Skip to main content

Modelling of Climate Variability in Selected Ocean Basins

  • Chapter
Modelling Ocean Climate Variability

Abstract

Specific ocean variability modelling is discussed, in reference to selected ocean basins, namely the Arctic-North Atlantic system, the North Atlantic, the Pacific, and the Indian Ocean. For the first of the basins problems of the sea-ice and snow thermodynamics, ice thickness vertical multilayer distribution and the dynamics of ice-water phase transition modelling are considered. Besides, the Arctic is strongly connected with the North Atlantic and depends on the surrounding river discharge. The effect of rivers is two-fold: ocean water volume variation and possible release of contaminants. A paragraph devoted to critical analysis of advantages and drawbacks of the North Atlantic high resolution modelling is following. Concerning the North Pacific circulation and contaminated water propagation a short model-time of integration with high resolution 0.12° enabled to keep the results of calculations at the realistic stage. An analysis of very successful modelling of the Kuroshio extension and the Kuroshio itself by high resolution and adequate model-time of integration is also presented in this paragraph. The last section of the Chapter contains the Indian Ocean descriptive hydrometeorology and thermo-hydrodynamics modelling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Annamalai, H., S.-P. Xie, J.-P. McCreary, and R. Murtugudde, 2005. Impact of Indian Ocean sea surface temperature on developing El Niño. J. Climate 18: 302–319.

    Article  Google Scholar 

  • Antipov S. B., N. A. Dianskii, and A. B. Gusev, 2006. The peculiarity the radioactive contaminated waters spreading in the northwestern part of the Pacific Ocean. Izv. Ross. Akad. Nauk. Energetics 6: 52–70.

    Google Scholar 

  • Ashok K., W.-L. Chan, T. Motoi, and T. Yamagata, 2004. Decadal Variability of the Indian Ocean Dipole. 31: L24207, doi:10.1029/2004GL021345.

    Google Scholar 

  • Behera, S. K., J. J. Luo, S. Mason, S. A. Rao, and H. Sakuma, T. Yamagata, 2006a. A CGCM Study on the Interaction between IOD and ENSO. J. Climate 19: 1688–1705.

    Google Scholar 

  • Behera, S. K., J.-J. Luo, S. Masson, P. Delecluse, S. Gualdi, A. Navarra, and T. Yamagata, 2006b. Paramount impact of the Indian Ocean dipole on the East African short rains: A CGCM study. J. Climate 18: 4514–4530.

    Google Scholar 

  • Bleck R., S. Dean, M. O’Keefe and A. A. Sawday, 1995. Comparison of data-parallel and message-passing version of the Miami Isopycnic Coodinate Ocean Model (MICOM). Parallel Comput. 21: 1695–1720.

    Article  Google Scholar 

  • Blumberg, A. F., and G. L. Mellor, 1987. A description of a three-dimensional coastal ocean circulation model. In: Heaps N. (ed.), Three-Dimensional Coastal Ocean Models. Coastal and Estuarine Series, 4, Amer. Geophys. Union, 1–16.

    Google Scholar 

  • Broecker W. S., 1991. The great ocean conveyer. Oceanography 4(2): 79–89.

    Google Scholar 

  • Bryan, K., 1984. Accelerating the convergence to equilibrium of ocean-climate models. J. Phys. Oceanogr. 14: 666–673.

    Article  Google Scholar 

  • Bryden D., S. San, and R. Bleck, 1999. A new approximation of the equation of state for seawater, suitable for numerical ocean models. J. Geoph. Res. 104(C1): 1537–1540.

    Article  Google Scholar 

  • Chassignet E. P. and Z. D. Garaffo, 2001. From stirring to mixing in a Stratified Ocean. In: Muller P. and Henderson D. (eds.), Proceeding of “Aha Hulico” a Hawaiian Winter Workshop. University of Hawaii, 37–41.

    Google Scholar 

  • Chassignet E. P., Z. D. Garrafo, R. D. Smith, and H. E. Hurlburt, 2001. High resolution Gulf Stream Modelling. http://citeseerx.ist.psu.edu/viewdoc/doi=10.1.1.38.1574

  • Chen, D., and L. M. Rothstein, 1994. A hybrid vertical mixing scheme and its application to tropical ocean models. J. Phys. Oceanogr. 24: 2156–2179.

