Skip to main content

Synthesis of Models and Observed Data

  • Chapter
Modelling Ocean Climate Variability

Abstract

We consider the behavior of prognostic models in the initial phase starting with observed data, i.e. time and space averaged T and S fields. Analysis of the initial stage energetics shows that a dramatic fall of kinetic energy happens during the first six hours of integration. Here and in other parts of the book we justify our opinion on the necessity to monitor the calculation energetics from the very initial stage. Further, in this chapter a method used by WOCE and other programs is presented of T, S sections data processing generating the three velocity components and enriching the observed T, S data. Then based on Kalman filtering, a model of a four-dimensional analysis of hydrophysical ocean fields is presented, its accuracy tested and applied to data from several regions of the North Atlantic.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Baranov E. I., A. V. Kolinko, and V. S. Regentovskii, 1987. Climatic and anomalous oceanographic conditions of the Newfoundland energy-active zone and their relation to the atmospheric circulation. Itogi Nauki i Tekhniki, Ser. Atmosfera, Okean, Kosmos. Programma “Razrezy”, Moscow: VINITI 8: 82–91 (in Russian).

    Google Scholar 

  • Bryan K., 1969. A numerical method for the study of the circulation of the world ocean. J. Comp. Phys. 4: 347–376.

    Article  Google Scholar 

  • Böning C. W., R. Döscher, and R. G. Budich, 1991. Seasonal transport variation in the Western Subtropical North Atlantic: Experiments with an Eddy resolving model. J. Phys. Oceanogr., 21: 1271–1289.

    Article  Google Scholar 

  • Bulushev M. G. and A. S. Sarkisyan, 1996. Energetics of the equatorial current adjustments initial stage. Izv. Acad. Sci. Atmos. Ocean Phys. 32(5): 600–612.

    Google Scholar 

  • Conkright M. E., S. Levitus, and T. P. Boyer, 1994. World Ocean Atlas. Vol. 3: Salinity, Vol. 4: Temperature. Washington, DC: U.S. Dept. Commerce.

    Google Scholar 

  • Demin Yu. L. and A. S. Sarkisyan, 1977. Calculation of equatorial currents. J. Mar. Res. 35: 339–356.

    Google Scholar 

  • Demyshev S. G. and G. K. Korotaev, 1992. Numerical Energy-Balanced Model of Baroclinic Currents in an Ocean with a Rough Bottom on a Grid C (Numerical Models and Results of Calibration Calculations of Currents in the Atlantic). Moscow, 163–231.

    Google Scholar 

  • Fillenbaum E. R., T. N. Lee, W. E. Johns, and R. J. Zantopp, 1997. Meridional heat transport variability at 26.5 °N in the North Atlantic. J. Phys. Oceanogr. 27: 153–174.

    Article  Google Scholar 

  • Fukumori I., J. Benveniste, C. Wunsch, and D. B. Haidvogel, 1993. Assimilation of sea-surface topography into an ocean circulation model using a steady-state smoother. J. Phys. Oceanogr. 23: 1831–1855.

    Article  Google Scholar 

  • Gandin L. S. and R. L. Kagan, 1976. Statisticheskie metody interpolyatsii meteorologicheskikh dannyk (Statistical Methods of Interpolating Meteorological Fields). Leningrad: Gidrometeoizdat (in Russian).

    Google Scholar 

  • Hall M. and H. Bryden, 1982. Direct estimates and mechanism of ocean heat transport. Deep-Sea Res. 29: 339–359.

    Article  Google Scholar 

  • Holland W. R. and P. Malanotte-Rizzoli, 1989. Assimilation of altimeter data into an ocean circulation model: Space versus time resolution studies. J. Phys. Oceanogr. 19: 1507–1534.

    Google Scholar 

  • Ibraev R. A., 1993. Reconstruction of the climatic characteristics of the Gulf stream. Izv. Akad. Nauk, Fiz. Atmos. Okeana 29(6): 803–814.

    Google Scholar 

  • Ivanov Yu. A., K. V. Lebedev, and A. S. Sarkisyan, 1997. Ocean modeling by general adjustment. Izv. Ross. Akad. Nauk, Atmos. Ocean Phys. 33(6): 812–818 (in Russian).

    Google Scholar 

  • Kalnay E., M. Kanamitsu, R. Kister, W. Collins., D. Deaven, L. Gandin, M. Iredel, S. Saha, G. White, J. Wool, Y. Zhu, M. Chellian, W. Ebisuzaki, W. Higgins, J. Janoviak, K. C. Mo, C. Ropelewski, A. Leetmaa, R. Reynolds, and R. Jenne, 1996. The NCEP/NCAR 40-year reanalysis project. Bull. Am. Meteorol. Soc 77: 437–471.

    Article  Google Scholar 

  • Knysh V. V., V. A. Moiseenko, A. S. Sarkisyan, and I. E. Timchenko, 1980. Combined use of measurements on hydrophysical ocean fields in a four-dimensional analysis. Dokl. Akad. Nauk SSSR 252(4): 832–836.

    Google Scholar 

  • Knysh V. V., 1982. Multi-element four-dimensional analysis of the main hydrophysical fields of the ocean. Izv. Akad. Nauk SSSR, Fiz. Atmos. Okeana 18(4): 391–398.

    Google Scholar 

  • Knysh V. V., V. A. Moiseenko, and V. V. Chernov, 1988. Some results of a four-dimensional analysis of hydrophysical fields of the Tropical Atlantic. Izv. Akad. Nauk SSSR, Fiz. Atmos. Okeana 24(7): 744–752.

    Google Scholar 

  • Knysh V. V., V. A. Moiseenko, and V. V. Chernov, 1990. Monitoring hydrophysical fields of the newfoundland energy-active zone on the basis of a four-dimensional analysis of 1982–1986 observational data. Itogi Nauki i Tekhniki, Ser. Atmosfera, Okean, Kosmos–Prograirana “Razrezy”. Moscow: VINITI, 13: 154–167 (in Russian).

    Google Scholar 

  • Knysh V. V., O. A. Saenko, and A. S. Sarkisyan, 1996. Method of assimilation of altimeter data and its test in the tropical North Atlantic. Russ. J. Numer. Anal. Math. Model. 11(5): 333–409.

    Google Scholar 

  • Knysh V. V., S. G. Demyshev, G. K. Korotayev, and A. S. Sarkisyan, 2001. Four-dimensional climate of seasonal Black Sea circulation. Russ. J. Numer. Anal. Math. Model. 16(5): 409–426.

    Google Scholar 

  • Knysh V. V. and A. S. Sarkisyan, 2003. Four dimensional analysis of Hydrophysical ocean and sea fields. Numerical experiments and reconstructions. Izv. Acad. Sci. Atmos. Ocean Phys. 39(6): 816–833.

    Google Scholar 

  • Korotaev G. K., O. A. Saenko, and Ch. D. Koblinski, S. G. Demyshev, and V. V. Knysh, 1998. Accuracy estimation, methods, and some results of TOPEX/POSEIDON data assimilation in a model of the Black Sea general circulation. lssled. Zemli Kosmosa 3: 3–17.

    Google Scholar 

  • Lee T. N., W. Johns, K. Schott, and R. Zantopp, 1990. Western boundary current structure and variability East of Abaco, Bahamas at 26.5 °N. J. Phys. Oceanogr. 20: 446–466.

    Article  Google Scholar 

  • Malanotte-Rizzoli P., R. E. Young, and D. B. Haidvogel, 1989. Initialization and data assimilation experiments with primitive equation model. Dyn. Atmos. Oceans 13: 349–378.

    Article  Google Scholar 

  • Marchuk G. I., 1969. Numerical solution of the poincare problem for the ocean circulation. Dokl. Akad. Nauk SSSR 165(5): 1041–1044.

    Google Scholar 

  • Marchuk G. I. and A. S. Sarkisyan, 1988. Mathematical Modeling of Ocean Circulation. Springer-Verlag, 262pp.

    Google Scholar 

  • Marsh R., M. J. Roberts, R. A. Wood, and A. L. New., 1996. An intercomparison of a Bryan-Cox-type ocean model and an isopycnic ocean model. Part II: The subtropical gyre and meridional heat transport. J. Phys. Oceanogr. 26: 1528–1550.

    Article  Google Scholar 

  • Matsuno T., 1966. Numerical integrations of the primitive equations by a simulated backward difference method. J. Meteorol. Soc. Jpn. Ser. 2, 44: 76–84.

    Google Scholar 

  • Mellor G. L. and T. Ezer, 1991. A gulf stream model and an altimetry assimilation scheme. J. Geophys. Res. 96: 8779–8795.

    Article  Google Scholar 

  • Molinari R. L., E. Lohns, and I. F. Festa, 1990. The annual cycle of meridional heat flux in the Atlantic Ocean at 26.5 °N. J. Geophys. Res. 20: 476–482.

    Google Scholar 

  • Pinardi N., A. Rosati and R. C. Pacanowski, 1995. The sea surface pressure formulation of rigid lid models. Implications for altimeter data assimilation studies. J. Mar. Syst. 6: 109–119.

    Article  Google Scholar 

  • Roemmich D. and C. Wunsch, 1985. Two transatlantic sections: Meridional circulation and heat flux in the sub tropical North Atlantic. Deep-Sea Res. 32: 619–664.

    Article  Google Scholar 

  • Rosenfeld L. K., R. L. Molinari, and K. D. Leaman, 1989. Observed and modeled annual cycle of transport in the straits of Florida and East of Abaco Island, the Bahama 26.5 °N. J. Geophys. Res. C 94(4): 4867–4878.

    Article  Google Scholar 

  • Sakawa Y., 1972. Optimal filtering in linear distributed parameter system. Int. J. Contr. 16(1): 115–127.

    Article  Google Scholar 

  • Sarkisyan A. S. and Ju. L. Demin, 1983. A semidiagnostic method of sea currents calculation. Large-Scale Oceanographic Experiments in the WCRP 2(1): 210–214.

    Google Scholar 

  • Sarkisyan A. S., E. V. Semenov, and V. V. Efimov, 1989. Numerical model of a four-dimensional analysis of on thermohaline measurements. Izv. Akad. Nauk SSSR, Fiz. Atmos. Okeana 25(1): 53–63.

    Google Scholar 

  • Sarkisyan A. S. and A. N. Sidorova, 1998. Numerical modeling of physical characteristics in the neighborhood of an isolated hydrologic section in the Barents Sea. Russ. J. Numer. Anal. Math. Modell. 13(6): 537–549.

    Article  Google Scholar 

  • Sarkisyan A. S. and S. Levitus, 1999. Ocean climate characteristics as obtained by amalgamating WOCE-Levitus hydrographic data. EOS Trans. Am. Geophys. Union 80(49): OS210-03.

    Google Scholar 

  • Sarkisyan G. A. and V. N. Stepanov, 1999. Method for calculating physical characteristics of the ocean from an individual hydrologic section. Izv. Akad. Nauk, Fiz. Atmos. Okeana, 35(6): 550–555; Izv. Atmos. Ocean. Phys. (Engl. Transl.), 35(6): 501–505.

    Google Scholar 

  • Sarmiento J. L. and K. Bryan, 1982. An ocean transport model for the North Atlantic. J. Geophys. Res. 87: 394–408.

    Article  Google Scholar 

  • Schmitz W. J. and M. S. McCartney, 1993. On the North Atlantic circulation. Rev. Geophys. 31: 29–49.

    Article  Google Scholar 

  • Schott F. A., J. Fischer, J. Reppin, and U. Send, 1993. On mean and seasonal currents and transports at the western boundary of the Equatorial Atlantic. J. Geophys. Res. 98: 14353–14368.

    Article  Google Scholar 

  • Semyonov E. V., 1981. Calculation of vertical motions in numerical models of water circulation. Okeanologiya (Moscow) 21(3): 433–434.

    Google Scholar 

  • Staneva J. V. and E. V. Stanev, 1998. Oceanic response to atmospheric forcing derived from different climatic data sets: Intercomparison study for the Black Sea. Oceanol. Acta 21(3): 383–417.

    Article  Google Scholar 

  • Timchenko I. E., 1981. Dynamic-Stochastic Models of the State of the Ocean. Kiev: Naukova Dumka (in Russian).

    Google Scholar 

  • Treguier A. M., T. Reynaud, T. Pichevin, B. Barnier, J. M. Molines, A. de Miranda, C. Messanger, J. O. Beismann, G. Madec, N. Grima, M. Imbard, C. Le Provost, 1999. The CLIPPER project: High resolution modeling of the Atlantic. Int. WOCE Newsl. 36: 3–5.

    Google Scholar 

  • Verron J., 1990. Altimeter data assimilation into an ocean circulation model: Sensitivity to orbital parameters. J. Geophys. Res. 95: 11443–11459.

    Article  Google Scholar 

  • Weatherly G. L., 1972. A study of the bottom boundary layer of the Florida current. J. Phys. Oceanogr. 2: 54–72.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Artem S. Sarkisyan .

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Sarkisyan, A.S., Sündermann, J.E. (2009). Synthesis of Models and Observed Data. In: Modelling Ocean Climate Variability. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9208-4_4

Download citation

Publish with us

Policies and ethics