Skip to main content

Carbon Nanotubes: From Fundamental Nanoscale Objects Towards Functional Nanocomposites and Applications

  • Conference paper
Functionalized Nanoscale Materials, Devices and Systems

Abstract

In this article we give a general introduction into the field of carbon nanotubes. On one side we describe carbon nanotubes as fundamental nanoscale objects and explain their high application potential. On the other side, we focus on carbon nanotubes as non-homogeneous materials as obtained from different sources. Methods for production, characterization, purification and functionalization and dispersions are presented explaining chances, challenges and limitations. Finally, we deal with the broad field of applications for carbon nanotubes with special emphasis onto high performance carbon nanotube composite materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Iijima, S. (1991), Nature 354, 56–58

    Article  CAS  Google Scholar 

  2. Kroto, H., Heath, J., O’Brien S., et al. (1985), Nature 318, 162–163

    Article  CAS  Google Scholar 

  3. Mintmire, J., Robertson, D., and White, C. (1993), Phys. Chem. Solids 54(12), 1835–1840

    Article  CAS  Google Scholar 

  4. Yakobson, B., Brabec, C., and Bernholc, J. (1996), Phys. Rev. Lett. 76, 2511–2514

    Article  CAS  Google Scholar 

  5. Charlier, J., Blasé, X., and Roche, S. (2007), Rev. Mod. Phys. 79, 677–731

    Article  CAS  Google Scholar 

  6. Mintmire, J., and White, C. (1995), Carbon 33, 89–902

    Article  Google Scholar 

  7. Hamada, N., and Sawada, S. (1992), Phys. Rev. Lett. 68, 1579–1581

    Article  CAS  Google Scholar 

  8. Saito, R., Fujita, M, Dresselhaus, G., and Dresselhaus, M. (1992), Appl. Phys. Lett. 60, 2204–2206

    Article  CAS  Google Scholar 

  9. Dresselhaus, M, Dresselhaus, G., Saito, R., et al. (2005), Phys. Rep. Rev. Sect. Phys. Lett. 409, 47–99

    Google Scholar 

  10. Itkis, M, Perea, D., Niyogi, S., et al. (2003), Nano Lett. 3, 309–314

    Article  CAS  Google Scholar 

  11. O’Connell, M, Bachilo, S., Huffman, C., et al. (2002), Science 293, 593–597

    Article  Google Scholar 

  12. Wildoer, J., Venema, L., Rinzler, A., Smalley, R., and Dekker, C. (1998), Nature 391, 59–62

    Article  CAS  Google Scholar 

  13. White, C., and Todorov, T. (2001), Nature 411, 649–651

    Article  CAS  Google Scholar 

  14. Frank, S., Poncharal, P., Wang, Z., and de Heer, W. (1998), Science 280, 1744–1746

    Article  CAS  Google Scholar 

  15. Zhu, Z., Bower, C., Zhou, O., Kochanski, G., and Jin, S. (1999), Appl. Phys. Lett. 75, 873–875

    Article  CAS  Google Scholar 

  16. Yue, G., Qiu, Q., Gao, B., et al. (2002), Appl. Phys. Lett. 81, 355–357

    Article  CAS  Google Scholar 

  17. Ruoff, R., and Lorents, D. (1995), Carbon 33, 925–930

    Article  CAS  Google Scholar 

  18. Dresselhaus, M, Dresselhaus, G., and Avouris, P. (Eds.) (2001), Topics in Applied Physics, vol. 80, Springer, Berlin, Germany

    Google Scholar 

  19. Benito, A., Maser, W., and Martínez, M. (2005), Int. J. Nanotechnol. 2, 71–89

    CAS  Google Scholar 

  20. Journet, C., Maser, W., Bernier, P., et al. (1997), Nature 388, 756–758

    Article  CAS  Google Scholar 

  21. Thess, A., Lee, R., Nikolaev, P., et al. (1997), Science 273, 483–487

    Article  Google Scholar 

  22. Maser, W., Muñoz, E., Benito, A., et al. (1998), Chem. Phys. Lett. 292, 587–593

    Article  CAS  Google Scholar 

  23. Pérez-Mendoza, M., Vallés, C., Maser, W., Martínez, M., and Benito, A. (2005), Nanotechnology 16, S224–S229

    Article  Google Scholar 

  24. Vallés, C., Pérez-Mendoza, M., Castell, P., et al. (2006), Nanotechnology 17, 4292–4299

    Article  Google Scholar 

  25. Colomer, J., Stephan, C., Lefrant, S., et al. (2000), Chem. Phys. Lett. 317, 83–89

    Article  CAS  Google Scholar 

  26. Vallés, C., Pérez-Mendoza, M., Martínez, M., Maser, W., and Benito, A. (2007), Diamond Relat. Mater. C 16, 1087–1090

    Article  Google Scholar 

  27. Fan, S., Chapline, M., Franklin, N., et al. (1999), Science 283, 512–514

    Article  CAS  Google Scholar 

  28. Hata, K., Futaba, D., Mizuno, K., et al. (2004), Science 306, 1362–1364

    Article  CAS  Google Scholar 

  29. Terrado, E., Redrado, M., Muñoz, E., Maser, W., Benito, A., and Martinez, M. (2006), Diamond Relat. Mater. 15, 1059–1063

    Article  CAS  Google Scholar 

  30. Nikolaev, P. (2004), J. Nanosci. Nanotechnol. 4, 307–316

    Article  CAS  Google Scholar 

  31. Chiang, I., Brinson, B., Smalley, R., et al. (2001), Phys. Chem. B 105, 1157–1161

    Article  CAS  Google Scholar 

  32. Martínez, M., Callejas, M., Benito, A., et al. (2003), Carbon 41, 2247–2256

    Article  Google Scholar 

  33. Jeong, T., Kim, W., and Hahn, Y. (2001), