. J. Geophys. Res. 90, 8253–8264.

    ADS  Google Scholar 

  • McClain, E. F. (1959) A test for non-thermal radiation from Jupiter at a wave length of 21cm. Astron. J. 64, 339–340.

    Google Scholar 

  • McGrath, M. A. and Clarke, J. T. (1992) H I Lyman alpha emission from Saturn (1980–1990) J. Geophys. Res. 97, 13691–13703.

    ADS  Google Scholar 

  • McNutt, R. L., Jr. (1984) Force balance in the outer planet magnetospheres. In Proceedings of the 1982–4 Symposia on the Physics of Space Plasmas, SPI Conf. Proc. Reprint Ser., vol. 5 (H. S. Bridge, J. W. Belcher, T. S. Chang, B. Coppi, J. R. Jasperse, Eds.), Scientific Publishers, Cambridge, MA.

    Google Scholar 

  • Melin, H., Miller, S. Stallard, T. Trafton L. M., and Geballe T. R. (2007) Variability in the H3 + emission from Saturn: Consequences for ion-ization rates and temperature. Icarus 186, 234–241.

    ADS  Google Scholar 

  • Miller, S., Lam, H. A., and Tennyson, J. (1994) What astronomy has learned from observations of H3 +. Can. J. Phys. 72, 760–771.

    ADS  Google Scholar 

  • Miller S. and 10 co-authors (2000) The Role of H3 + in planetary atmospheres. Phil. Trans. Roy. Soc. 358, 2485–2502.

    ADS  Google Scholar 

  • Miller, S., Aylward, A., and Millward, G. (2005) Giant planet ionospheres and thermospheres: The importance of ion-neutral coupling. Space Sci. Rev. 116, 319–343.

    ADS  Google Scholar 

  • Miller, S., Stallard, T., Smith, C., Milward, G., Melin, H., Lystrup, M., and Aylward, A. (2006) H3 +: the driver of planetary atmospheres. Phil. Trans. Roy. Soc. A. 364, 3121–3137.

    ADS  Google Scholar 

  • Moos, H. W. and Clarke, J. T. (1979) Detection of acetylene in the Saturnian atmosphere, using the IUE satellite. Astrophys. J. 229, L107–L108.

    ADS  Google Scholar 

  • Morrison, D., Jones, T., Cruikshank, and Murphy, R. (1975) The two faces of Iapetus. Icarus 24, 157–171.

    ADS  Google Scholar 

  • Morrison, D., Johnson, T. V., Shoemaker, E. M., Soderblom, L. A., Thomas, P., Veverka, J., and Smith, B. A. (1984) Satellites of Saturn: Geological perspective. In Saturn (T. Gehrels, M. S. Matthews, Eds.), University of Arizona Press, Tucson, 609–639.

    Google Scholar 

  • Morrison, D., Owen, T., and Soderblom, L. A. (1986) The satellites of Saturn. In Satellites (J. A. Burns, M. S. Matthews, Eds.), University of Arizona Press, Tucson, 764–801.

    Google Scholar 

  • Moses, J. I., Bézard, B. Lellouch, E., Gladstone, G. R., Feuchtgruber, H., Allen, and M. (2000a) Photochemistry of Saturn's atmosphere: I. Hydrocarbon chemistry and comparisons with ISO observations. Icarus 143, 244–298.

    ADS  Google Scholar 

  • Moses, J. I., Lellouch, E., Bézard, B., Gladstone, G. R., Feuchtgruber, H., and Allen, M. (2000b) Photochemistry of Saturn's atmosphere. II. Effects of an influx of external oxygen. Icarus 145, 166–202.

    ADS  Google Scholar 

  • Moses, J. I. and Greathouse, T. K. (2005) Latitudinal and seasonal models of stratospheric photochemistry on Saturn: Comparison with infrared data from IRTF/TEXES. J. Geophys. Res. 110, E09007.

    Google Scholar 

  • Müller-Wodarg, I. C. F., Mendillo, M., Yelle, R. V., Aylward, A. D. (2006) A global circulation model of Saturn's thermosphere. Icarus 180, 147–160.

    ADS  Google Scholar 

  • Muñoz, O., Moreno, F., Molina, A., Grodent, D., Gerard, J. C., and Dols, V. (2004) Study of the vertical structure of Saturn's atmosphere using HST/WFPC2 images. Icarus 169, 413–428.

    ADS  Google Scholar 

  • Ness, N. F., Acuna, M. H., Behannon, K. W., Burlaga, L. F., Conner-ney, J. E. P., Lepping, R. P., Neubauer, F. M. (1982) Magnetic field studies by Voyager 2 – Preliminary results at Saturn. Science, 215, 558–563.

    ADS  Google Scholar 

  • Nicholson, P. D. and Dones, L. (1991) Planetary rings. Rev. Geophys. Supp. 29, 313–327.

    ADS  Google Scholar 

  • Niemann, H. B. and 12 co-authors (1996) The Galileo Probe Mass Spectrometer: Composition of Jupiter's atmosphere. Science, 272, 846–849.

