Skip to main content

Nonlinear Targeted Energy Transfer in Discrete Linear Oscillators with Single-DOF Nonlinear Energy Sinks

  • Chapter
Nonlinear Targeted Energy Transfer in Mechanical and Structural Systems

Part of the book series: Solid Mechanics and Its Applications ((SMIA,volume 156))

  • 2996 Accesses

In this chapter we initiate our study of passive nonlinear targeted energy transfer — TET (or, so-called nonlinear energy pumping) by considering discrete systems consisting of linear coupled oscillators (refered to from now on as ‘primary systems’) with single-DOF (SDOF) essentially nonlinear attachments. In later chapters we will extend this study to discrete and elastic continuous systems with SDOF or MDOF nonlinear attachments. We aim to show that under certain conditions, the nonlinear attachments are capable of passively absorbing and locally dissipating significant portions of vibration energy of the primary systems to which they are attached. Moreover, this passive targeted energy transfer will be shown to occur over broad frequency ranges, due to the capacity of the nonlinear attachments will be capable to engage in transient resonance (i.e., in transient resonance captures) with linear modes of the primary systems at arbitrary frequency ranges. Then, in essence, these essentially nonlinear attachments will act as nonlinear energy sinks (NESs).

By applying analytic methodologies especially developed for studying strongly nonlinear transient regimes (such as the CX-A method introduced in Section 2.4), performing numerical simulations, and post-processing the results by means of the signal analysis techniques discussed in Section 2.5, we will be able to study, model and understand the dynamical mechanisms governing passive nonlinear TET in the systems under consideration. Moreover, we will formulate appropriate measures for assessing the TET efficiency of different configurations of NESs, which, ultimately, will enable us to establish conditions for optimal TET in the systems considered. At the end of this chapter we will extend the study of TET to infinite-DOF chains with SDOF essentially nonlinear attachments and investigate TET generated by impeding elastic waves to boundary NESs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akozbek, N., John, S., Optical solitary waves in two- and three-dimensional nonlinear photonic band-gap structures, Phys. Rev. E 57(2), 2287–2320, 1998

    Article  MathSciNet  Google Scholar 

  • Aranson, I., Meerson, B., Tajima, T., Excitation of solitons by an external resonant wave with a slowly varying phase velocity, Phys. Rev. A 45, 7500–7510, 1992

    Article  Google Scholar 

  • Arnold, V.I., Dynamical Systems III, Encyclopaedia of Mathematical Sciences Vol. 3, Springer Verlag, Berlin/New York, 1988

    Google Scholar 

  • Avramov, K.V., Mikhlin, Y.V., Snap-through truss as an absorber of forced oscillations, J. Sound Vi b. 290, 705–722, 2006

    Article  Google Scholar 

  • Azeez, M.F.A., Vakakis, A.F., Proper orthogonal decomposition (POD) of a class of vibroimpact oscillations, J. Sound Vib. 240(5), 859–889, 2001

    Article  Google Scholar 

  • Bleistein, N., Handelsman, R.A., Asymptotic Expansions of Integrals, Dover publication, New York, 1986

    Google Scholar 

  • Bosley, D.L., An improved matching procedure for transient resonance layers in weakly nonlinear oscillatory systems, SIAM J. Appl. Math. 56(2), 420–445, 1996

    Article  MATH  MathSciNet  Google Scholar 

  • Bosley, D.L., Kevorkian, J., Adiabatic invariance and transient resonance in very slowly varying oscillatory Hamiltonian systems, SIAM J. Appl. Math. 52(2), 494–527, 1992

    Article  MATH  MathSciNet  Google Scholar 

  • Brillouin, L., Wave Propagation in Periodic Structures, Dover Publication, New York, 1953

    MATH  Google Scholar 

  • Chen, W, Mills, D., Gap solitons and the nonlinear optical response of superlattices, Phys. Rev. Lett. 58(2), 160–164, 1987

    Article  Google Scholar 

  • Cochelin, B., Herzog, P., Mattei, P.O., Experimental evidence of energy pumping in acoustics, Comptes Rendus Mécanique 334, 639–644, 2006

    Article  Google Scholar 

  • Cusumano, J.P., Sharkady, M.T., Kimble, B.W., Dynamics of a flexible beam impact oscillator, Phil. Trans. Royal Soc. London 347, 421–438, 1994

