Skip to main content

Abstract

This chapter focuses on the lightning and charge structure observed in supercells; a particular class of severe thunderstorms that are typically responsible for producing the most violent hailstorms and tornadoes. The chapter reviews common supercell features, the classification of supercells based on structural and visual characteristics, as well as the microphysics of supercells related to hail growth and electrification. A summary of observed flash rates, lightning polarity, and charge structure within supercells is also presented, along with descriptions of a few case studies as examples. Specific attention has been given to recent observations of anomalous positive cloud-to-ground lightning and inverted charge structures. Though this behavior is not exclusive to supercells, it has typically been observed in strong and/or severe storms that often meet supercell criteria.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bluestein, H.B., and C.R. Parks, 1983: A synoptic and photographic climatology of low-precipitation severe thunderstorms in the Southern Plains. Mon. Wea. Rev., 111, 2034–2046.

    Article  Google Scholar 

  • Bluestein, H.B., and G.R. Woodall, 1990: Doppler-radar analysis of a low-precipitation severe storm. Mon. Wea. Rev., 118, 1640–1664.

    Article  Google Scholar 

  • Bluestein, H.B., and D.R. MacGorman, 1998: Evolution of cloud-to-ground lightning characteristics and storm structure in the Spearman, Texas, tornadic supercells of 31 May 1990. Mon. Wea. Rev., 126, 1451–1467.

    Article  Google Scholar 

  • Brandes, E. A., 1984: Vertical vorticity generation and mesocyclone sustenance in tornadic thunderstorms: The observational evidence. Mon. Wea. Rev., 112, 2253–2269.

    Article  Google Scholar 

  • Branick, M.L., and C.A. Doswell, III, 1992: An observation of the relationship between supercell structure and lightning ground-strike polarity. Wea. Forecasting, 7, 143–149.

    Article  Google Scholar 

  • Brook, M., M. Nakano, P. Krehbiel, and T. Takeuti, 1982: The electrical structure of the Hokuriku winter thunderstorms. J. Geophys. Res., 87, 1207–1215.

    Article  Google Scholar 

  • Brooks, I.M., and C.P.R. Saunders, 1994: An experimental investigation of the inductive mechanism of thunderstorm electrification. J. Geophys. Res., 99, 10,627–10,632.

    Article  Google Scholar 

  • Browning, K.A., 1964: Airflow and precipitation trajectories within severe local storms which travel to the right of the winds. J. Atmos. Sci., 21, 634–639.

    Article  Google Scholar 

  • Browning, K.A., 1965. Some inferences about the updraft within a severe local storm. J. Atmos. Sci., 22, 669–677.

    Article  Google Scholar 

  • Browning K.A., 1977: The structure and mechanisms of hailstorms. Hail: A Review of Hail Science and Hail Suppression, G.B. Foote and C.A. Knight, Eds., Meteor. Monogr., No. 38, , Amer. Meteor. Soc., 1–43.

    Google Scholar 

  • Browning, K.A., and R.J. Donaldson, 1963: Airflow and structure of a tornadic storm. J. Atmos. Sci., 20, 533–545.

    Article  Google Scholar 

  • Browning, K.A., and G.B. Foote, 1976: Airflow and hail growth in supercell storms and some implications for hail suppression. Quart. J. Roy. Meteor. Soc., 102, 499–533.

    Article  Google Scholar 

  • Bruning, E.C., W.D. Rust, T.J. Shuur, D.R. MacGorman, P.R. Krehbiel, and W. Rison, 2007: Electrical and polarimetric radar observations of a multicell storm in TELEX. Mon. Wea. Rev., 135, 2525–2544.

    Article  Google Scholar 

  • Buechler, D.E., K.T. Driscoll, S.J. Goodman, and H.J. Christian, 2000: Lightning activity within a tornadic thunderstorm observed by the Optical Transient Detector (OTD). Geophys. Res. Lett., 27, 2253–2256.

    Article  Google Scholar 

  • Carey, L.D. and S.A. Rutledge, 1998: Electrical and multiparameter radar observations of a severe hailstorm. J. Geophys. Res., 103, 13,979–14,000.

    Article  Google Scholar 

  • Carey, L.D., S.A. Rutledge, and W.A. Peterson, 2003a: The relationship between severe storm reports and cloud-to-ground lightning polarity in the contiguous United States from 1989–98. Mon. Wea. Rev., 131, 1211–1228.

    Article  Google Scholar 

  • Carey, L.D., W.A. Petersen, and S.A. Rutledge, 2003b: Evolution of cloud-to-ground lightning and storm structure in the Spencer, South Dakota, tornadic supercell of 30 May 1998. Mon. Wea. Rev., 131, 1811–1831.

    Article  Google Scholar 

  • Carey, L.D., and K.M. Buffalo, 2007: Environmental control of cloud-to-ground lightning polarity in severe storms. Mon. Wea. Rev., 135, 1327–1353.

    Article  Google Scholar 

  • Chen, S.M., Y. Du, L.M. Fan, H.M. He, and D.Z. Zhong, 2002: A lightning location system in China: Its performance and applications. IEEE Trans. Electromagn. Compat., 44, 555–560.

    Article  Google Scholar 

  • Cheze, J.-L., H. Sauvageot, 1997: Area-average rainfall and lightning activity. J. Geophys. Res., 102, 1707–1715.

    Article  Google Scholar 

  • Chisholm, A.J., 1973: Alberta hailstorms, Part I: Radar case studies and airflow models, Met. Mon., 14, 1–36.

    Google Scholar 

  • Clarence, N.D., and D.J. Malan, 1957: Preliminary discharge processes in lightning discharges to ground. Quart. J. Roy. Meteor. Soc., 83, 161–172.

    Article  Google Scholar 

  • Coleman, L.M., T.C. Marhsall, M. Stolzenburg, T. Hamlin, P.R. Krehbiel, W. Rison, and R.J. Thomas, 2003: Effects of charge and electrostatic potential on lightning propagation. J. Geophys. Res., 108, doi: 10.1029/2002JD002718.

    Google Scholar 

  • Cummins, K. L., M. J. Murphy, E. A. Bardo, W. L. Hiscox, R. B. Pyle, and A. E. Pifer, 1998: A combined TOA/MDF technology upgrade of the U.S. National Lightning Detection Network. J. Geophys. Res., 103 (D8), 9035–9044.

    Article  Google Scholar 

  • Curran, E.B., and W.D. Rust, 1992: Positive ground flashes produced by low-precipitation thunderstorms in Oklahoma on 26 April 1984. Mon. Wea. Rev., 120, 544–553.

    Article  Google Scholar 

  • Defer, E., P. Blanchet, C. Thery, P. Laroche, J.E. Dye, M. Venticinque, and K. Cummins, 2001: Lightning activity for the July 10, 1996, storm during the Stratosphere-Troposphere Experiment: Radiation, Aerosol, and Ozone-A (STERAO-A) experiment. J. Geophys. Res., 106, 10,151–10,172.

    Article  Google Scholar 

  • Demetriades N., M. J. Murphy, and K. L. Cummins, 2001: Cloud and cloud-to-ground lightning detection at LF and VHF: Early results from Global Atmospherics Dallas-Fort Worth LDAR II and IMPACT/ESP research networks. Eos, Trans. Amer. Geophys. Union, 82, AE21A-07, (Fall Meeting Suppl.), Abstract.

    Google Scholar 

  • Dostalek J. F, J. F Weaver, and G. L Phillips, 2004: Aspects of a tornadic left-moving thunderstorm of 25 May 1999. Wea. Forecasting, 19, 614–626.

    Article  Google Scholar 

  • Doswell, C.A. III and D.W. Burgess, 1993: Tornadoes and tornadic storms: A review of conceptual models. The Tornado: Its Structure, Dynamics, Prediction, and Hazards. Church et al., Eds, Geophys. Monogr. No. 79, Amer. Geophys. Union, 161–172.

    Google Scholar 

  • Engholm, C.D., E.R. Williams, and R.M. Dole, 1990: Meteorological and electrical conditions associated with positive cloud-to-ground lightning. Mon. Wea. Rev., 118, 470–487.

    Article  Google Scholar 

  • Fehr, T., N. Dotzek, and H. Holler, 2005: Comparison of lightning activity and radar-retrieved microphysical properties in EULINOX storms. Atmos. Res., 76, 167–189.

    Article  Google Scholar 

  • Fujita, T.T., 1971: Proposed characterization of tornadoes and hurricanes by area and intensity. SMRP Res. Pap. 91, University of Chicago, 42 pp.

    Google Scholar 

  • Fuquay, D.M., 1982: Positive cloud-to-ground lightning in summer thunderstorms. J. Geophys. Res., 87, 7131–7140.

    Article  Google Scholar 

  • Gilmore, M.S., and L.J. Wicker, 2002: Influences of the local environment on supercell cloud-to-ground lightning, radar characteristics, and severe weather on 2 June 1995. Mon. Wea. Rev., 130, 2349–2372.

    Article  Google Scholar 

  • Goodman, S.J., and Coauthors, 2005: The North Alabama lightning mapping array: Recent severe storm observations and future prospects. Atmos. Res., 76, 423–437.

    Article  Google Scholar 

  • Grasso L. D., and E. R. Hilgendorf, 2001: Observations of a severe left-moving thunderstorm. Wea. Forecasting, 16, 500–511.

    Article  Google Scholar 

  • Hammond G. R., 1967: Study of a left moving thunderstorm of 23 April 1964. ESSA Tech. Memo. IERTM-NSSL-31, Norman, OK, 75 pp.

    Google Scholar 

  • Helsdon, et al. 1992: An intracloud lightning parameterization scheme for a storm electrification model. J. Geophys. Res., 97, 5865–5884.

    Google Scholar 

  • Holle, R.L., and M.W. Maier, 1982: Radar echo height related to cloud-ground lightning in South Florida. Preprints, 12th Conf. on Severe Local Storms, San Antonio, TX, Amer. Meteor. Soc., 330–333.

    Google Scholar 

  • Illingworth, A.J., 1985: Charge separation in thunderstorms: Small-scale processes. J. Geophys. Res., 90, 6026–6032.

    Article  Google Scholar 

  • Jacobson, E.A., and E.P. Krider, 1976: Electrostatic field changes produced by Florida lightning. J. Atmos. Sci., 33, 103–117.

    Article  Google Scholar 

  • Jayaratne, E.R., C.P.R. Saunders, and J. Hallett, 1983: Laboratory studies of the charging of soft hail during ice crystal interactions. Quart. J. Roy. Meteor. Soc., 109, 609–630.

    Article  Google Scholar 

  • Kamra, A.K., and S.D. Pawar, 2007: Evolution of lightning in an isolated hailstorm of moderate size in the tropics. J. Geophys. Res., 112, doi:10.1029/2006JD007820.

    Google Scholar 

  • Keighton, S.J., H.B. Bluestein, and D.R. MacGorman, 1991: The evolution of a severe mesoscale convective system: cloud-to-ground lightning location and storm structure. Mon. Wea. Rev., 119, 1533–1556.

    Article  Google Scholar 

  • Knapp, D.I., 1994: Using cloud-to-ground lightning data to identify tornadic thunderstorm signatures and nowcast severe weather. Natl. Wea. Dig., 19, 35–42.

    Google Scholar 

  • Knupp, K.R., S. Paech, and S. Goodman, 2003: Variations in cloud-to-ground lightning characteristics among three adjacent tornadic supercell storms over the Tennessee Valley region. Mon. Wea. Rev., 131, 172–188.

    Article  Google Scholar 

  • Krehbiel, P.R., 1986: The electrical structure of thunderstorms. The Earth’s Electrical Environment, National Academy Press, Washington, D.C., 90–113.

    Google Scholar 

  • Krehbiel, P.R., R.J. Thomas, W. Rison, T. Hamlin, J. Harlin, and M. Davis, 2000a: GPS-based mapping system reveals lightning inside storms. Eos, Trans. Amer. Geophys. Union, 81, 21–25.

    Google Scholar 

  • Krehbiel, P.R., R.J. Thomas, W. Rison, T. Hamlin, J. Harlin, M. Stanley, J. Lombardo, and D. Shown, 2000b: Inverted polarity lightning in STEPS. Eos, Trans. Amer. Geophys. Union, 81 (Suppl.), Abstract A62D-06.

    Google Scholar 

  • Kuhlman K. M., C. L. Ziegler, E. R. Mansell, D. R. MacGorman, and J. M. Straka, 2006: Numerical simulations of the 29 June 2000 STEPS supercell: Microphysics, electrification, and lightning. Mon. Wea. Rev., 134, 2734–2757.

    Article  Google Scholar 

  • Kuhlman, K.M., D.R. MacGorman, M.I. Biggerstaff, and P.R. Krehbiel, 2008: Lightning initiation in the anvil of supercell storms. Geophys. Res. Lett., in press.

    Google Scholar 

  • Lang, T.J., and S.A. Rutledge, 2002: Relationships between convective storm kinematics, precipitation, and lightning. Mon. Wea. Rev., 130, 2492–2506.

    Article  Google Scholar 

  • Lang, T.J., S.A. Rutledge, J.E. Dye, M. Venticinque, P. Laroche, and E. Defer, 2000: Anomalously Low Negative Cloud-to-Ground Lightning Flash Rates in Intense Convective Storms Observed during STERAO-A. Mon. Wea. Rev., 128, 160–173.

    Article  Google Scholar 

  • Lang, T.J., S.A. Rutledge, and K.C. Wiens, 2004a: Origins of positive cloud-to-ground lightning flashes in the stratiform region of a mesoscale convective system. Geophys. Res. Lett., 31, doi: 10.1029/2004GL019823.

    Google Scholar 

  • Lang, T.J., and Coauthors, 2004b: The Severe Thunderstorm Electrification and Precipitation Study. Bull. Amer. Meteor. Soc., 85, 1107–1125.

    Article  Google Scholar 

  • Laroche, P., A. Bondiou, P. Blanchet, J. Pigere, M. Weber, and B. Boldi, 1994: 3D mapping of lightning discharge within storms. ONERA Publ. 1994–186, 11 pp.

    Google Scholar 

  • Lemon, L.R., 1980: Severe thunderstorm radar identification techniques and warning criteria: A preliminary report. NOAA Tech. Memo. NWS NSSFC-1, 60 pp. [NTIS PB273049]

    Google Scholar 

  • Lemon, L.R., and C.A. Doswell III, 1979: Severe thunderstorm evolution and mesocyclone structure as related to tornadogenesis. Mon. Wea. Rev., 107, 1184–1197.

    Article  Google Scholar 

  • Levin, Z., Y. Yair, and B. Ziv, 1996: Positive cloud-to-ground flashes and wind shear in Tel-Aviv thunderstorms. Geophys. Res. Lett., 23, 2231–2234.

    Article  Google Scholar 

  • Lindsey, D.T., and M.J. Bunkers, 2005: Observations of a severe, left-moving supercell on 4 May 2003. Wea. Forecasting, 20, 15–22.

    Article  Google Scholar 

  • Lopez, R., and J.-P. Aubagnac, 1997: The lightning activity of a hailstorm as a function of changes in its microphysical characteristics inferred from polarimetric radar observations. J. Geophys. Res., 102, 16,799–16,813.

    Article  Google Scholar 

  • Lyons, W.A., T.E. Nelson, E.R. Williams, J. Cramer, and T. Turner, 1998: Enhanced positive cloud-to-ground lightning in thunderstorms ingesting smoke. Science, 282, 77–81.

    Article  Google Scholar 

  • Lyons, W.A., T.E. Nelson, R.A. Armstrong, V.P. Pasko, and M. Stanley, 2003: Upward electrical discharges from the tops of thunderstorms. Bull. Amer. Meteor. Soc., 84, 445–454.

    Article  Google Scholar 

  • Lyons, W.A., S.A. Cummer, M.A. Stanley, G.R. Huffines, K.C. Wiens, and T.E. Nelson, 2008a: Supercells and sprites. Bull. Amer. Meteor. Soc., in press.

    Google Scholar 

  • Lyons, W.A., M.A. Stanley, J.D. Meyer, T.E. Nelson, S.A. Rutledge, T.L. Lang, and S.A. Cummer, 2008b: The meteorological and electrical structure of TLE-producing convective systems. (this volume).

    Google Scholar 

  • MacGorman, D.R., 1993: Lightning in tornadic storms: A review. The Tornado: Its Structure, Dynamics, Prediction, and Hazards. Church et al., Eds, Geophys. Monogr. No. 79, Amer. Geophys. Union, 173–182.

    Google Scholar 

  • MacGorman, D.R., and K.E. Nielson, 1991: Cloud-to-ground lightning in a tornadic storm on 8 May 1986. Mon. Wea. Rev., 119, 1557–1574.

    Article  Google Scholar 

  • MacGorman, D.R., and D.W. Burgess, 1994: Positive cloud-to-ground lightning in tornadic storms and hailstorms. Mon. Wea. Rev., 122, 1671–1697.

    Article  Google Scholar 

  • MacGorman, D.R., D.W. Burgess, V. Mazur, W.D. Rust, W.L. Taylor, and B.C. Johnson, 1989: Lightning rates relative to tornadic storm evolution on 22 May 1981. J. Atmos. Sci., 46, 221–250.

    Article  Google Scholar 

  • MacGorman, D.R., W.D. Rust, P. Krehbiel, W. Rison, E. Bruning, and K. Wiens, 2005: The electrical structure of two supercell storms during STEPS. Mon. Wea. Rev., 133, 2583–2607.

    Article  Google Scholar 

  • MacGorman, and Coauthors, 2008: TELEX The Thunderstorm Electrification and Lightning Experiment. Bull. Amer. Meteor. Soc., 89, 997–1013.

    Article  Google Scholar 

  • Mach, D.M., D.R. MacGorman,L W.D. Rust, and R.T. Arnold, 1986: Site errors and detection efficiency in a magnetic direction-finder network for locating lightning strikes to ground. J. Atmos. And Oceanic Tech., 3, 67–74.

    Article  Google Scholar 

  • Mansell, E.R., D.R. MacGorman, C.L. Ziegler, and J.M. Straka, 2002: Simulated three-dimensional branched lightning in a numerical thunderstorm model. J. Geophys. Res., 107, doi: 10.1029/2000JD000244.

    Google Scholar 

  • Mansell, E.R., D.R. MacGorman, C.L. Ziegler, and J.M. Straka, 2005: Charge structure and lightning sensitivity in a simulated multicell thunderstorm. J. Geophys. Res., 110, doi: 10.1029/2004JD005287.

    Google Scholar 

  • Marshall, T.C., and W.P. Winn, 1982: Measurements of charged precipitation in a New Mexico thunderstorm: Lower positive charge centers. J. Geophys. Res., 87, 7141–7157.

    Article  Google Scholar 

  • Marshall, T.C., and W.D. Rust, 1991: Electric field soundings through thunderstorms. J. Geophys. Res., 96, 22,297–22,306.

    Google Scholar 

  • Marshall, T.C., W.D. Rust, and M. Stolzenburg, 1995: Electrical structure and updraft speeds in thunderstorms over the southern Great Plains. J. Geophys. Res., 100, 1001–1015.

    Article  Google Scholar 

  • Marwitz, J.D., 1972a: The structure and motion of severe hailstorms. Part I: Supercell storms. J. Appl. Meteor., 11, 166–179.

    Article  Google Scholar 

  • Marwitz, J.D., 1972b: The structure and motion of severe hailstorms. Part II: Multicell storms. Ibid., 11, 180–188.

    Google Scholar 

  • Mazur, V., E. Williams, R. Boldi, L. Maier, and D. E. Proctor, 1997: Initial comparison of lightning mapping with operational Time-Of-Arrival and Interferometric systems, J. Geophys. Res., 102, 11,071–11,085.

    Article  Google Scholar 

  • McCaul, E.W., Jr., D.E. Buechler, S. Hodandish, and S.J. Goodman, 2002: The Alamena, Kansas, tornadic storm of 3 June 1999: A long-lived supercell with very little cloud-to-ground lightning. Mon. Wea. Rev., 130, 407–415.

    Article  Google Scholar 

  • Moller, A.R., C.A. Doswell III, and R. Przybylinkski, 1990: High-precipitation supercells: A conceptual model and documentation. Preprints, 16th Conf. on Severe Local Storms, Kananaskis Park, Alberta, Canada, Amer. Meteor. Soc., 52–57.

    Google Scholar 

  • Moller, A.R., C.A. Doswell III, M.P. Foster, and G.R. Woodall, 1994: The operational recognition of supercell thunderstorm environments and storm structures. Wea. Forecasting, 9, 327–347.

    Article  Google Scholar 

  • Murphy, M.J., and N.W.S. Demetriades, 2005: An analysis of lightning holes in a DFW supercell storm using total lightning and radar information. Extended Abstracts, Conf. on Meteorological Applications of Lightning Data, San Diego, CA, Amer. Meteor. Soc., CD-ROM, 2.3.

    Google Scholar 

  • Murray, N., R. Orville, and G. Huffines, 2000: Effect of pollution from Central American fires on cloud-to-ground lightning in May 1998. Geophys. Res. Lett., 28, 2597–2600.

    Google Scholar 

  • Nelson, S.P., 1983: The influence of storm flow structure on hail growth. J. Atmos. Sci., 40, 1965–1983.

    Article  Google Scholar 

  • Nelson, S.P., 1987: The hybrid multicellular-supercellular storm—an efficient hail producer. Part II: General characteristics and implications for hail growth. J. Atmos. Sci., 44, 2060–2073.

    Google Scholar 

  • Nelson, S.P. and N. C. Knight, 1987: The hybrid multicellular-supercellular storm—an efficient hail producer. Part I: An archetypal example. J. Atmos. Sci., 44, 1942–1959.

    Google Scholar 

  • Nielsen, K., R. Maddox, and S. Vasiloff, 1994: The evolution of cloud-to-ground lightning within a portion of the 10–11 June 1985 squall line. Mon. Wea. Rev., 122, 1809–1817.

    Article  Google Scholar 

  • Nielsen-Gammon J. W., and W. L. Read, 1995: Detection and interpretation of left-moving severe thunderstorms using the WSR-88D: A case study. Wea. Forecasting, 10, 127–140.

    Article  Google Scholar 

  • Orville, R.E., and G.R. Huffines, 2001: Cloud-to-ground lightning in the United States: NLDN results in the first decade, 1989–98. Mon. Wea. Rev., 129, 1179–1193.

    Article  Google Scholar 

  • Orville, R.E., R.W. Henderson, and L.F. Bosart, 1983: An east coast lightning detection network. Bull. Amer. Meteor. Soc., 64, 1029–1059.

    Article  Google Scholar 

  • Perez, A.H, R.E. Orville, and L.J. Wicker, 1995: Characteristics of cloud-to-ground lightning associated with violent-tornado producing supercells. Preprints, 14th Conf. on Weather and Forecasting, Dallas, TX, Amer. Meteor. Soc., 409–413.

    Google Scholar 

  • Perez, A.H., L.J. Wicker, and R.E. Orville, 1997: Characteristics of cloud-to-ground lightning associated with violent tornadoes. Wea. Forecasting, 12, 428–437.

    Article  Google Scholar 

  • Pierce, E.T., 1955: The development of lightning discharges. Quart. J. Roy. Meteor. Soc., 81, 229–240.

    Article  Google Scholar 

  • Pinto, O., Jr., K.P. Naccarato, I.R.C.A. Pinto, W.A. Fernandes, and O.Pinto Neto, 2006: Monthly distribution of cloud-to-ground lightning flashes as observed by lightning location systems. Geophys. Res. Lett., 33, doi:10.1029/2006GL026081.

    Google Scholar 

  • Ray P. S., D. R. MacGorman, W. D. Rust, W. L. Taylor, and L. W. Rasmussen, 1987: Lightning location relative to storm structure in a supercell storm and a multicell storm. J. Geophys. Res., 92, 5713–5724.

    Article  Google Scholar 

  • Reap, R. M., and D. R. MacGorman, 1989: Cloud-to-ground lightning: Climatological characteristics and relationships to model fields, radar observations, and severe local storms. Mon. Wea. Rev., 117, 518–535.

    Article  Google Scholar 

  • Reynolds, S.E., M. Brook, and M.F. Gourley, 1957: Thunderstorm charge separation. J. Meteor. 14, 426–436.

    Google Scholar 

  • Rison, W., R. J. Thomas, P. R. Krehbiel, T. Hamlin, and J. Harlin, 1999: A GPS-based three-dimensional lightning mapping system: Initial observations in Central New Mexico. Geophys. Res. Lett., 26, 3573–3576.

    Article  Google Scholar 

  • Rust, W.D., and D.R. MacGorman, 2002: Possibly inverted-polarity electrical structures in thunderstorms during STEPS. Geophys. Res. Lett., 29, doi: 10.1029/2001GL014303.

    Google Scholar 

  • Rust, W.D., D.R. MacGorman, and R.T. Arnold, 1981: Positive cloud-to-ground lightning flashes in severe storms. Geophys. Res. Lett., 8, 791–794.

    Article  Google Scholar 

  • Rust, W.D., D.R. MacGorman, and S.J. Goodman, 1985: Unusual positive cloud-to-ground lightning in Oklahoma storms on 13 May 1983. Preprints, 14th Conf. Severe Local Storms, Indianapolis, Amer. Meteor. Soc., 372–375.

    Google Scholar 

  • Rust, W.D. et al., 2005: Inverted-polarity electrical structures in thunderstorms in the Severe Thunderstorm Electrification and Precipitation Study. Atmos. Res., 76, 247–271.

    Article  Google Scholar 

  • Rutledge, S.A., and D.R. MacGorman, 1988: Cloud-to-ground lightning activity in the 10–11 June 1985 mesoscale convective system observed during the Oklahoma-Kansas PRE-STORM project. Mon. Wea. Rev., 116, 1393–1408.

    Article  Google Scholar 

  • Rutledge, S.A. C. Lu, and D.R. MacGorman, 1990: Positive cloud-to-ground lightning in mesoscale convective systems. J. Atmos. Sci., 47, 2085–2100.

    Article  Google Scholar 

  • Rutledge, S.A., E.R. Williams, and T.D. Keenan, 1992: The Down Under Doppler and Electricity Experiment (DUNDEE): Overview and preliminary results. Bull. Amer. Meteor. Soc., 73, 3–16.

    Article  Google Scholar 

  • Saunders, C.P.R., 1994: Thunderstorm electrification laboratory experiments and charging mechanisms. J. Geophys. Res., 99, 10,773–10,779.

    Google Scholar 

  • Saunders, C.P.R., and I.M. Brooks, 1992: The effects of high liquid water content on thunderstorm charging. J. Geophys. Res., 97, 14671–14676.

    Article  Google Scholar 

  • Saunders, C.P.R., W.D. Keith, and R.P. Mitzeva, 1991: The effect of liquid water on thunderstorm charging. J. Geophys. Res., 96, 11,007–11,017.

    Article  Google Scholar 

  • Saunders, C.P.R., H. Bax-norman, C. Emersic, E.E. Avila, and N.E. Castellano, 2006: Laboratory studies of the effect of cloud conditions on graupel/crystal charge transfer in thunderstorm electrification. Quart. J. Roy. Meteor. Soc., 132, 2653–2673.

    Article  Google Scholar 

  • Schlatter P.T., Schlatter T.W., and Knight C.A., 2008: An unusual hailstorm on 24 June 2006, Boulder, Colorado. Part I: Mesoscale setting and radar features. Mon. Wea. Rev., in press.

    Google Scholar 

  • Schulz, W., K. Cummins, G. Diendorfer, and M. Dorninger, 2005: Cloud-to-ground lightning in Austria: A 10-year study using data from a lightning location system. J. Geophys. Res., 110, doi:10.1029/2004JD005332.

    Google Scholar 

  • Seimon, A., 1993: Anomalous cloud-to-ground lightning in an F5-tornado-producting supercell thunderstorm on 28 August 1990. Bull. Amer. Meteor. Soc., 74, 189–203.

    Article  Google Scholar 

  • Shafer, M.A., D.R. MacGorman, and F.H. Carr, 2000: Cloud-to-ground lightning throughout the lifetime of a severe storm system in Oklahoma. Mon. Wea. Rev., 128, 1798–1816.

    Article  Google Scholar 

  • Simpson, G.C., and F.J. Scrase: 1937: The distribution of electricity in thunderclouds. Proc. Roy. Soc. London, Ser. A, 161, 309–352.

    Article  Google Scholar 

  • Solomon, R., and M. B. Baker, 1998: Lightning flash rate and type in convective storms. J. Geophys. Res., 103, 14,041–14,057.

    Google Scholar 

  • Sonnadara, U., V. Cooray, and T. Gotschl, 2006: Characteristics of cloud-to-ground lightning flashes over Sweden. Phys. Scr., 74, 541–548.

    Article  Google Scholar 

  • Soula, S., H. Sauvageot, G. Molinié, F. Mesnard, and S. Chauzy, 1998: The CG lightning activity of a storm causing a flash-flood. Geophys. Res. Lett., 25, 1181–1184.

    Article  Google Scholar 

  • Soriano, L.R., F. de Pablo, and C. Tomas, 2005: Ten-year study of cloud-to-ground lightning activity in the Iberian Peninsula. J. Atmos. Terr. Phys., 67, 1632–1639.

    Article  Google Scholar 

  • Steiger, S.M., R.E. Orville, and L.D. Carey, 2007: Total lightning signatures of thunderstorm intensity over North Texas. Part I: Supercells. Mon. Wea. Rev., 135, 3281–3302.

    Article  Google Scholar 

  • Smith, S. B., J. G. LaDue, and D. R. MacGorman, 2000: The relationship between cloud-to-ground lightning polarity and surface equivalent potential temperature during three tornadic outbreaks. Mon. Wea. Rev., 128, 3320–3328.

    Article  Google Scholar 

  • Stolzenburg, M., 1994: Observations of high ground flash densities of positive lightning in summertime thunderstorms. Mon. Wea. Rev., 122, 1740–1750.

    Article  Google Scholar 

  • Stolzenburg M., W. D. Rust, B. F. Smull, and T. C. Marshall, 1998a: Electrical structure in thunderstorm convective regions, 1. Mesoscale convective systems. J. Geophys. Res., 103, 14059–14078.

    Article  Google Scholar 

  • Stolzenburg, M., W.D. Rust, and T.C. Marshall, 1998b: Electrical structure in thunderstorm convective regions 2. Isolated storms, J. Geophys. Res., 103, 14,079–14.096.

    Google Scholar 

  • Stolzenburg, M., W.D. Rust, and T.C Marshall, 1998c: Electrical structure in thunderstorm convective regions 3. Synthesis. J. Geophys. Res., 103, 14,097–14,108.

    Google Scholar 

  • Stolzenburg, M., and T.C. Marshall, 2008: Electric field and charge structure in lightning-producing clouds. (this volume).

    Google Scholar 

  • Takahashi, T., 1978: Riming electrification as a charge generation mechanism in thunderstorms. J. Atmos. Sci., 35, 1536–1548.

    Article  Google Scholar 

  • Takeuti, T., M. Nakano, M. Brook, D.J. Raymond, and P. Krehbiel, 1978: The anomalous winter thunderstorms of the Hokuriku coast. J. Geophys. Res., 83, 2385–2394.

    Article  Google Scholar 

  • Takeuti, T., A.-I. Kawasaki, K. Funaki, N. Kitagawa, and J. Huse, 1985: On the thundercloud producing the positive ground flashes. J. Meteor. Soc. Japan, 63, 354–357.

    Google Scholar 

  • Tessendorf, S.A., L.J. Miller, K.C. Wiens, and S.A. Rutledge, 2005: The 29 June 2000 supercell observed during STEPS. Part I: Kinematics and microphysics. J. Atmos. Sci., 62, 4127–4150.

    Google Scholar 

  • Tessendorf, S.A., K.C. Wiens, and S.A. Rutledge, 2007a: Radar and lightning observations of the 3 June 2000 electrically inverted storm from STEPS. Mon. Wea. Rev., 135, 3665–3681.

    Google Scholar 

  • Tessendorf, S.A., S.A. Rutledge, and K.C. Wiens, 2007b: Radar and lightning observations of normal and inverted polarity multicellular storms from STEPS. Mon. Wea. Rev., 135, 3682–3706.

    Article  Google Scholar 

  • Tourte, J.L., F. Helloco, M. Le Boulch, and J. Hamelin, 1988: First results obtained with the Meteorage thunderstorm monitoring system. Proc. 8th Conf. on Atmos. Elec., 697–702.

    Google Scholar 

  • Weisman, M.L, and J.B. Klemp, 1984: The structure and classification of numerically simulated convective storms in directionally-varying wind shears. Mon. Wea. Rev., 112, 2479–2498.

    Article  Google Scholar 

  • Weiss, S.A., W.D. Rust, D.R. MacGorman, E.C. Bruning, and P.R. Krehbiel, 2008: Evolving complex electrical structures of the STEPS 25 June 2000 multicell storm. Mon. Wea. Rev., 136, 741–756.

    Article  Google Scholar 

  • Wiens, K.C., S.A. Rutledge, and S.A. Tessendorf, 2005: The 29 June 2000 supercell observed during STEPS. Part II: Lightning and charge structure. J. Atmos. Sci., 62, 4151–4177.

    Article  Google Scholar 

  • Williams, E.R., 1989: The tripole structure of thunderstorms. J. Geophys. Res., 94, 13,151–13,167.

    Google Scholar 

  • Williams, E.R., 2001: The electrification of severe storms. Severe Convective Storms, C.A. Doswell, III, Ed., Meteor. Monogr., No. 50, Amer. Meteor. Soc., 527–561.

    Google Scholar 

  • Williams, E.R., C.M. Cooke, and K.A. Wright, 1985: Electrical discharge propagation in and around space charge clouds. J. Geophys. Res., 90, 6059–6070.

    Article  Google Scholar 

  • Williams, E.R., M.E. Weber, and R.E. Orville, 1989: The relationship between lightning type and convective state of thunderclouds. J. Geophys. Res., 94, 13,213–13,220.

    Google Scholar 

  • Williams, E.R., et al., 1999: The behavior of total lightning activity in severe Florida thunderstorms. Atmos. Res., 51, 245–265.

    Article  Google Scholar 

  • Williams, E.R., V. Mushtak, D. Rosenfeld, S. Goodman, and D. Boccippio, 2005: Thermodynamic conditions favorable to superlative thunderstorm updraft, mixed phase microphysics, and lightning flash rate. Atmos. Res., 76, 288–306.

    Article  Google Scholar 

  • Ziegler, C. L., D. R. MacGorman, J. E. Dye, and P. S. Ray, 1991: A model evaluation of non-inductive graupel-ice charging in the early electrification of a mountain thunderstorm. J. Geophys. Res., 96, 12833–12855.

    Article  Google Scholar 

  • Ziegler, C.L., and D.R. MacGorman, 1994: Observed lightning morphology relative to modeled space charge and electric field distributions in a tornadic storm. J. Atmos. Sci., 51, 833–851.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Tessendorf, S.A. (2009). Characteristics of Lightning in Supercells. In: Betz, H.D., Schumann, U., Laroche, P. (eds) Lightning: Principles, Instruments and Applications. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9079-0_4

Download citation

Publish with us

Policies and ethics