    ADS  Google Scholar 

  • Noll, K. S., Knacke, R. F., Geballe, T. R., and Tokunaga, A. T. (1986) Detection of carbon monoxide in Saturn. Astrophys. J. 309, L91–L94.

    ADS  Google Scholar 

  • Noll, K. S., Knacke, R. F., Geballe, T. R., and Tokunaga. A. T. (1988) Evidence for germane in Saturn. Icarus 85, 409–422.

    ADS  Google Scholar 

  • Noll, K. S., Geballe, R. T., and Knacke, R. F. (1989) Arsine in Saturn and Jupiter. Astrophys. J. 338, L71–L74.

    ADS  Google Scholar 

  • Noll, K. S., Larson, H. P., and Geballe, T. R. (1990) The abundance of AsH3 in Jupiter. Icarus 83, 494–499.

    ADS  Google Scholar 

  • Noll, K. S. and Larson, H. P. (1991) The spectrum of Saturn from 1990 to 2230/cm — Abundances of AsH3, CH3D, CO, GeH4, NH3 and PH3. Icarus 89, 168–189.

    ADS  Google Scholar 

  • Noll, K. S., Roush, T. L., Cruikshank, D. P., Johnson, R. E., and Pendleton, Y. J. (1997) Detection of ozone on Saturn's satellites Rhea and Dione. Nature 388, 45–47.

    ADS  Google Scholar 

  • Noland, M., Veverka, J., Morrison, D., Cruikshank, D. P., Lazarewicz, A., Morrison, N., Elliot, Goguen, J., and Burns, J. (1974) Six-color photometry of Iapetus, Titan, Rhea, Dione, and Tethys. Icarus 23, 334–354.

    ADS  Google Scholar 

  • Null, G. W., Lao, E. L., Biller, E. D., and Anderson, J. D. (1981) Saturn gravity results obtained fro Pioneer 11 tracking data and earth-based Saturn satellite data. Astron. J. 84, 456–468.

    ADS  Google Scholar 

  • Ohring, G. (1975) The temperature profile in the upper atmosphere of Saturn from inversion of thermal emission observations. Astrophys. J. 195, 223–225.

    ADS  Google Scholar 

  • Oldham, P. G., Griffin, M. J., Davis, G. R., Encrenaz, T., de Graauw, T., Irwin, P. J. Swinyard, B. M., Naylor, D. A., and Burgdorf, M. (1997) ISO LWS Far-infrared observations of Jupiter and Saturn. In The Far Infrared and Submillmetre Universe (A. Wilson, Ed.), ESA, Noordwijk, The Netherlands, p. 325.

    Google Scholar 

  • Ollivier, J. L., Billebaud, F., Drossart, P., Dobrijévic, M., Roos-Serote, M., August-Bernex, T., and Vauglin, I. (2000) Seasonal effects in the thermal structure of Saturn's stratosphere from infrared imaging at 10 microns. Astron. Astrophys. 356, 347–356.

    ADS  Google Scholar 

  • Ortiz, J. L., Moreno, F., and Molina, A. (1996) Saturn 1991–1993: Clouds and hazes. Icarus 119, 53–66.

    ADS  Google Scholar 

  • Orton, G. S. and Ingersoll, A. P. (1980) Saturn's atmospheric temperature structure and heat budget. J. Geophys. Res. 85, 5871–5881.

    ADS  Google Scholar 

  • Orton, G. S. (1983) Thermal infrared constraints on ammonia ice particles as candidates for clouds in the atmosphere of Saturn. Icarus 53, 293–300.

    ADS  Google Scholar 

  • Orton, G. S. and 14 co-authors. (1991) Thermal maps of Jupiter: Spatial organization and time dependence of stratospheric temperatures, 1980 to 1990. Science 252, 537–542.

    ADS  Google Scholar 

  • Orton, G. S. and 19 co-authors. (1994) Thermal maps of Jupiter: Spatial organization and time dependence of tropospheric temperatures, 1980–1993. Science 265, 625–631.

    ADS  Google Scholar 

  • Orton, G. S., Serabyn, E., and Lee, Y. T. (2000) Vertical distribution of PH3 in Saturn from observations of Its 1–0 and 3–2 rotational lines. Icarus 146, 48–59.

    ADS  Google Scholar 

  • Orton, G. S., Serabyn, E., and Lee, Y. T. (2001) Erratum: Vertical distribution of PH3 in Saturn from observations of its 1–0 and 3–2 rotational lines. Icarus 149, 489–490.

    ADS  Google Scholar 

  • Orton, G. S. and Yanamandra-Fisher, P. A. (2005) Saturn's temperature field from high-resolution middle-infrared imaging. Science, 696–701.

    Google Scholar 

  • Orton, G. S. and 27 co-authors. (2008) Semi-annual oscillations in Saturn's low-latitude stratospheric temperatures. Nature 453, 196–199.

    ADS  Google Scholar 

  • Ostro, S. J., Pettengill, G. H., and Campbell, D. P. (1980) Radar observations of Saturn's rings at intermediate tilt angles. Icarus 41, 381–388.

    ADS  Google Scholar 

  • Ostro, S. J., Pettengill, G. H., Campbell, D. P., and Goldstein, R. M. (1982) Delay-doppler radar observations of Saturn's rings. Icarus 49, 367–381.

    ADS  Google Scholar 

  • Owen, T. C. (1969) The spectra of Jupiter and Saturn in the photographic infrared. Icarus 10, 355.

    ADS  Google Scholar 

  • Owen, T., Lutz, B. L., and de Bergh, C. (1986) Deuterium in the outer solar system —Evidence for two distinct reservoirs. Nature 320, 244–246.

    ADS  Google Scholar 

  • Owen, T. C., Cruikshank, D. P., Dalle Ore, C. M., Geballe, T. R., Roush, de Bergh, C., Pendleton, Y. J., and Khare, B. N. (2001) Decoding the domino: The dark side of Iapetus. Icarus 149, 160–172.

    ADS  Google Scholar 

  • Pang, K., Voge, C. C., Rhoads, J. W., and Ajello, J. M. (1984) The E ring of Saturn and satellite Enceladus. J. Geophys. Res. 89, 9459–9470.

    ADS  Google Scholar 

  • Pérez-Hoyos, S., Sánchez-Lavega, A., French, R. G., and Rolas, J. F. (2005) Saturn's cloud structure and temporal evolution from ten years of Hubble Space Telescope images (1994–2003) Icarus 176, 155–174.

    ADS  Google Scholar 

  • Pérez-Hoyos, S. and Sánchez-Lavega, A. (2006) On the vertical wind shearof Saturn's equatorial jet at cloud level. Icarus 180, 161–175.

    ADS  Google Scholar 

  • Plescia, J. B. and Boyce, J. M. (1982) Crater densities and geological histories of Rhea, Dione, Mimas and Tethys. Nature 295, 285–290.

    ADS  Google Scholar 

  • Plescia, J. B., and Boyce, J. M. (1983) Crater numbers and geological histories of Iapetus, Enceladus, Tethys and Hyperion. Nature 301, 666–670.

    ADS  Google Scholar 

  • Podolak, M. and Danielson, R. E. (1977) Axel dust on Saturn and Titan. Icarus 30, 479–492.

    ADS  Google Scholar 

  • Pollack, J. B., Summers, A. L., and Baldwin, B. J. (1973) Estimates of the size of the particles in Saturn's rings and their cosmogonic implications. Icarus 20, 263–278.

    ADS  Google Scholar 

  • Pollack, J. B. (1975) The rings of Saturn. Space Sci. Rev. 18, 3–93.

    ADS  Google Scholar 

  • Porco, C. C. (1990) Narrow rings: Observation and theory. Adv. Space Res. 10, 221–229.

    ADS  Google Scholar 

  • Porco, C. C. (1995) Highlights in planetary rings. Revs. Geophys. Sp. Phys. Supp., 497–504.

    Google Scholar 

  • Poulet, F., Cuzzi, J. N., Cruikshank, D. P., Roush, T., and Dalle Ore, C. (2002) Comparison between the Shkuratov and Hapke scattering theories for solid planetary surfaces: Application to the surface composition of two centaurs. Icarus 160, 315–324.

    ADS  Google Scholar 

  • Poulet, F., Cuzzi, J. N., Cruikshank, D. P., Roush, T. L., and French, R. C. (2003) Compositions of Saturn's rings A, B, and C from high resolution near-infrared spectroscopic observations. Astron. Astro-phys. 412, 305–316.

    ADS  Google Scholar 

  • Prangé, R., Fouchet, T., Courtin, R., Connerney, J. E. P., and McConnell, J. C. (2006) Latitudinal variation of Saturn photochemistry deduced from spatially resolved ultraviolet spectra. Icarus 180, 379–392.

    ADS  Google Scholar 

  • Prinn, R. G. and Barshay, S. S. (1977) Carbon monoxide on Jupiter and implications for atmospheric convection. Science 198, 1031–1034.

    ADS  Google Scholar 

  • Prinn, R. G., Larson, H. P., Caldwell, J. J., and Gautier, D. (1984) Composition and chemistry of Saturn's atmosphere. In Saturn (T. Gehrels, M. Matthews, Eds.), Tucson, pp. 88–149.

    Google Scholar 

  • Reuter, D. C., Simon-Miller, A. A., Lunsford, A., Baines, K. H., Cheng, K. H., Jennings, D. E., Olkin, C. B., Spencer, J. R., Stern, S. A., Weaver, H. A., and Young, L. A. (2007) Jupiter cloud composition, stratification, convection, and wave motion: A view from New Horizons. Science 318, 223–225.

    ADS  Google Scholar 

  • Richardson, J. D. and Sittler, E. C. (1990) A plasma density model for Saturn based on Voyager observations. J. Geophys. Res. 95, 12019–12031.

