Skip to main content

Abstract

Lightning detection by optical means from satellites provides a globally uniform observation of lightning. Prototypes of optical detectors have been operated by NASA on low orbit satellites for more than 10 years. For the next generation of geostationary satellites optical lightning location sensors are planned. This contribution gives an overview of the principles of optical detection of lightning from satellites and a description of the existing systems. The specifics of the data from space based sensors are discussed and the scientific results which were achieved so far are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Betz HD, Schmidt K, Oettinger WP, Wirz M (2004) Lightning detection with 3D-Discrimination of intracloud and cloud-to-ground discharges. Geophys Res Lett 31:11108, doi:10.1029/2004GL019,821

    Article  Google Scholar 

  • Blyth A, Jr HC, Driscoll K, Gadian A, Latham J (2001) Determination of ice precipitation rates and thunderstorm anvil ice contents from satellite observations of lightning. Atmos Res 59–60:217–229

    Article  Google Scholar 

  • Boccippio DJ, Cummins KL, Christian HJ, Goodman SJ (2001) Combined satellite- and surface-based estimation of the intracloud-cloud-to-ground lightning ratio over the continental United States. Mon Weather Rev 129:108–122

    Article  Google Scholar 

  • Boccippio DJ, Koshak WJ, Blakeslee RJ (2002) Performance assessment of the optical transient detector and lightning imaging sensor. Part I: Predicted diurnal variability. J Atmos Oceanic Technol 19:1318–1332

    Article  Google Scholar 

  • Boccippio DJ, Petersen WA, Cecil DJ (2005) The tropical convective spectrum. Part I: Archetypal vertical structures. J Climate 18:2744–2769, doi: 10.1175/JCLI3335.1

    Article  Google Scholar 

  • Christian HJ, Goodman SJ (1987) Optical observations of lightning from a high-altitude airplane. J Atmos Oceanic Technol 4:701–711

    Article  Google Scholar 

  • Christian HJ, Blakeslee RJ, Goodman SJ (1989) The detection of lightning from geostationary orbit. J Geophys Res 94:13329–13337

    Article  Google Scholar 

  • Christian HJ, Blakeslee RJ, Goodman SJ, Mach DA, Stewart MF, Buechler DE, Koshak WJ, Hall JM, Boeck WL, Driscoll KT, Bocippio DJ (1999) The Lightning Imaging Sensor. In: 11th International Conference on Atmospheric Electricity, June 7–11, Guntersville, Alabama, pp 746–749

    Google Scholar 

  • Christian HJ, Blakeslee RJ, Goodman SJ, Mach DM (2000) Algorithm theoretical basis document (ATBD) for the lightning imaging sensor (LIS). Tech. rep., NASA/Marshall Space Flight Center, 53 pp

    Google Scholar 

  • Christian HJ, Blakeslee RJ, Boccippio DJ, Boeck WL, Buechler DE, Driscoll KT, Goodman SJ, Hall JM, Koshak WJ, Mach DM, Stewart MF (2003) Global frequency and distribution of lightning as observed from space by the optical transient detector. J Geophys Res 108:4005, doi:10.1029/2002JD002,347

    Article  Google Scholar 

  • Davis MH, Brook M, Christian H, Heikes BG, Park CG, Roble RG, Vonnegut B, Orville R (1983) Some scientific objectives of a satellite-borne lightning mapper. Bull Amer Meteor Soc64:114–119

    Article  Google Scholar 

  • Deierling W, Petersen WA, Latham J, Ellis S, Christian HJ (2008) The relationship between lightning activity and ice fluxes in thunderstorms. J Geophys Res 113:D15210, doi:10.1029/2007JD009700

    Article  Google Scholar 

  • Finke U (2007) Statistics of the optical lightning radiation source derived from satellite observations. In: AGU – Fall Meeting 2007, Dec, 10–14, 2007, San-Francisco, CA, eos. Trans. AGU, 88(52), Fall Meet. Suppl., Abstract AE41A-01

    Google Scholar 

  • Goodman SJ, Christian HC, Rust VWD (1988) Optical pulse characteristics of intracloud and cloud-to-ground lightning observed from above clouds. J Appl Meteor27:1369–1381

    Article  Google Scholar 

  • Goodman SJ, Christian HJ (1993) Global observations of lightning. In: Gurney RJ, Foster JL, Parkinson CL (eds) Atlas of satellite observations related to global change, Cambridge University Press, pp 191–219