    Article  Google Scholar 

  • Conkright, M. E., R. A. Locarnini, H. E. Garcia, T. D. O’Brien, T. P. Boyer, C. Stephens, and J. I. Antonov, 2002. World Ocean Atlas 2001. Objective analyses, data statistics, and figures: CD-ROM documentation. National Oceanographic Data Center, Silver Spring, MD, 17pp.

    Google Scholar 

  • Cox, M. D., 1987. Isopycnal diffusion in a z-coordinate ocean model. Ocean Model. 74: 1–5.

    Google Scholar 

  • Cutler, A. N. and J. C. Swallow, 1984. Surface Currents of the Indian Ocean. Institute of Oceanographic Sciences Report 187, 8pp. & 36 charts.

    Google Scholar 

  • Demin Yu. L. and R. A. Ibrayev, 1992. Model of ocean dynamics. In: Sarkisyan A. S. and Demin Yu. L. (eds.), Numerical Models and Results of Calibration Calculatiuons of Currents in the Atlantic Ocean. IVM RAN, Moscow, (in Russian), 42–95.

    Google Scholar 

  • Diansky N. A., A. V. Bagno, and V. B. Zalesny, 2002. Sigma model of global ocean circulation and its sensitivity to variations in wind stress. Izv. Acad. Nauk USSR, Fiz. Atmos. Okeana. 38: 537–556.

    Google Scholar 

  • Diansky N. A., V. B. Zalesny, S. N. Moshonkin, and A. S. Rusakov, 2006. High resolution simulation of the Indian Ocean Monsoon Current Variability. Oceanology 46(5): 650–671.

    Article  Google Scholar 

  • Dmitriev, N. E., A. Y. Proshutinsky, T. B. Loyning, and T. Vinjl, 1991. Tidal ice dynamics in the area of Svalbard and Frans Josef Land. Polar Res. 9: 193–205.

    Article  Google Scholar 

  • Flato, G. M. and W. D. Hibler, 1995. Ridging and strength in modeling the thickness distribution of arctic sea ice. Geophys. Res. 100: 18 611–18 626.

    Article  Google Scholar 

  • Fletcher J. O., 1970. Polar ice and the global climate machine. Bull. Atomic Scientists 40–47.

    Google Scholar 

  • Fukumori, I., T. Lee, B. Cheng, and D. Menemenlis, 2004. The origin, pathway, and destination of Niño-3 water estimated by a simulated passive tracer and its adjoint. J. Phys. Oceanogr. 34: 582–604.

    Article  Google Scholar 

  • Giannini, A., R. Saravanan, and P. Chang, 2003. Oceanic forcing of Sahel rainfall on interannual to interdecadal time scales. Science 302: 1027–1030.

    Article  Google Scholar 

  • Gill A. E. and K. Bryan, 1971. Effects of geometry on the circulation of a three-dimensional southern-hemisphere ocean model. Deep-sea Res. 18: 685–721.

    Google Scholar 

  • Golubeva E. N. and G. A. Platov, 2007. On improving the simulation of Atlantic Water circulation in the Arctic Ocean. J. Geophys. Res. 112: C04S05, doi: 10.1029/2006JC003734.

    Article  Google Scholar 

  • Gualdi, S., E. Guilyardi, A. Navarra, S. Masina, and P. Delecluse, 2003. The interannual variability in the tropical Indian Ocean as simulated by a CGCM. Climate Dyn. 20: 567–582.

    Google Scholar 

  • Guo X., H. Hukuda, Y. Miyazawa, and T. Yamagata, 2003. A Triply nested Ocean Model for Simulating the Kuroshio-Roles of Horizontal resolution on JEBAR. J. Phys. Oceanogr. 33: 146–169.

    Article  Google Scholar 

  • Guo X., H. Hukuda, Y. Miyazawa, and T. Yamagata, 2006. The Kuroshio Onshore Intrusion along the shelf break of the East China Sea: The origin of the Tsushima warm current. J. Phys. Oceanogr. 36: 2205–2231.

