Skip to main content

Mathematical Background and Methods of Ocean Modelling

  • Chapter
Modelling Ocean Climate Variability

Abstract

The oceans and marginal seas play an important role in the global climate system. Their surface and deep currents redistribute heat, salt, and chemical compounds all over the world. Ocean and shelf sea thermohaline circulations have a complicated vertical and horizontal structure which is determined by atmospheric forcing, sea ice, distribution of continents, and bottom relief.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arakawa A., 1966. Computational design for long term numerical integration of the equations of field motion: Two-dimensional incompressible flow, Part I. J. Comp. Phys. Res. 1: 119–163.

    Article  Google Scholar 

  • Bryan K., 1969. A numerical method for the study of the circulation of the world ocean. J. Comp. Phys. 4: 347–376.

    Article  Google Scholar 

  • Bubnov V. F. and F. V. Kazhikhov, 1971. Existence of a unique solution of the fundamental boundary value problem in the linear theory of oceanic circulation. Sov. Phys. Dokl. 16: 429–431.

    Google Scholar 

  • Burchard H., 2002. GETM – A General Estuarine Transport Model. Scientific Documentation. Technical Report EUR 20253 EM, European Commission, 157pp.

    Google Scholar 

  • Delecluse P. and V. B. Zalesny, 1996. Problems of numerical modelling of equatorial dynamics. Oceanology 36(1): 26–42.

    Google Scholar 

  • Friedrich H. J., 1970. Preliminary results from a numerical multilayer model for the circulation in the North Atlantic. D. Hydr. Zeit. 23(4): 145–164.

    Article  Google Scholar 

  • Grotkop G., 1982. Finite element analysis of long-period water waves. Comp. Math. Appl. Med. Eng. 2: 89–112.

    Google Scholar 

  • Hansen W., 1956. Strömungen in Randmeeren nebst Anwendungen. Tellus 3: 283–300.

    Google Scholar 

  • Hansen W., 1959. Wind und Massenverteilung als Ursache der Meeresströmungen. The Rossby Memorial Volume, Oxford University Press, 102–106.

    Google Scholar 

  • Ivanov Yu. A., K. V. Lebedev, and A. S. Sarkisyan, 1997. Generalized hydrodynamic adjustment method (GHDAM). Izv Ross. Akad Nauk, Fit. Atmos. Okeana 33(6): 812–818 (in Russian).

    Google Scholar 

  • Kazantsev Ch., S. N. Moshonkin, and V. B. Zalesny, 1998. Mathematical modelling of the global ocean dynamics: solvability, numerical algorithm, calculations. In: Proc. of 4-th Conf. ‘Variability and Predictability of Atmospheric and Oceanic Circulations’. Moscow, Russia, 81–95.

    Google Scholar 

  • Kordzadze A. A., 1982. Mathematical Questions for Solving the Problem of Ocean Dynamics. Novosibirsk, Sib. Branch, USSR Academy of Science (in Russian), 148 pp.

    Google Scholar 

  • Kreiss H.-O., 1959. Über die Lösung des Cauchy Problems für lineare partielle Differentialgleichungen mit Hilfe von Differenzen gleichungen. Acta Math. 101: 179–199.

    Article  Google Scholar 

  • Kuzin V. I., 1985. The Finite Element Method in Modelling of Oceanic Processes. Novosibirsk, Sib. Branch, USSR Academy of Science (in Russian), 189 pp.

    Google Scholar 

  • Lebedev V. I., 1997. Explicit difference schemes with variable time steps for solving stiff systems of equations. In: Numerical Analysis and its Applications. Lecture Notes in Computer Science 1196. Springer, 274–283.

    Google Scholar 

  • Lilly D. K., 1965. On the computational stability of numerical solutions of time-dependent nonlinear geophysical fluid dynamics problems. Monthly Weather Rev. 93: 11–26.

    Article  Google Scholar 

  • Lions J. L., R. Temam, and S. Wang, 1992. On the equations of the large scale ocean. Nonlinearitv 5: 1007–1053.

    Article  Google Scholar 

  • Manabe S. and K. Bryan, 1969. Climate and the ocean circulation. Monthly Weather Rev. 97(11): 739–774.

    Article  Google Scholar 

  • Marchuk G. I., 1969. On the numerical solution of the Poincaré problem for oceanic circulations Dokl. Akad. Nauk SSSR 185(5): 1041–1044 (in Russian).

    Google Scholar 

  • Marchuk G. I., 1980. Methods of Computational Mathematics. Nauka, Moscow, 536 pp.

    Google Scholar 

  • Marchuk G. I., 1988. Splitting-Up Methods. Nauka, Moscow, 263 pp.

    Google Scholar 

  • Marchuk G. I., 1995. Adjoint Equations and Analysis of Complex Systems. Kluwer Academic Publishers, Dordrecht, 466 pp.

    Google Scholar 

  • Marchuk G. I. and G. V. Demidov, 1966. Theorem for existence of a solution for the short-range weather prediction problem. Dokl. Akad. Nauk SSSR 7(5): 1006–1008 (in Russian).

    Google Scholar 

  • Marchuk G. I., J. Sündermann, and V. B. Zalesny, 2001a. Mathematical modelling of marine and ocean currents. Russ. J. Numer. Anal. Math. Modelling 16(4): 331–362.

    Google Scholar 

  • Marchuk G. I., V. P. Dymnikov, and V. B. Zalesny, 1987. Mathematical Models in Geophysical Fluid Dynamics and Numerical Methods of Their Realization. Leningrad, Gidrometeoizdat (in Russian), 296 pp.