    ADS  Google Scholar 

  • Rieke, G. H. (1975) The thermal radiation of Saturn and its rings. Icarus 26, 37–44.

    ADS  Google Scholar 

  • Roellig, T. W., Werner, M. W. and Becklin, E. J. (1988) Thermal emission from Saturn's rings at 380 microns. Icarus 73, 574–583.

    ADS  Google Scholar 

  • Rosenqvist, J., Lellouch, E., Romani, P. N, Paubert, G., and Encrenaz, T. (1992) Millimeter-wave observations of Saturn, Uranus, and Neptune–CO and HCN on Neptune. Astrophys. J. 392, L99–L102.

    ADS  Google Scholar 

  • Sada, P. V., McCabe., G. H., Bjoraker, G. L., Jennings, D. E., Reuter, D. C. (1996) Astrophys. J. 472, 903.

    ADS  Google Scholar 

  • Sada, P. V., Bjoraker, G. L., Jennings, D. E., Romani, P. N., and McCabe, G. H. (2005) Observations of C2H6 and C2H2 in the stratosphere of Saturn. Icarus 173, 499–507.

    ADS  Google Scholar 

  • Sánchez-Lavega. A. (1982) Motions in Saturn's atmosphere — Observations before Voyager encounters. Icarus 49, 1–16.

    ADS  Google Scholar 

  • Sánchez-Lavega, A., Colas, F., Lecacheux, J., Laques, P., Parker, D., and Miyazaki, I. (1991) The Great White Spot and disturbances in Saturn's equatorial atmosphere during 1990. Nature 33, 397–401.

    Google Scholar 

  • Sánchez-Lavega, A. and Battaner, E. (1986) Long-term changes in Saturn's atmospheric belts and zones. Astron. Astrophys. Supp. Ser. 64, 287–301.

    ADS  Google Scholar 

  • Sánchez-Lavega, A. (1989) Saturn's Great White Spots. Sky Telescope 78, 141–142.

    ADS  Google Scholar 

  • Sánchez-Lavega, A., Colas, F., Lecacheux, J., Laques, P., Miyazaki, I., and Parker, D. (1991) The Great White Spot and disturbances in Saturn's equatorial atmosphere during 1990. Nature 353, 397–401.

    ADS  Google Scholar 

  • Sánchez-Lavega, A., Lecacheux, J. Colas, F and Laques P. (1993a) Temporal behavior of cloud morphologies and motions in Saturn's atmosphere. J. Geophys. Res. 98, 18857–18872.

    ADS  Google Scholar 

  • Sánchez-Lavega, A., Lecacheux, J., Colas, F., and Laques, P. (1993b) Ground-based observations of Saturn's north polar spot and hexagon. Science 260, 329–332.

    ADS  Google Scholar 

  • Sánchez-Lavega, A., Lecacheux, J., Gomez. J. M., Colas, F., Laques, P., Noll, K., Gilmore, D., Miyazaki, I., and Parker, D. (1996) Larger-scale storms in Saturn's atmosphere during 1994. Science 271, 631–634.

    ADS  Google Scholar 

  • Sánchez-Lavega, A., Lecacheux, J., Colas, F., Rojas, J. F., and Gomez, J. M. (1999) Discrete cloud activity in Saturn's equator during 1995, 1996 and 1997. Planet. Space Sci. 47, 10–11.

    Google Scholar 

  • Sánchez-Lavega, A., Rojas, J. F., and Sada, P. V. (2000) Saturn's zonal winds at cloud level. Icarus 147, 405–420.

    ADS  Google Scholar 

  • Sánchez-Lavega, A., Pérez-Hoyos, S., Acarreta, J. R., and French, R. G. (2002) No hexagonal waves around Saturn's southern pole. Icarus 160, 216–219.

    ADS  Google Scholar 

  • Sánchez-Lavega, A., Pérez-Hoyos, S., Rojas, J. F., Hueso, R., and French, R. G. (2003) A strong decrease in Saturn's equatorial jet at cloud level. Nature 423, 623–625.

    ADS  Google Scholar 

  • Sánchez-Lavega, A., Hueso, R., Pérez-Hoyos, S., Rojas, J. F., and French, R. G. (2004) Saturn's cloud morphology and zonal winds before the Cassini encounter. Icarus 170, 519–523.

    ADS  Google Scholar 

  • Sánchez-Lavega, A. (2006) Solar flux in Saturn's atmosphere: Penetration and heating rates in the aerosol and cloud layers. Icarus 180, 368–378.

    ADS  Google Scholar 

  • Sandel B. R. and Broadfoot, A. L. (1981) Morphology of Saturn's aurora. Nature 292, 679–682.

    ADS  Google Scholar 

  • Sandel B. R. et al. (1982) Extreme ultraviolet observations from the Voyager 2 encounter with Saturn. Science 215, 248–253.

    Google Scholar 

  • Saumon, D., and Guilot, T. (2004) Shock compression of deuterium and the interiors of Jupiter and Saturn. Astrophys. J. 609, 1170–1180.

