Skip to main content

Abstract

Thunder properties and mechanisms have been mostly studied between 20 and 40 years ago. Infrasonic signal (frequency lower than 20 Hz), also called infrasound, has been measured in parallel to acoustic signal when lightning occur. Recent technical developments and new interest to infrasound revive research about thunder. A European measurement campaign, dedicated to sprite research, has been organised in 2005. This paper shows new results about descriptions of infrasound from lightning: maximum distance from which this kind of infrasound can be detected, infrasound frequency spectrum from 0.1 to 10 Hz completing previous ones acquired above 1 Hz. More recently, it has been shown that also sprites produce infrasound. Three-dimensional locations of infrasound sources associated to infrasound from sprites are calculated using only infrasound characteristic when sprites are close to an infrasound station.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bedard, A. J., Jr., W. A. Lyons, R. A. Armstrong, T. E. Nelson, B. Hill, and S. Gallagher, A search for low-frequency atmospheric acoustic waves associated with sprites, blue jets, elves and storm electrical activity, Eos Trans. AGU, 80(46), Fall Meet. Suppl., F227 (1999).

    Google Scholar 

  • Cansi, Y., An automatic seismic event processing for detection and location: the PMCC method, Geophys. Res. Lett., 22, 1021–1024 (1995).

    Article  Google Scholar 

  • Dessler, A. J., Infrasonic thunder, J. Geophys. Res., 78, 1889–1896 (1973).

    Article  Google Scholar 

  • Farges, T., E. Blanc, A. Le Pichon, T. Neubert, T. Allin, Identification of infrasound produced by sprites during the Sprite2003 campaign, Geophys. Res. Lett. 32, L01813, doi: 10.1029/2004GL021212 (2005).

    Article  Google Scholar 

  • Few, A. A., The production of lightning-associated infrasonic acoustic sources in thunderclouds, J. Geophys. Res., 90, 6175–6180 (1985).

    Article  Google Scholar 

  • Few, A. A., Acoustic radiations from lightning, in The Earth’s Electrical Environment, 46–60 pp., Washington, DC: National Academy Press (1986).

    Google Scholar 

  • Holmes, C. R., M. Brook, P. Krehbiel, and R. McCrory, On the power spectrum and mechanism of thunder, J. Geophys., Res., Vol. 76, 2106–2115, 1971.

    Article  Google Scholar 

  • Le Pichon, A., M. A. Garcés, E. Blanc, M. Barthelemy, and D. P. Drob, Acoustic propagation and atmosphere characteristics derived from infrasonic waves generated by the Concorde, J. Acoust. Soc. Am., 111, 629–641 (2002).

    Article  Google Scholar 

  • Le Pichon, A., L. Ceranna, M Garces, D. Drob D., and C. Millet, On using infrasound from interacting ocean swells for global continuous measurements of winds and temperature in the stratosphere, J. Geophys. Res., 111, D11106, doi: 10.1029/2005JD006690 (2006).

    Article  Google Scholar 

  • Liszka, L. J., The possible infrasound generation by sprites, J. Low Freq. Noise Vibr. Active Control, 23, 85–93 (2004).

    Article  Google Scholar 

  • MacGorman, D. R., A. A. Few, and T. L. Teer, Layered lightning activity, J. Geophys. Res., 86, 9900–9910 (1981).

    Article  Google Scholar 

  • Neubert, T., T. H. Allin, E. Blanc, T. Farges, C. Haldoupis, A. Mika, S. Soula, L. Knutsson, O. van der Velde, R. A. Marshall, U. Inan, G. Satori, J. Bor, A. Hughes, A. Collier, S. Laursen, and I. L. Rasmussen, Co-ordinated observations of transient luminous events during the EuroSprite2003 campaign, J. Atmos. Sol. Terr. Phys., 67, 807–820 (2005).

    Article  Google Scholar 

  • Pasko, V. P., U. S. Inan, and T. F. Bell, Spatial structure of sprites, Geophys. Res. Lett., 25, 2123–2126 (1998).

    Article  Google Scholar 

  • Pasko, V. P., and J. B. Snively, Mechanism of infrasound radiation from sprites, Eos Trans. AGU, 88(52), Fall Meet. Suppl., Abstract AE23A-0899, San Francisco, CA (2007).

    Google Scholar 

  • Rakov, V. A., and M. A. Uman, Lightning, Physics and Effects, Cambridge: Cambridge University Press (2003).

    Google Scholar 

  • Sutherland, L. C., and H. E. Bass, Atmospheric absorption at high altitudes, J. Acoust. Soc. Am., 115(3), 1012–1032 (2004).

    Article  Google Scholar 

  • Uman, M. A., The Lightning Discharge, 377 pp., London: Academic Press (1987).

    Google Scholar 

  • Vivas Veloso, J. A., D. R. Christie, P. Campus, M. Bell, T. L. Hoffmann, A. Langlois, P. Martysevich, E. Demirovik, J. Carvalho, and A. Kramer, Status report on the establishment of the Comprehensive Nuclear-Test-Ban Treaty (CTBT) International Monitoring System (IMS) infrasound network, J. Acoust. Soc. Am., 112, 2352–2352 (2002).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Farges, T. (2009). Infrasound from Lightning and Sprites. In: Betz, H.D., Schumann, U., Laroche, P. (eds) Lightning: Principles, Instruments and Applications. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9079-0_18

Download citation

Publish with us

Policies and ethics