    Article  Google Scholar 

  • Den Hartog, J.P. Mechanical Vibration McGraw-Hill, 1947

    Google Scholar 

  • Dumcum, C., Computational and Analytical Studies of Forced Oscillators with Attached, Ungrounded Essentially Nonlinear Energy Sinks, MSc Thesis, University of Illinois, Urbana, IL, 2007

    Google Scholar 

  • Eggleton, B.J., Slusher, R.E., de Sterke, C.M., Krug, P.A., Sipe, J.E., Bragg grating solitons, Phys. Rev. Lett. 76(10), 1627–1630, 1996

    Article  Google Scholar 

  • Forinash, K., Peyrard, M., Malomed, B., Interaction of discrete breathers with impurity modes, Phys. Rev. E 49, 3400–3411, 1994

    Article  Google Scholar 

  • Frahm, H., A device for damping vibrations of bodies, US Patent 989958, 1911

    Google Scholar 

  • Friedland, L., Autoresonant excitation and evolution of nonlinear waves: The variational approach, Phys. Rev. E 55, 1929–1939, 1997

    Article  Google Scholar 

  • Gautesen, A.K., Resonance for a forced N-dimensional oscillator, SIAM J. Appl. Math. 27(4), 526–530, 1974

    Article  MATH  MathSciNet  Google Scholar 

  • Gendelman, O.V., Transition of energy to a nonlinear localized mode in a highly asymmetric system of two oscillators, Nonl. Dyn. 25, 237–253, 2001

    Article  MATH  Google Scholar 

  • Gendelman, O.V., Bifurcations of nonlinear normal modes of linear oscillator with strongly nonlinear damped attachment, Nonl. Dyn. 37, 115–128, 2004

    Article  MATH  MathSciNet  Google Scholar 

  • Gendelman, O.V., Manevitch, L.I., Reflection of short rectangular pulses in the ideal string attached to strongly nonlinear oscillator, Chaos Solit. Fract. 11, 2473–2477, 2000

    Article  MATH  Google Scholar 

  • Gendelman, O.V., Manevitch, L.I., Vakakis, A.F., McCloskey, R., Energy pumping in nonlinear mechanical oscillators: Part I — Dynamics of the underlying Hamiltonian systems, J. Appl. Mech. 68, 34–41, 2001

    Article  MATH  Google Scholar 

  • Gendelman, O.V., Manevitch, L.I., Vakakis, A.F., Bergman, L.A., A degenerate bifurcation structure in the dynamics of coupled oscillators with essential stiffness nonlinearities, Nonl. Dyn. 33, 1–10, 2003

    Article  MATH  MathSciNet  Google Scholar 

  • Gendelman, O.V., Gorlov, D.V., Manevitch, L.I., Musienko, A.I., Dynamics of coupled linear and essentially nonlinear oscillators with substantially different masses, J. Sound Vib. 286, 1–19, 2005

    Article  Google Scholar 

  • Gendelman, O.V., Lamarque, C.H., Dynamics of linear oscillator coupled to strongly nonlinear attachment with multiple states of equilibrium, Chaos Solit. Fract. 24, 501–509, 2005

    Article  MATH  MathSciNet  Google Scholar 

  • Georgiades, F, Vakakis, AF, McFarland, DM, Bergman, L.A., Shock isolation through passive energy pumping caused by non-smooth nonlinearities, Int. J. Bif. Chaos 15, 1989–2001, 2005

    Article  Google Scholar 

  • Georgiou, I.T., Schwartz, I., Emaci, E., Vakakis, A.F., Interaction between slow and fast oscillations in an infinite degree-of-freedom linear system coupled to a nonlinear subsystem: theory and experiment, J. Appl. Mech. 66(2), 448–459, 1999

    Article  Google Scholar 

  • Goodman, R.H., Slusher, R.E., Weinstein, M.I., Stopping light on a defect, J. Opt. Soc. Am. B19, 1632–1635, 2002a

    Google Scholar 

  • Goodman, R.H., Holmes, P.J., Weinstein, M.I., Interaction of sine-Gordon kinks with defects: Phase space transport in a two-mode model, Physica D 161, 21–44, 2002b

    Article  MATH  MathSciNet  Google Scholar 

  • Goodman, R.H., Holmes, P.J., Weinstein, M.I., Strong NLS soliton-defect interactions, Physica D 192, 215–248, 2004

    Article  MATH  MathSciNet  Google Scholar 

  • Gourdon, E., Lamarque, C.H., Energy pumping with various nonlinear structures: Numerical evidences, Nonl. Dyn. 40, 281–307, 2005