    ADS  Google Scholar 

  • Scarf, F. L., Frank, L. A., Gurnett, D. A., Lanzerotti, L. J., Lazarus, A., and Sittler, E. C. (1984) Measurements of plasma, plasma waves, and suprathermal charged particles in Saturn's inner magnetosphere. In Saturn (T. Gehrels, M. Matthews, Eds.), University of Arizona Press, Tuscon, pp. 318–353.

    Google Scholar 

  • Schloerb, F. P., Muhleman D. O., and Berge G. L. (1980) Interferometry of Saturn and its rings at 1.30cm wavelength. Icarus 42, 125–135.

    ADS  Google Scholar 

  • Showalter, M. R., Cuzzi, J. N. Marouf, E. A., and Esposito, L. W. (1986) Satellite ‘wakes’ and the orbit of the Encke Gap moonlet. Icarus 66, 297–323.

    ADS  Google Scholar 

  • Showalter, M. R. and Nicholson, P. D. (1990) Saturn's rings through a microscope: Particle size constraints from the Voyager PPS scan. Icarus 87, 285–306.

    ADS  Google Scholar 

  • Showalter, M. R. (1991) Visual detection of 1981S13, Saturn's eighteenth satellite, and its role in the Encke gap. Nature 351, 709–713.

    ADS  Google Scholar 

  • Showalter, M. R., Cuzzi, J. N., and Larson, S. M. (1991) Structure and particle properties of Saturn's E ring. Icarus 94, 451–473.

    ADS  Google Scholar 

  • Shkuratov, Y., Starukhina, L., Hoffmann, H., and Arnold, G. (1999) A model of spectral albedo of particulate surfaces: Implications for optical properties of the Moon. Icarus 137, 235–246.

    ADS  Google Scholar 

  • Simpson, J. A., Bastian, T. S., Chenette, D. L., Lentz, G. A., McKibben, R. B., Pyle, K. R., and Tuzzolino, A. J. (1980) Saturnian trapped radiation and its absorption by satellites and rings: The first results from Pioneer 11. Science 207: 411–415.

    ADS  Google Scholar 

  • Sittler, E. C., Blanc, M. F., and Richardson, J. D. (2006) Proposed model for Saturn's auroral response to the solar wind: Centrifugal instability model. J. Geophys. Res. 111, A06208.

    Google Scholar 

  • Slipher, V. M. (1905) A photographic study of the spectrum of Saturn. Astrophys. J. 26, 59–62.

    ADS  Google Scholar 

  • Smith, E. J., Davis, L., Jones, D. E., Coleman, P. J., Colburn, D. S., Dyal, P., and Sonett, C. P. (1980a) Saturn's magnetosphere and its interaction with the solar wind. J. Geophys. Res. 85, 5655.

    ADS  Google Scholar 

  • Smith, E. J., Davis., L., Jones, D. E., Coleman, P. J., Colburn, D. S., Dyal, P., and Sonett, C. P. (1980b) Saturn's magnetic field and magnetosphere. Science 207, 407–410.

    ADS  Google Scholar 

  • Smith, B. A., and 25 co-authors. (1981) Encounter with Saturn: Voyager 1 imaging results. Science 212, 163–191.

    ADS  Google Scholar 

  • Smith, B. A. and 28 coauthors (1982) A new look at the Saturn system: The Voyager 2 images. Science 215, 505–537.

    ADS  Google Scholar 

  • Smith, H. J., Rodman, J. P., and Sloan, W. A. (1963) On jovian H—? auroral activity. Astron. J. 68, 79.

    Google Scholar 

  • Smith G. R., Shemansky, D. E., Holberg, J. B., Broadfoot, A. L., Sandel, B. R., and McConnell, J. C. (1983) Saturn's upper atmosphere from the Voyager 2 EUV solar and stellar occultations. J. Geophys. Res. 88, 8667–8678.

    ADS  Google Scholar 

  • Smith, M. D., Conrath, B. J., and Gautier, D. (1996) Dynamical influence on the isotopic enrichment of CH3D in the outer planets. Icarus 124, 598–607.

    ADS  Google Scholar 

  • Smith, C. G. A., Aylward, A. D., Miller, S., Müller-Wodarg, I. C. F. (2005) Polar heating in Saturn's thermosphere. Ann. Geophys. 23, 2465–2477.

    ADS  Google Scholar 

  • Spilker, L. J., Pilorz, S. H., Edgington, S. G., Wallis, B. D., Brooks, S. M., Pearl, J. C., and Flasar, F. M. (2005) Cassini CIRS Observations of a roll-off in Saturn ring spectra at submillimeter wavelengths. Earth, Moon, and Planets 96, 149–163.

    ADS  Google Scholar 

  • Spinrad, H, Münch, G., and Trafton, L. M. (1962) Recent spectroscopic investigations of Jupiter and Saturn. Astron. J. 67, 587.