    Google Scholar 

  • Guo C, Krider EP (1982) The optical and radiation field signatures produced by lightning return strokes. J Geophys Res 87:8913–8922

    Article  Google Scholar 

  • Huntrieser H, Schumann U, Schlager H, Hoeller H, Giez A, Betz HD, Brunner D, Forster C, Pinto O Jr, Calheiros R (2008) Lightning activity in Brazilian thunderstorms during TROCCINOX: implications for NOx production. Atmos Chem Phys 8:921–953

    Article  Google Scholar 

  • Jacobson AR, Cummins KL, Carter M, Klingner P, Roussel-Dupre D, Knox SO (2000) FORTE radio-frequency observations of lightning strokes detected by the National Lightning Detection Network. J Geophys Res 105:15653–15662

    Article  Google Scholar 

  • Kirkland MW, Suszcynsky DM, Guillen JLL, Green JL (2001) Optical observations of terrestrial lightning by the FORTE photodiode detector. J Geophys Res 106:33499–33509

    Article  Google Scholar 

  • Koshak WJ, Solakiewicz RJ, Phanord DD, Blakeslee RJ (1994) Diffusion model for lightning radiative transfer. J Geophys Res 99:14361–14371

    Article  Google Scholar 

  • Krider EP, Guo C (1983) The peak electromagnetic power radiated by lightning return strokes. J Geophys Res 88:38471–38474

    Article  Google Scholar 

  • Kummerow C, Barnes W, Kozu T, Shiue J, Simpson J (1998) The Tropical Rainfall Measuring Mission (TRMM) sensor package. J Atmos Oceanic Technol 15:809–817

    Article  Google Scholar 

  • Light TE, Suszcynsky DM, Kirkland MW, Jacobson AR (2001) Simulations of lightning optical waveforms as seen through clouds by satellites. J Geophys Res 106:17103–17114

    Article  Google Scholar 

  • Mach DM, Blakeslee RJ, Bailey JC, Farrell WM, Goldberg RA, Desch MD, Houser JG (2005) Lightning optical pulse statistics from storm overflights during the Altus Cumulus Electrification Study. Atmos Res 76:386–401

    Article  Google Scholar 

  • Orville RE, Spengler DW (1979) Global lightning flash frequency. Mon Weather Rev 107:934–943

    Article  Google Scholar 

  • Orville RE, Henderson RW (1984) Absolute spectral irradiance measurements of lightning from 375 to 880 nm. J Atmos Sci 41:3180–3187

    Article  Google Scholar 

  • Orville RE, Henderson RW (1986) Global distribution of midnight lightning: September 1977 to August 1978. Mon Weather Rev 114:2640–2653

    Article  Google Scholar 

  • Petersen W, Christian HJ, Rutledge S (2005) TRMM observations of the global relationship between ice water content and lightning. Geophys Res Lett 32:L14819, doi:10.1029/ 2005GL023236

    Article  Google Scholar 

  • Rakov VA, Uman MA (2003) Lightning – Physics and Effects. Cambridge University Press, 687 pp

    Google Scholar 

  • Schmidt K, Betz HD, Oettinger WP, Wirz M, Pinto O Jr, Naccarato KP, Hoeller H, Fehr T, Held G (2005) A comparative analysis of lightning data during the EU-Brazil TROCCINOX / TroCCiBras campaign. In: VIII International Symposium on Lightning Protection (SIPDA), November 2005, Sao Paulo, Brazil

    Google Scholar 

  • Suszcynsky DM, Light TE, Davis S, Green JL, Guillen JLL, Myre W (2001) Coordinated observations of optical lightning from space using the FORTE photodiode detector and CCD imager. J Geophys Res 106:17897–17906

    Article  Google Scholar 

  • Thomason LW, Krider EP (1982) The effects of clouds on the light produced by lightning. J Atmos Sci 39:2051–2065

    Article  Google Scholar 

  • Thomas RJ, Krehbiel PR, Rison W, Hamlin T (2000) Comparison of ground-based 3-dimensional lightning mapping observations with satellite-based LIS observations in Oklahoma. Geophys Res Lett 27:1703–1706

    Article  Google Scholar 

  • Turman BN, Edgar BC (1982) Global lightning distributions at dawn and dusk. J Geophys Res 87:1191–1206

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Finke, U. (2009). Optical Detection of Lightning from Space. In: Betz, H.D., Schumann, U., Laroche, P. (eds) Lightning: Principles, Instruments and Applications. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9079-0_12

Download citation

Publish with us

Policies and ethics