    Article  MATH  MathSciNet  Google Scholar 

  • Gourdon, E., Lamarque, C.H., Nonlinear energy sinks with uncertain parameters, J. Comput. Nonl. Dyn. 1, 187–195, 2006

    Article  Google Scholar 

  • Gourdon, E., Lamarque, C.H., Pernot, S., Contribution to efficiency of irreversible passive energy pumping with a strong nonlinear attachment, Nonl. Dyn. 50, 793–808, 2007

    Article  MATH  Google Scholar 

  • Goyal, S., Whalen, T.M., Design and application of a nonlinear energy sink to mitigate vibrations of an air spring supported slab, Paper DETC2005/VIB-85099, Proc. DETC05, Long Beach, CA, Sept. 24–28, 2005

    Google Scholar 

  • Gradshteyn, I.S., Ryzhik, I.M., Table of Integrals, Series and Products, Academic Press, New York, 1980

    MATH  Google Scholar 

  • Guckenheimer, J. and Holmes, P., Nonlinear Oscillations, Dynamical System, and Bifurcation of Vector Fields, Springer-Verlag, New York, 1983

    Google Scholar 

  • Haberman, R., Energy bounds for the slow capture by a center in sustained resonance, SIAM J. Appl. Math. 43(2), 244–256, 1983

    Article  MATH  MathSciNet  Google Scholar 

  • Holmes, P., Marsden, J., Melnikov's method and Arnold diffusion for perturbations of integrable Hamiltonian systems, Comm. Math. Phys. 82, 523–544, 1982

    Article  MATH  MathSciNet  Google Scholar 

  • Huang, N.E., Shen, Z., Long, S.R., Wu, M.C., Shih, H.H., Zheng, Q., Yen, N.-C., Tung, C.C., Liu, H.H., The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis, Proc. Roy. Soc. London A 454, 903–995, 1998

    Article  MATH  MathSciNet  Google Scholar 

  • Karayannis I., Vakakis A.F., Georgiades F., Vibro-impact attachments as shock absorbers, Proc. IMechE Part C, J. Mech. Eng. Sci., 2007 (under review)

    Google Scholar 

  • Kath, W.L., Necessary conditions for sustained roll resonance, SIAM J. Appl. Math. 43(2), 314–324, 1983

    Article  MATH  MathSciNet  Google Scholar 

  • Kerschen, G., Lenaerts, V., Marchesiello, S., Fasana, A., A frequency domain vs. a time domain identification technique for nonlinear parameters applied to wire rope isolators, J. Dyn. Syst. Meas. Control 123, 645–650, 2001

    Article  Google Scholar 

  • Kerschen, G., Vakakis, A.F., Lee, Y.S., McFarland, D.M., Kowtko, J.J., Bergman, L.A., Energy transfers in a system of two coupled oscillators with essential nonlinearity: 1:1 resonance manifold and transient bridging orbits, Nonl. Dyn. 42, 283–303, 2005

    Article  MATH  MathSciNet  Google Scholar 

  • Kerschen, G., Lee, Y.S., Vakakis, A.F., McFarland, D.M., Bergman, L.A., Irreversible passive energy transfer in coupled oscillators with essential nonlinearity, SIAM J. Appl. Math. 66, 648–679, 2006a

    Article  MATH  MathSciNet  Google Scholar 

  • Kerschen, G., Worden, K., Vakakis, A.F., Golinval, J.C., Past, present and future of nonlinear system identification in structural dynamics, Mech. Syst. Signal Proces. 20, 505–592, 2006b

    Article  Google Scholar 

  • Kerschen, G., McFarland, D.M., Kowtko, J.J., Lee, Y.S., Bergman, L.A., Vakakis, A.F., Experimental demonstration of transient resonance capture in a system of two coupled oscillators with essential stiffness nonlinearity, J. Sound Vib. 299, 822–838, 2007

    Article  Google Scholar 

  • Kerschen, G., Gendelman, O.V., Vakakis, A.F., Bergman, L.A., McFarland, D.M., Impulsive periodic and quasi-periodic orbits in coupled oscillators with essential nonlinearity, Comm. Nonl. Sc. Num. Sim. 13, 959–978, 2008

    Article  MathSciNet  Google Scholar 

  • Kevorkian, J., Passage through resonance for a one-dimensional oscillator with slowly varying frequency, SIAM J. Appl. Math. 20(3), 364–373, 1971