    Google Scholar 

  • Sromovsky, L. A., Revercomb, H. E., Krauss, R. J., and Suomi, V. E. (1983) Voyager 2 observations of Saturn's northern mid latitude cloud features: Morphology, motions and evolution. J. Geophys. Res. 88, 8650–8666.

    ADS  Google Scholar 

  • Stallard T., Miller, S., Ballester, G. E., Rego, D., Joseph, R. D., and Trafton, L. M. (1999) The H3 + latitudinal profile of Saturn. Astro-phys. J. Lett. 521, L149–L152.

    ADS  Google Scholar 

  • Stallard T., Miller, S., Millward, G., and Joseph, R.D. (2001) On the dynamics of the jovian ionosphere and thermosphere I: the measurement of ion winds. Icarus 154, 475–491.

    ADS  Google Scholar 

  • Stallard, T., Miller, S., Trafton, L. M., Geballe, T. R., and Joseph. R. D. (2004) Ion winds in Saturn's southern auroral/polar region. Icarus 167, 204–211.

    ADS  Google Scholar 

  • Stallard T., Miller, S., Melin, H., Lystrup, M., Dougherty, M., and Achilleos, N. (2007a) Saturn's auroral/polar H3 + infrared emission I: General morphology and ion velocity structure. Icarus 189, 1–13.

    ADS  Google Scholar 

  • Stallard T., Miller, S., Melin, H., Lystrup, M., Dougherty, M., and Achilleos, N. (2007b) Saturn's auroral/polar H3 + infrared emission II: An indicator of magnetospheric origin. Icarus 191, 678–680.

    ADS  Google Scholar 

  • Stallard T., Miller, S., Lystrup, M., Achilleos, N., Arridge, C., and Dougherty, M. (2008a) Dusk brightening event in Saturn's H3 + aurora. Astrophys. J. Lett. 673, L203–L205.

    ADS  Google Scholar 

  • Stallard T., Lystrup, M., Miller, S. (2008b) Emission line imaging of Saturn's H3 + aurora. Astrophys. J. Lett. 675, L117–L120.

    ADS  Google Scholar 

  • Stallard T., Miller, S., Melin, H., Lystrup, M., Cowley, S., Bunce, E., Achilleos, N., and Dougherty, M. (2008c) Jovian-like aurorae on Saturn. Nature 453, 1083–1085.

    ADS  Google Scholar 

  • Stallard, T. and 16 co-authors, Complex structure within Saturn's infrared aurora (2008d) Nature 456, 214–217.

    ADS  Google Scholar 

  • Stevenson, D. J. (1980) Saturn's luminosity and magnetism. Science 208, 746–748.

    ADS  Google Scholar 

  • Stevenson, D. J. (1982) Interiors of the giant planets. Ann. Rev. Earth and Planetary Sci. 10, 257–295.

    ADS  Google Scholar 

  • Stewart, G. R. (1991) Nonlinear satellite wakes in planetary rings. I — Phase-space kinematics. Icarus 94, 436–450.

    ADS  Google Scholar 

  • Strobel, D. F. (1969) Photochemistry of methane in the Jovian atmosphere. J. Atmos. Sci. 26, 906–911.

    ADS  Google Scholar 

  • Strobel, D. F. and Smith, G. R. (1973) On the temperature of the Jovian thermosphere. J. Atmos. Sci. 30, 718–725.

    ADS  Google Scholar 

  • Tagger, M., Henriksen, R. N., and Pellat, R. (1991) On the nature of the spokes in Saturn's rings. Icarus 91, 297–314.

    ADS  Google Scholar 

  • Tejfel, V. G. (1977a) Latitudinal differences in the structure of Saturn's cloud cover. Solar System Res. 11, 10–18.

    ADS  Google Scholar 

  • Tejfel, V. G. (1977b) On the determination of the two-layer planetary atmosphere model parameters from the absorption bands observations. Astron. Zh. 54, 178–189. (Russian).

    ADS  Google Scholar 

  • Tokunaga, A., Knacke, R. F, and Owen, T. (1975) The detection of ethane on Saturn. Astrophys. J. 197, L77–L78.

    ADS  Google Scholar 

  • Tokunaga, A. and Cess. R. (1977) A model for the temperature inversion within the atmosphere of Saturn. Icarus 32, 231–327.

    Google Scholar 

  • Tokunaga, A. T, Caldwell, J., Gillett, F. C, and Nolt, I. G. (1978) Spatially resolved infrared observations of Saturn. II — The temperature enhancement at the south pole. Icarus 36, 216–222.

    ADS  Google Scholar 

  • Tokunaga, A. T, Caldwell, J., Gillett, F. C, and Nolt, I. G. (1979) Spatially resolved infrared observations of Saturn. II — 10 and 20 micron disk scans at B' at −11.8°. Icarus 39, 46–53.

    Google Scholar 

  • Tomasko, M., McMillan, R. S., Doose, L. R., Castillo, N. D., and Dilley J. P. (1980) Photometry of Saturn at large phase angles. J. Geophys. Res. 85, 8167–8186.