    Article  Google Scholar 

  • Hakkinen S. and G. L. Mellor, 1992. Modelling the seasonal variability of the coupled ice-ocean system. J. Geophys. Res. 97(20): 285–304.

    Google Scholar 

  • Harrison D. E. and M. Carson, 2007. Is the Word Ocean Warming? Upper-Ocean Temperature Trends: 1950–2000. J. Phys. Oceanogr. 37: 174–187.

    Article  Google Scholar 

  • Hastenrath, S., A. Nicklis, and L. Greischar, 1993. Atmospheric-hydrospheric mechanisms of climate anamalies in the western equatorial Indian Ocean. J. Geophys. Res. 98(C11): 20219–20235.

    Article  Google Scholar 

  • Hellerman, S. and M. J. Rosenstein, 1983. Normal monthly windstress over the world ocean with error estimates. J. Phys. Oceanogr. 13: 1093–1104.

    Article  Google Scholar 

  • Hibler W. D. and K. Bryan, 1987. A diagnostic ice-ocean model. J. Phys. Oceanogr. 17: 987–1015.

    Article  Google Scholar 

  • Hibler W. D., 1979. A dynamic thermodynamic sea ice model. J. Phys. Oceanog. 9: 815–846.

    Article  Google Scholar 

  • Hilmer, M. and P. Lemke, 2000. On the decrease of Arctic sea ice volume. Geophys. Res. Lett. 27: 3751–3754.

    Article  Google Scholar 

  • Hopkins, M. A., 1996. On the mesoscale interaction of lead ice and floes. Geophys. Res. 101: 18 315–18 326.

    Article  Google Scholar 

  • Holloway. G., 1992. Representing topographic stress for large-scale ocean models. J. Phys. Oceanogr. 22: 1033–1046.

    Article  Google Scholar 

  • Holloway. G. and A. Proshutinsky, 2007. Role of tides in Arctic ocean/ice model. J. Geophys. Res. 112: C04S06.doi: 10.1029/2006JC003643.

    Article  Google Scholar 

  • Hosoda S., S.-P. Xie, K. Takeuchi, and M. Nonaka, 2004. Interdecadal temperature variations in the North Pacific central mode water simulated by an OGCM. J. Oceanogr. 60: 865–877.

    Google Scholar 

  • Hurlburt H. E. and P. J. Hogan, 2000. Impact of 1/8° to 1/64° resolution on Gulf Stream model-data comparisons in basin-scale Subtropical Atlantic Ocean Models. Dyn. Atmos. Oceans. 32: 283–330.

    Article  Google Scholar 

  • Iakovlev N. G., 1998. Numerical model of the general circulation of the Arctic ocean. A new version and preliminary calculation results. Russ. J. Numer. Anal. Math. Modell. 13(6): 465–478.

    Google Scholar 

  • IPCC, 2001. Climate Change: The Scientific Basis. Contribution of Working Group 1 to the Third Assessment report of the IPCC, Cambridge University Press, 994pp.

    Google Scholar 

  • Ivanov V. V., 1976. Water balance and water resources of the Arctic region. Proc. AARI. 323: 4–24 (in Russian).

    Google Scholar 

  • Ivanov V. V., 2001. Atlantic waters in the western Arctic. In: Lisitsin A. P., Vinogradov M. E., and Romankevich E. A. (eds.), Experience of System Oceanologic Investigations in the Arctic, 77–91.

    Google Scholar 

  • Kalnay, E., 1996. The NCEP/NCAR 40-year reanalysis project. Bull. Am. Meteolorol. Soc. 77: 437–471.

    Article  Google Scholar 

  • Karcher, M. J. and J. M. Oberhuber, 2002. Pathways and modification of the upper and intermediate waters of the Arctic Ocean. J. Geophys. Res. 107: C63049, doi: 10.1029/2002JC000530.

    Google Scholar 

  • Kono T., M. Foreman, P. Chandler, and M. Kashiwai, 2004. Coastal Oyashio south of Hokkaido, Japan. J. Phys. Oceanogr. 34: 1477–1494.

    Article  Google Scholar 

  • Kuzin, V. I., E. N. Golubeva and G. A. Platov, 2006. Modelling of hydrophysical characteristics of the Arctic – North Atlantic system. In: Fundamental Investigations of Oceans and Seas, book 1, Moscow, Nauka, 166–188.