    Article  MATH  Google Scholar 

  • Kevorkian, J., On a model for reentry roll resonance, SIAM J. Appl. Math. 26(3), 638–669, 1974

    Article  MATH  Google Scholar 

  • Kivshar, Y.S., Gredeskul, S.A., Sánchez, A., Vázquez, L., Localization decay induced by strong nonlinearity in disordered systems, Phys. Rev. Lett. 64(15), 1693–1696, 1990

    Article  Google Scholar 

  • Koz'min, A.Yu., Mikhlin, Yu.V., Pierre, C., Localization of energy in nonlinear systems with two degrees of freedom, Int. Appl. Mech. 43(5), 568–576, 2007

    Article  Google Scholar 

  • Koz'min, A.Yu., Mikhlin, Yu.V., Pierre, C., Transient in a two-DOF nonlinear system, Nonl. Dyn. 51, 141–154, 2008

    Article  Google Scholar 

  • Laxalde, D., Thouverez, F., Sinou, J.J., Dynamics of a linear oscillator connected to a small strongly non-linear hysteretic absorber, Int. J. Nonlinear Mech., 2007 (in press)

    Google Scholar 

  • Lazarov, B.S., Jensen, J.S., Low-frequency band gaps in chains with attached nonlinear oscillators, Int. J. Nonlinear Mech. 42, 1186–1193, 2007

    Article  Google Scholar 

  • Lee, K.H., Dynamics of harmonically bound semi-infinite and infinite chains with friction and applied forces, J. Math. Phys. 13(9), 1312–1315, 1972

    Article  MATH  Google Scholar 

  • Lee, Y.S., Kerschen, G., Vakakis, A.F., Panagopoulos, P.N., Bergman, L.A., McFarland, D.M., Complicated dynamics of a linear oscillator with an essentially nonlinear local attachment, Physica D 204, 41–69, 2006

    Article  MathSciNet  Google Scholar 

  • Lichtenberg, A., Lieberman, M., Regular and Stochastic Motions, Springer Verlag, Berlin/New York, 1983

    Google Scholar 

  • Ma, X., Vakakis, A.F., Karhunen—Loeve decomposition of the transient dynamics of a multi-bay truss, AIAA J. 37(8), 939–946, 1999

    Article  Google Scholar 

  • Ma, X., Vakakis, A.F., Bergman, L.A., Karhunen—Loeve analysis and order reduction of the transient dynamics of linear coupled oscillators with strongly nonlinear end attachments, J. Sound Vib. 309, 569–587, 2008

    Article  Google Scholar 

  • Manevitch, L.I., Complex Representation of Dynamics of Coupled Oscillatorsin Mathematical Models of Nonlinear Excitations, Transfer Dynamics and Control in Condensed Systems, Kluwer Academic/Plenum Publishers, New York, pp. 269–300, 1999

    Google Scholar 

  • Manevitch, L.I., Gendelman, O., Musienko, A., Vakakis, A.F., Bergman, L.A., Dynamic interaction of a semi-infinite linear chain of coupled oscillators with a strongly nonlinear end attachment, Physica D 178(1–2), 1–18, 2003

    Article  MATH  MathSciNet  Google Scholar 

  • Manevitch, L.I., Gourdon, E., Lamarque, C.H., Parameters optimization for energy pumping in strongly nonhomogeneous two-degree-of-freedom system, Chaos Sol. Fract. 31, 900–911, 2007a

    Article  Google Scholar 

  • Manevitch, L.I., Gourdon, E., Lamarque, C.H., Towards the design of an optimal energetic sink in a strongly inhomogeneous two-degree-of-freedom system, J. Appl. Mech. 74, 1078–1086, 2007b

    Article  Google Scholar 

  • Marcus, G., Friedland, L., Zigler, A., From quantum ladder climbing to classical autoresonance, Phys. Rev. A 69, 013407, 2004

    Article  Google Scholar 

  • Masri, S.F., Caughey, T.K., A nonparametric identification technique for nonlinear dynamic systems, J. Appl. Mech. 46, 433–441, 1979

    MATH  Google Scholar 

  • McFarland, D.M., Bergman, L.A., Vakakis, A.F., Experimental study of non-linear energy pumping occurring at a single fast frequency, Int. J. Nonlinear Mech. 40, 891–899, 2005a