    ADS  Google Scholar 

  • Tomasko, M. G. and Stahl, H. P. (1982) Measurements of the single-scattering properties of water and ammonia ice crystals. Proceedings “Fourth Annual Meeting of Planetary Atmospheres Principal Investigators: Ann Arbor, MI, April 1982 (abstract).

    Google Scholar 

  • Tomasko, M. G. and Doose, L. R. (1984) Polarimetry and photometry of Saturn from Pioneer 11: Observations and constraints on the distribution and properties of cloud aerosol particles. Icarus 58, 1–34.

    ADS  Google Scholar 

  • Tomasko, M. G., West, R. A., Orton, G. S., and Tejfel, V. G. (1984) Clouds and aerosols in Saturn's atmosphere. In Saturn (T. Gehrels, M. Matthews, Eds.), University of Arizona Press, Tucson, pp. 150–194.

    Google Scholar 

  • Trafton, L. M. (1967) Model atmospheres of the major planets. Astrophys. J. 147, 765–781.

    ADS  Google Scholar 

  • Trafton L. M., Geballe, T. R., Miller, S., Tennyson, J., and Ballester, G. E. (1993) Detection of H3 + from Uranus. Astrophys. J., 405, 761–766.

    ADS  Google Scholar 

  • Trauger J. T, Griffiths, R. E., Hester, J. J., Hoessel, J. G., Holtzman, J. A., Krist, J. E., Mould, J. R., Sahai, R., Scowen, P. A., Stapelfeldt, K. R., and Watson, A. M. (1998) Saturn's hydrogen aurora: Wide-field camera 2 imaging from the Hubble Space Telescope. J. Geophys. Res. 103, 20237–20244.

    ADS  Google Scholar 

  • Tyler, G. L., Eshleman, V. R., Anderson, J. D., Levy, G. S, Lindal, G. F, Wood, G. E., and Croft, T. A. (1981) Radio science investigations of the Saturn system with Voyager 1: Preliminary results. Science 212, 201–206.

    ADS  Google Scholar 

  • Tyler, G. L., Eshleman, V. R., Anderson, J. D., Levy, G. S., Lindal, G. F, Wood, G. E., and Croft. T. A. (1982) Radio science with Voyager 2 at Saturn: Atmosphere and ionosphere and the masses of Mimas, Tethys and Iapetus. Science, 215, 553–558.

    ADS  Google Scholar 

  • Tyler, G. L., Marouf, E. A., Simpson, R. A., Zebker, H. A., and Eshleman, V. R. (1983) The microwave opacity of Saturn's rings at wavelengths of 3.6 and 13 cm from Voyager 1 radio occultation. Icarus 54, 160–188.

    ADS  Google Scholar 

  • Van Allen, J. A., Thomsen, M. F, Randall, B. A., Rairden, R. L., and Grosskreutz, C. L. (1980a) Saturn's magnetosphere, rings, and inner satellites. Science 207, 415–421.

    ADS  Google Scholar 

  • Van Allen, J. A., Thomsen, M. F., and Randall, B. A. (1980b) The energetic charged particle absorption signature of Mimas, J. Geophys. Res., 85, 5709–5718.

    ADS  Google Scholar 

  • Van Allen, J. A. (1984) Energetic particles in the inner magnetosphere of Saturn. In Saturn (T. Gehrels, M. Matthews, Eds.), University of Arizona Press, Tuscon, pp. 281–318.

    Google Scholar 

  • Van der Tak, F., de Pater, I., Silva, A., and Millan, R. (1998) Time variability in the radio brightness distribution of Saturn; Icarus 142, 125–147.

    Google Scholar 

  • Van der Tak, F., de Pater, I., Silva, A., and Millan, R. (1999) Time variability in the radio brightness distribution of Saturn. Icarus 142, 125–147.

    ADS  Google Scholar 

  • Vasyliunas, V. M. (1983) Plasma distribution and flow. In Physics of the Jovian Magnetosphere (A. J. Dessler, Ed.), Cambridge University Press, Cambridge, pp. 395–453.

    Google Scholar 

  • Verbiscer, A. J. and Veverka, J. (1992) Mimas-photometric roughness and albedo map. Icarus 99, 63–69.

    ADS  Google Scholar 

  • Visscher, C. and Fegley, B. (2005) Chemical constraints on the water and total oxygen abundances in the deep atmosphere of Saturn. Astrophys. J. 623, 1221–1227.

    ADS  Google Scholar 

  • Visscher, C., Lodders, K., and Fegley, B. (2006) Atmospheric chemistry in giant planets, brown dwarfs, and low-mass dwarf stars. II. Sulfur and phosphorus. Astrophys. J. 648, 1181–1195.

    ADS  Google Scholar 

  • Vogt, R. E., Chenette, D. L., Cummings, A. C., Garrard, T. L., Stone, E. C., Schardt, A. W., Trainor, J. H., Lal, N., and McDonald, F.B. (1982) Energetic charged particles in Saturn's magnetosphere–Voyager 2 results. Science 215, 577–582.