    Google Scholar 

  • Marchuk G. I., V. P. Shutyaev, and V. B. Zalesny, 2001b. Approaches to the solution of data assimilation problems. In: Menaldi J. L. et al. (eds.), Optimal Control and Partial Differential Equations. IOS Press, Amsterdam, 489–497.

    Google Scholar 

  • Mesinger F. and A. Arakawa, 1982. Numerical Methods Used in Atmospheric Models. GARP Publ. Ser. 17, I, WMO, 64pp.

    Google Scholar 

  • Munk W. H., 1950. On the wind-driven ocean circulation. J. Meteorol. 7: 79–93.

    Google Scholar 

  • Ovsyannikov L. V., 1966. Theorem on a Unique Solution for Linearized System of Ocean Dynamics Equations. Preprint of the Novosibirsk State University (in Russian), 12 pp.

    Google Scholar 

  • Pontryagin L. S., V. G. Boltyanskii, R. V. Gamkrelidze, and E. F. Mishenko, 1962. The Mathematical Theory of Optimal Processes. John Wiley, New York, 360 pp.

    Google Scholar 

  • Rolinski S., J. Segschneider, and J. Sündermann, 2001. Long-term propagation of tailings from deep-sea mining under variable conditions by means of numerical simulations. Deep Sea Res. II: 3465–3485.

    Google Scholar 

  • Sarkisyan A. S., 1954. Calculation of steady-state wind currents in the ocean. Izv. Akad. Nauk SSSR, Ser. Geofiz. 6: 554–561 (in Russian).

    Google Scholar 

  • Sarkisyan A. S., 1961. On the role of the density advection by wind in dynamics of baroclinic ocean. Izv. Ross. Acad. Nauk SSSR 9: 1396–1407.

    Google Scholar 

  • Sarkisyan A. S., 1962. On dynamics of wind-driven currents in a baroclinic ocean. Oceanologia. II(3): 393–409.

    Google Scholar 

  • Sarkisyan A. S., 1969a, Theory and computation of ocean currents, U.S. Dept. of Commerce and the NSF, Washington, DC, 90 pp.

    Google Scholar 

  • Sarkisyan A. S., 1969b. Deficiencies of barotropic models of ocean circulation. Izv. Acad. Nauk SSSR, Ser. Fiz. Atmos. Okeana 5(8): 818–835 (AGU English translation).

    Google Scholar 

  • Sarkisyan A. S. and Ju. L. Demin, 1983. A semidiagnostic method of sea currents calculation. Large-Scale Oceanographic Experiments in the WCRP 2(1): 210–214.

    Google Scholar 

  • Sarkisyan A. S. and V. B. Zalesny, 2000. Splitting-up method and adjoint equation method in the ocean dynamics problem. Russ. J. Numer. Anal. Math. Modelling 15(3–4): 333–347.

    Google Scholar 

  • Sarkisyan A. S. and V. F. Ivanov, 1971. Joint effect of baroclinity and bottom topography as an important factor in sea dynamics. Izv. Acad. Nauk SSSR, Ser. Fiz. Atmos. Okeana 2(6): 818–835 (AGU English translation).

    Google Scholar 

  • Schtockman V. B., 1946. Equations of full flow fields induced by wind in nonhomogeneous sea. Dokl Akad. Nauk SSSR 54(5): 403–406 (in Russian).

    Google Scholar 

  • Segschneider J. and J. Sündermann, 1997. Response of a global ocean circulation model to real time forcing and implications to Earth’s rotation. J. Phys. Ocean. 27: 2370–2380.

    Article  Google Scholar 

  • Segschneider J. and J. Sündermann, 1998. Simulating large scale transport of suspended matter. J. Mar. Syst. 14: 81–97.

    Article  Google Scholar 

  • Stockdale T. N., A. J. Busalacchi, D. E. Harrison, and R. Seager, 1998. Ocean modelling for ENSO. J. Geophys. Res. 103(C7): 14325–14355.

    Article  Google Scholar 

  • Stommel H., 1948. The westward intensification of wind-driven ocean currents. Trans. Amer. Geophys. Union 29: 202–206.

    Google Scholar 

  • Sukhonosov V. I., 1983. On globally well-posed boundary value problems for models of dynamics of the atmosphere and the ocean. Sov. Phys. Dokl. 27(2): 387–391.

    Google Scholar 

  • Sündermann J., 1994. Circulation and Contaminant Fluxes in the North Sea. Springer, 654pp.

    Google Scholar 

  • Sverdrup H. U., 1947. Wind-driven currents in a baroclinic ocean; with application to the equatorial currents of the Eastern Pacific. Proc. Nat. Acad. Sci. Wash. 33(11): 318–326.

    Article  Google Scholar 

  • Thomas M., J. Sündermann, and E. Maier-Reimer, 2001. Consideration of ocean tides in an OGCM and implications for polar motion. Geophys. Res. Lett. 28(12): 2457–2460.

    Article  Google Scholar 

  • Yanenko N. N., 1967. Method of Fractional Steps for Solution of Multidimentional Problems of Mathematical Physics. Nauka, Novosibirsk (in Russian), 195 pp.

    Google Scholar 

  • Zalesny V. B., 1997. Variability and equilibrium states of the world ocean circulation. Russ. J. Numer. Anal. Math. Modelling 12(6): 547–567.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Artem S. Sarkisyan .

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Sarkisyan, A.S., Sündermann, J.E. (2009). Mathematical Background and Methods of Ocean Modelling. In: Modelling Ocean Climate Variability. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9208-4_1

Download citation

Publish with us

Policies and ethics