    Article  MATH  Google Scholar 

  • McFarland, D.M., Kerschen, G., Kowtko, J.J., Lee, Y.S., Bergman, L.A., Vakakis, A.F., Experimental investigation of targeted energy transf. in strongly and nonlinearly coupled oscillators, J. Acoust. Soc. Am. 118, 791–799, 2005b

    Article  Google Scholar 

  • Mead, D.J., Wave propagation and natural modes in periodic systems: I mono-coupled systems, J. Sound Vib. 40(1), 1–18, 1975

    Article  MATH  MathSciNet  Google Scholar 

  • Mikhlin, Y.V., Reshetnikova, S.N., Dynamical interaction of an elastic system and essentially nonlinear absorber, J. Sound Vib. 283, 91–120, 2005

    Article  Google Scholar 

  • Musienko, A.I., Lamarque, C.H., Manevitch, L.I., Design of mechanical energy pumping devices, J. Vib. Control 12, 355–371, 2006

    Article  Google Scholar 

  • Nayfeh, A.H., Mook, D., Nonlinear Oscillations, Wiley Interscience, New York, 1995

    Google Scholar 

  • Neishtadt, A.I., Passage through a separatrix in a resonance problem with a slowly-varying parameter, J. Appl. Math. Mech. (PMM) 39, 621–632, 1975

    Article  MathSciNet  Google Scholar 

  • Neishtadt, A.I., Change of an adiabatic invariant at a separatrix, Sov. J. Plasma Phys. 12, 568–573, 1986

    Google Scholar 

  • Neishtadt, A.I., On the change in the adiabatic invariant on crossing a separatrix in systems with two degrees of freedom, J. Appl. Math. Mech. (PMM) 51, 586–592, 1987

    Article  MathSciNet  Google Scholar 

  • Neishtadt, A.I., Scattering by resonances, Celest. Mech. Dynam. Astron. 65, 1–20, 1997

    Article  MATH  MathSciNet  Google Scholar 

  • Neishtadt, A.I., On adiabatic invariance in two-frequency systems, in Hamiltonian Systems with three or More Degrees of Freedon, C. Simo (Ed.), Kluwer Academic Publishers, Dordrecht, 1999

    Google Scholar 

  • Panagopoulos, P.N., Gendelman, O.V., Vakakis, A.F., Robustness of nonlinear targeted energy transfer in coupled oscillators to changes of initial conditions, Nonl. Dyn. 47, 377–387, 2007

    Article  MathSciNet  MATH  Google Scholar 

  • Pilipchuk, V.N., The calculation of strongly nonlinear systems close to vibration-impact systems, J. Appl. Math. Mech. (PMM) 49, 572–578, 1985

    Article  MATH  MathSciNet  Google Scholar 

  • Pilipchuk, V.N., Vakakis, A.F., Azeez, M.A.F., Study of a class of subharmonic motions using a non-smooth temporal transformation, Physica D 100, 145–164, 1997

    Article  MATH  MathSciNet  Google Scholar 

  • Quinn, D., Resonance capture in a three degree of freedom mechanical system, Nonl. Dyn. 14, 309–333, 1997

    Article  MATH  MathSciNet  Google Scholar 

  • Quinn, D.D., Rand, R.H., Bridge, J., The dynamics of resonance capture, Nonl. Dyn. 8, 1–20, 1995

    MathSciNet  Google Scholar 

  • Quinn, D.D., Gendelman, O.V., Kerschen, G., Sapsis, T., Bergman, L.A., Vakakis, A.F., Efficiency of targeted energy transfers in coupled nonlinear oscillators associated with 1:1 resonance captures: Part I, J. Sound Vib., 2008 (in press)

    Google Scholar 

  • Salenger, G., Vakakis, A.F., Gendelman, O., Manevitch, L.I., Andrianov, I., Transitions from strongly to weakly nonlinear motions of damped nonlinear oscillators, Nonl. Dyn. 20, 99–114, 1999

    Article  MATH  MathSciNet  Google Scholar 

  • Sanders, J.A., Verhulst, F., Averaging Methods in Nonlinear Dynamic Systems, Springer-Verlag, New York, 1985

    Google Scholar 

  • Sapsis T., Vakakis A., Gendelman, O.V., Bergman, L.A., Kerschen, G., Quinn D.D., Efficiency of targeted energy transfers in coupled nonlinear oscillators associated with 1:1 resonance captures: Part II, Analytical study, J. Sound Vib., 2008 (under review)