    ADS  Google Scholar 

  • von Zahn, U., Hunten, D. M., and Lehmacher, G. (1998) Helium in Jupiter's atmosphere: Results from the Galileo probe helium interferometer experiment. J. Geophys. Res. 103, 22815–22830.

    ADS  Google Scholar 

  • Warwick J. W., Pearce, J. B., Peltzer, R. G., and Riddle, A. C. (1977) Planetary radio astronomy experiment for Voyager missions. Space Sci. Rev. 21, 309–327.

    ADS  Google Scholar 

  • Warwick, J. W. and 12 co-authors. (1981) Planetary radio astronomy observations from Voyager 1 near Saturn. Science, 212, 239–243.

    ADS  Google Scholar 

  • Warwick, J. W., Evans, D. R., Romig, J. H., Alexander, J. K., De-sch, M. D., Kaiser, M. L., Aubier, M., Leblanc, Y., Lecacheux, A., and Pedersen, B. M. (1982) Planetary radio astronomy observations from Voyager 2 near Saturn. Science 215, 582–587.

    ADS  Google Scholar 

  • Weidenschilling, S. J. and J. S Lewis (1973) Atmospheric and cloud structures of the jovian planets. Icarus 20, 465–476.

    ADS  Google Scholar 

  • Weiser, H., Vitz, R. C., and Moos, H. W. (1977) Detection of Lyman-alpha emission from the Saturnian disk from the rings system.

    Google Scholar 

  • Weisstein, E. W. and Serabyn, E. (1996) Submillimeter line search in Jupiter and Saturn. Icarus 123, 23–36.

    ADS  Google Scholar 

  • West, R. A., Hord, C. W., Simmons, I. E., Hart, H., Esposito, L, W., Lane, A. L., Pomphrey, R. B, Morris, R. B., Sato, M., and Coffeen, D. L (1983) Voyager photopolarimeter observations of Saturn and Titan. Adv. Space Res. 3, 45–48.

    ADS  Google Scholar 

  • West, R. A., Tomasko, M. G., Wijesinghe, M. P. Doose, L. R. Reitsema, H. J., and Larson, S. M. (1982) Spatially resolved methane band photometry of Saturn. I. Absolute reflectivity and center-to-limb variations in the 6190-, 7250-, ad 8900-A bands. Icarus 51, 5–64.

    Google Scholar 

  • West, R. A., Sato, M., Hart, H., Lane, A. L., Hord, C. W., Simmons, K. E., Esposito, L. W., Coffeen, D. L., and Omphey, R. B. (1983) Photometry and polarimetry of Saturn at 2640 and 7500 Å. J. Geo-phys. Res. 88, 8679–8697.

    ADS  Google Scholar 

  • Westphal, J. A., Baum, W.A., Ingersoll, A. P., Barnet, C. D., De Jong, E. M., Danielson, G. E., and Caldwell, J. (1992) Hubble Space Telescope observations of the 1990 equatorial disturbance on Saturn: Images, albedos, and limb darkening. Icarus 100, 485–498.

    ADS  Google Scholar 

  • Wildt, R. (1932) The atmospheres of the giant planets. Nature 134, 418.

    ADS  Google Scholar 

  • Winkelstein, P., Caldwell, J., Owen, T. Combes, M., Encrenaz, T., Hunt, G., and Moore, V. (1983) A determination of the composition of the Saturnian stratosphere using IUE. Icarus 54, 309–318.

    ADS  Google Scholar 

  • Yanamandra-Fisher, P. A., Orton, G. S., Fisher, B., and Sánchez-Lavega, A. (2001) Saturn's 5.2-μm cold spots: Unexpected cloud variability. Icarus 150, 189–193.

    ADS  Google Scholar 

  • Yelle R. V. and Miller, S. (2004) Jupiter's Upper Atmosphere, in Jupiter: Planet, Satellites and Magnetosphere (F. Bagenal, W. McK-innon, T. Dowling, Eds.), (Cambridge Univ. Press), pp. 185–218.

    Google Scholar 

  • Zebker, H. A., Marouf, E. A., and Tyler, G. L. (1985) Saturn's rings; particle size distribution for thin layer models. Icarus 64, 531–548.

    ADS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Aharon Eviatar, John Clarke, Leigh Fletcher, John Spencer, Linda Spilker, and Thomas Stallard for insights and comments on this chapter during its preparation. Portions of the work of this review were carried out at the Jet Propulsion Laboratory, California Institute of Technology, and the Applied Physics Laboratory, Johns Hopkins University, under contract to the National Aeronautics and Space Administration, as well as NASA's Ames Research Center. Funding was also provided by the UK Science and Technology Facilities Council, and the European Commission Framework 6 EuroPlaNet project.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Orton, G.S. et al. (2009). Review of Knowledge Prior to the Cassini-Huygens Mission and Concurrent Research. In: Dougherty, M.K., Esposito, L.W., Krimigis, S.M. (eds) Saturn from Cassini-Huygens. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9217-6_2

Download citation

Publish with us

Policies and ethics