    Google Scholar 

  • Levitus, S. and T. Boyer, 1994. World Ocean Atlas 1994, Vol. 4: Temperature. NOAA Atlas NESDIS 4, 117pp.

    Google Scholar 

  • Levitus, S., R. Burgett, and T. Boyer, 1994. World Ocean Atlas 1994, Vol. 3: Salinity. NOAA Atlas NESDIS 3, 99pp.

    Google Scholar 

  • Losch M. and P. Heimbach, 2007. Adjoint sensitivity of ocean General Circulation Model to bottom topography. J. Phys. Oceanogr. 37: 377–393.

    Article  Google Scholar 

  • Luo J. J. and T. Yamagata, 2003. A model study on 1988–89 warming event in the Northern Pacific. J. Geophys. Res. 33: 1815–1827.

    Google Scholar 

  • Marchant R., C. Mumbi, S. Behera, and T. Yamagata, 2006. The Indian Ocean dipole – the unsung driver of climatic variability in East Africa. J. Compilation, Blackwell Publishing Ltd, Afr. J. Ecol., 45: 4–6.

    Google Scholar 

  • Marchuk G. I., 1995. Adjoint Equations and Analysis of Complex Systems. Kluwer, Dordrecht-Boston-London, The Netherlands, 468pp.

    Google Scholar 

  • Marchuk G. I., A. S. Rusakov, V. B. Zalesny, and N. A. Diansky, 2005. Splitting numerical technique with application to the high resolution simulation of the Indian Ocean circulation. Pure Appl. Geophys. 162: 1407–1429.

    Article  Google Scholar 

  • Marchuk G. I., J. Schröter and V. B. Zalesny, 2003. Numerical study of the global ocean equilibrium circulation. Russ. J. Numer. Anal. Math. Modelling., V 18, N 4, 307–335.

    Article  Google Scholar 

  • Marchuk G. I., J. Sündermann, and V. B. Zalesny, 2001. Mathematical modelling of marine and ocean currents. Russ. J. Numer. Anal. Math. Modell. 16(4): 279–362.

    Google Scholar 

  • Marchuk G. I. V. B. and Zalesny, 1993. A numerical technique for geophysical data assimilation problems using Pontryagin’s principle and splitting-up method. Russ. J. Numer. Anal. Math. Modell. 8(4): 311–326.

    Google Scholar 

  • Martin, T., amd R. Gerdes, 2007. Sea ice drift variability in Arctic ocean model intercomparison project models and observations. J. Geophys. Res. 112: C04S10, doi: 10.1029/2006JC003617.

    Article  Google Scholar 

  • Maslowski W., D. Marble, W. Walczowski, U. Schauer, J. L. Clement, and A. J. Semtner, 2004. On the climatological mass, heat, and salt transports through the Barents Sea and Fram Strait from a pan-Arctic coupled ice-ocean model simulation. J. Geophys. Res. 109: C03032, doi: 10.1029/2001JC001039.

    Article  Google Scholar 

  • Meyers, G., P. McIntosh, L. Pigot, and M. Pook, 2007. The years of El Niño, la Niña and interactions with the tropical Indian Ocean. J. Climate 20: 2872–2880.

    Article  Google Scholar 

  • Mesinger F. and A. Arakawa, 1976. Numerical Methods Used in Atmospheric Models. Vol. I JOC, GARP Publication Series, 17. Geneva, World Meteorological Organization, C. P., 5, CH-1211, Geneva, 64pp.

    Google Scholar 

  • Mitsudera H., B. Taguchi, Y. Yoshikawa, H. Nakamura, T. Waseda, and T. Qu, 2004. Numerical study on the Oyashio water pathways in the Kuroshio-Oyashio confluence. J. Phys. Oceanogr. 34: 1174–1195.

    Article  Google Scholar 

  • Miyazawa, Y., S. Yamane, X. Guo, and T. Yamagata, 2005. Ensemble forecast of the Kuroshio meandering. J. Geophys. Res. 110: C10026.

    Article  Google Scholar 

  • Murray R. J., 1996. Explicit generation of orthgonal grids for ocean models. J. Comp. Phys. 126: 251–273.

    Article  Google Scholar 

  • Murray, R. J., and C. J. C. Reason, 2001a. A curvilinear version of the Bryan-Cox-Semtner Ocean Model and its representation of the Arctic circulation. J. Comput. Phys. 171: 1–46.

    Google Scholar 

  • Murray, R. J., and C. J. C. Reason, 2001b. A curvilinear ocean model using a grid regionally compressed in the South Indian Ocean. J. Phys.Oceanogr. 31: 2809–2823.

    Google Scholar 

  • Niiler, P. P., N. A. Maximenko, G. G. Panteleev, T. Yamagata, and D. B. Olson, 2003. Near-surface dynamical structure of the Kuroshio Extension. J. Geophys. Res. 108(C6): 24-1-24-19.

    Article  Google Scholar 

  • Oshima, K. L., et al., 2004. Sverdrup balance and the cyclonic gyre in the sea of Okhotsk. J. Phys. Oceanogr. 24: 513–525.

    Article  Google Scholar 

  • Pacanowski, R., 1996. MOM2 Documentation, User’s Guide and Reference Manual. GFDL Ocean Tech. Rep. 3.1, NOAA/Geophysical Fluid Dynamics Laboratory, 260pp.

    Google Scholar 

  • Pacanowski, R. C., and S. G. H. Philander, 1981. Parameterization of vertical mixing in numerical models of tropical oceans. J. Phys. Oceanogr. 11: 1443–1451.

    Article  Google Scholar 

  • Paiva A. M., J. T. Hargrove, E. P. Chassignet, and R. Bleck, 1999. Turbulent behavior of a fine mesh (1/12 degree) numerical simulation of the North Atlantic. J. Marine. Sys. 21: 307–320.

    Article  Google Scholar 

  • Panteleev G., A. Proshutinsky, M. Kulakov, D. A. Nechaev, and W. Maslowski, 2007. Investigation of the summer Kara Sea circulation employing a variational data assimilation technigue. J. Geophys. Res. 112: C04S15, doi: 10.1029/2006JC003728.

    Article  Google Scholar 

  • Polyakov I., 2001. An eddy parameterization based on maximum entropy production with application to modelling of the Arctic Ocean circulation. J. Phys. Oceanogr. 31: 2255–2270.

    Article  Google Scholar 

  • Polyakov I. V. and L. A. Timokhov, 1995. Thermohaline circulation of the Arctic Ocean. Dokl. Akad. Nauk, Oceanol. 342(2): 254–258.

    Google Scholar 

  • Proshutinsky A. Y. and M. A. Johnson, 1997. Two circulation regimes of the wind-driven Arctic Ocean. J. Geophys. Res. 102(C6): 12493–12514.

    Article  Google Scholar 

  • Price, J. F., R. A. Weller, and R. Y. Thompson, 1986. Diurnal cycling: Observation and models of the upper ocean response to diurnal heating, cooling and wind mixing. J. Geophys. Res. 91: 8411–8427.

    Article  Google Scholar 

  • Qiu B. and S. Chen, 2005. Variability of the Kuroshio Extension Jet, recirculation gyre, and mesoscale eddies on decadal time scales. J. Phys. Oceanogr. 35: 2090–2103.

    Article  Google Scholar 

  • Randall D., J. Curry, D. Battisti, G. Flato, R. Grumbine, S. Hakkinen, D. Martinson, R. Preller, J. Walsh, and J. Weatherly, 1998. Status of and outlook for large-scale modelling of atmosphere-ice-ocean interactions in the Arctic. Bull. Amer. Met. Soc. 79(2): 197–219.

    Article  Google Scholar 

  • Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003. Global analyses of sea surface temperature, sea, ice, and night marine air temperature since the late nineteenth centure. J. Geophys. Res. 108: 4407, doi: 10.1029/2002JD002670.

    Article  Google Scholar 

  • Riedling S. H. and R. H. Preller, 1991. The development of a coupled ice-ocean model for forecasting ice conditions in the Arctic. J. Geophys. Res. 96: 16955–16977.

    Article  Google Scholar 

  • Ryabchenko V. A., G. V. Alexeev, I. A. Neelov, and A. Yu. Dvornikov, 2003. Reproduction of climatic changes in the Arctic basin by the ocean and ice circulation model without climatic salinity on the oceanic surface. Proc. AARI. 446, Investigation of the Climate Changes and the Ocean-Atmosphere Interaction Processes in Polar Regions, 60–82 (in Russian).

    Google Scholar 

  • Saji, N. H., B. N. Goswami, P. N. Vinayachandran, and T. Yamagata, 1999. A Dipole mode in the tropical Indian Ocean. Nature 401: 360–363.

    Google Scholar 

  • Saji, N., H. and T. Yamagata, 2003a. Possible impacts of Indian Ocean Dipole mode events on global climate. Climate Res. 25: 151–169.

    Google Scholar 

  • Saji, N., H. and T. Yamagata, 2003b. Structure of SST and surface wind variability during Indian Ocean dipole mode years: COADS observations. J. Climate 16: 2735–2751.

    Google Scholar 

  • Saji N., H., S.-P. Xie, and T. Yamagata, 2006. Tropical Indian Ocean Variability in the IPCC twentieth-century climate simulations. J. Climate 19: 4397–4417.

    Article  Google Scholar 

  • Sakamoto T. and I. Umetsu, 2006. Seasonal energy cycle of wind-driven ocean circulation with particular emphasis on the role of botom topography, Deep-Sea Research 53: 154–168.

    Article  Google Scholar 

  • Sarkisyan A. S., 1974. Mechanism of the general oceanic circulation. Izv. Aca. Nauk SSSR, Ser. Fiz. Atmos. Okeana 10(12): 1293–1308.

    Google Scholar 

  • Sarkisyan A. S., 1995. Analysis of model calibration results: Atlantic Ocean Climatic Circulation. J. Marine Sys. 6: 47–66.

    Article  Google Scholar 

  • Sarkisyan, A. S., 2006. Forty years of JEBAR–-the finding of the joint effect of baroclinicity and bottom relief for the modeling of ocean climatic characteristics. Izvestiya, Atmos. Oceanic Phys. 42(5): 534–554.

    Article  Google Scholar 

  • Sarkisyan, A. S. and V. B. Zalesny, 2000. Splitting up method and adjoined equation method in the ocean dynamics problem. Russ. J. Numer. Anal. Math. Modell. 15(3–4): 333–348.

    Article  Google Scholar 

  • Schott, G., 1943. Weltkarte zur übersicht der Meeresströmungen. Ann. Hydrogr. und Marit. Meteorol. 71.

    Google Scholar 

  • Shankar D., P. N. Vinayachandran, A. S. Unnikrishnan, and S. R. Shetye, 2002. The monsoon currents in the north Indian Ocean. Progr. Oceanogr. 52(1): 63–119.

    Article  Google Scholar 

  • Shetye, S. R., A. D. Gouveia, S. S. C. Shenoi, D. Sundar, G. S. Michael, and G. Nampoothiri, 1993. The western boundary current of the seasonal subtropical gyre in the Bay of Bengal. J. Geophys. Res. 98: 945–954.

    Article  Google Scholar 

  • Smith R. D., M. E. Maltrud, F. O. Bryan, and M. W. Hecht, 2000. Numerical simulation of the North Atlantic Ocean at 1/10°. J. Phys. Oceanogr. 30: 1532–1561.

    Article  Google Scholar 

  • Steele M., R. Morley, and W. Ermold, 2001. RHC: A global ocean hydrography with high quality Arctic Ocean. J. Climate 14: 2079–2087.

    Article  Google Scholar 

  • Suzuki, R., S. K. Behera, S. Iizuka, and T. Yamagata, 2004. Indian Ocean subtropical dipole simulated using a coupled general circulation model. J. Geophys. Res. 109: C09001, doi: 10.1029/1023JC001974.

    Article  Google Scholar 

  • Timmermann, A. J., J. Oberhuber, A. Bacher, M. Esch, M. Latif, and E. Roeckner, 1999. Increased El Niño frequency in a climate model forced by future greenhouse warming. Nature 398: 694–697.

    Article  Google Scholar 

  • Tomczak M. and J. S. Godfrey, 2003. Regional Oceanography. Butler and Tanner Ltd., Great Britain, Parts 11–13, 175–228.

    Google Scholar 

  • Trenberth K. E., J. C. Olson, and W. G. Large, 1989. A Global Ocean Wind Stress Climatology Based on ECMWF Analysis. NCAR, Boulder, Colorado. NCAR/TN-338+STR, 98pp.

    Google Scholar 

  • Treshnikov A. F. and G. I. Baranov, 1972. Circulation of the Arctic Basin Waters. Gidrometeoizdat, Leningrad, (in Russian), 126pp.

    Google Scholar 

  • Tsujino H. and T. Yasuda, 2004. Formation and circulation of mode waters of the North Pacific in a high-resolution GCM. J. Phys. Oceanogr 34(2): 399–415.

    Article  Google Scholar 

  • Ukita, J. and R. E. Moriz, 2000. Geometry and the deformation of pack ice: II. Simulation with a random isotropic model and implementation in sea-ice rheology. Ann. Glaciolog. 31: 323–326.

    Article  Google Scholar 

  • Valsäla, V. K. and M. Ikeda, 2007. Pathways and effects of the Indonesian Throughflow water in the Indian Ocean using particle trajectory and tracers in an OGCM. J. Climate 20: 2994–3017.

    Article  Google Scholar 

  • Vinayachandran P. N., T. Kagimoto Y. Masumoto, P. Chauhan, S. R. Nayak, and T. Yamagata, 2005. Bifurcation of the East India Coastal Current east of Sri Lanka. Geophys. Res. Lett. 32: L15606, doi: 10.1029/2005GL022864.

    Article  Google Scholar 

  • Völösmarty C. J., B. Fekete, and B. A. Tucker, 1998. River Discharge Database. Version 1.1 (RivDIS v1.0 supplement), University of New Hampshire, Durham NH, USA.

    Google Scholar 

  • Wajsowicz, R., C., 2002. Air-sea interaction over the Indian Ocean due to variations in the Indonesian throughflow. Climate Dyn. 18: 437–453.

    Article  Google Scholar 

  • Woodgate R. A., K. Aagaard, R. D. Muench, J. Gunn, G. Björk, B. Rudels, A. T. Roach, and U. Schauer, 2001. The Arctic Ocean boundary current along the Eurasian slope and the adjacent Lomonosov Ridge: Water mass properties, transports and transformations from the moored instruments. Deep Sea Res. 48: 1757–1792.

    Article  Google Scholar 

  • Wunsch C., 1996. The Ocean Circulation Inverse Problem. Cambridge University Press, 442pp.

    Google Scholar 

  • Wyrtki, K., 1973. An equatorial jet in the Indian Ocean, Science 181: 262–264.

    Article  Google Scholar 

  • Yamagata, T., Y. Masumoto, J.-J. Luo, S. Masson, M. Jury, and S. A. Rao, 2004a. Coupled ocean-atmosphere variability in the tropical Indian Ocean. Earth Climate: The Ocean-Atmosphere Interaction. Amer. Geophys. Union 147: 189–212.

    Google Scholar 

  • Yamagata, T., S. K. Behera, J.-J. Luo, S. Masson, M. Jury, and S. A. Rao, 2004b. Coupled ocean-atmosphere variability in the tropical Indian Ocean. Earth Climate: The Ocean-Atmosphere Interaction. Amer. Geophys. Union 147: 189–212.

    Google Scholar 

  • Yamagata, T., S. K. Behera, S. A. Rao, Z. Guan, K. Ashok, and H. N. Saji, 2003. Comments on ‘Dipoles, temperature gradient, and tropical climate anomalies’. Bull. Amer. Meteorol. Soc. 84: 1418–1422.

    Article  Google Scholar 

  • Zalesny V. B. and V. I. Kuzin, 1995. Numerical aspects of modeling the general oceanic circulation. Proc. RAS. Atmosp. Ocean Phys. 31(3): 404–418 (in Russian).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Artem S. Sarkisyan .

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Sarkisyan, A.S., Sündermann, J.E. (2009). Modelling of Climate Variability in Selected Ocean Basins. In: Modelling Ocean Climate Variability. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9208-4_5

Download citation

Publish with us

Policies and ethics