    Google Scholar 

  • Sen, S., Sinkovits, R.S., and Chakravarti, S., Albebraic relaxation laws for classical particles in 1d anharmonic potentials, Phys. Rev. Lett. 77(24), 4855–4869, 1996

    Article  Google Scholar 

  • Shaw, S.W., Pierre, C., Nonlinear normal modes and invariant manifolds, J. Sound Vib. 150, 170–173, 1991

    Article  MathSciNet  Google Scholar 

  • Shaw, S.W., Pierre, C., Normal modes for nonlinear vibratory systems, J. Sound Vib. 164, 85–124, 1993

    Article  MATH  MathSciNet  Google Scholar 

  • Tsakirtzis, S., Kerschen, G., Panagopoulos, P.N., Vakakis, A.F., Multi-frequency nonlinear energy transfer from linear oscillators to MDOF essentially nonlinear attachments, J. Sound Vib. 285, 483–490, 2005

    Article  Google Scholar 

  • Vainchtein, D.L., Mezic, I., Capture into resonance: A method for efficient control, Phys. Rev. Lett. 93(8), DOI: 10.1103/PhysRevLett93.084301, 2004

    Google Scholar 

  • Vainchtein, D.L., Rovinsky, E.V., Zelenyi, L.M., Neishtadt, A.I., Resonances and particle stochas-tization in nonhomogeneous electromagnetic fields, J. Nonlinear Sci. 14, 173–205, 2004

    Article  MATH  MathSciNet  Google Scholar 

  • Vakakis, A.F., Inducing passive nonlinear energy sinks in vibrating systems, J. Vib. Acoust. 123, 324–332, 2001

    Article  Google Scholar 

  • Vakakis, A.F., Gendelman, O.V., Energy pumping in nonlinear mechanical oscillators: Part II — Resonance capture, J. Appl. Mech. 68, 42–48, 2001

    Article  MATH  MathSciNet  Google Scholar 

  • Vakakis, A.F., King, M.E., Nonlinear wave transmission in a mono-coupled elastic periodic system, J. Acoust. Soc. Am. 98(3), 1534–1546, 1995

    Article  Google Scholar 

  • Vakakis, A.F., Rand, R.H., Non-linear dynamics of a system of coupled oscillators with essential stiffness non-linearities, Int. J. Nonlinear Mech. 39, 1079–1091, 2004

    Article  MATH  Google Scholar 

  • Vakakis, A.F., Manevitch, L.I., Mikhlin, Y.V., Pilipchuk, V.N., Zevin, A.A., Normal Modes and Localization in Nonlinear Systems, Wiley Interscience, New York, 1996

    MATH  Google Scholar 

  • Vakakis, A.F., Manevitch, L.I., Gendelman, O., Bergman, L., Dynamics of linear discrete systems connected to local essentially nonlinear attachments, J. Sound Vib. 264, 559–577, 2003

    Article  Google Scholar 

  • Van Overschee, P., De Moor B., Subspace Identification for Linear Systems: Theory, Implementation, Applications, Kluwer Academic Publishers, Boston, 1996

    MATH  Google Scholar 

  • Veerman, P., Holmes, P., The existence of arbitrarily many distinct periodic orbits in a two-DOF Hamiltonian System, Physica D 14, 177–192, 1985

    Article  MATH  MathSciNet  Google Scholar 

  • Veerman, P., Holmes, P., Resonance bands in a two-DOF Hamiltonian system, Physica D 20, 413–422, 1986

    Article  MATH  MathSciNet  Google Scholar 

  • Verhulst, F., Methods and Applications of Singular Perturbations, Springer Verlag, Berlin/New York, 2005

    MATH  Google Scholar 

  • Wang, Y.Y., Lee, K.H., Propagation of a disturbance in a chain of interacting harmonic oscillators, Am. J. Physics 41, 51–54, 1973

    Article  Google Scholar 

  • Wiggins S., Introduction to Applied Nonlinear Dynamical Systems and Chaos, Springer-Verlag, Berlin/New York, 1990

    MATH  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, B.V

About this chapter

Cite this chapter

(2008). Nonlinear Targeted Energy Transfer in Discrete Linear Oscillators with Single-DOF Nonlinear Energy Sinks. In: Nonlinear Targeted Energy Transfer in Mechanical and Structural Systems. Solid Mechanics and Its Applications, vol 156. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9130-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-9130-8_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-9125-4

  • Online ISBN: 978-1-4020-9130-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics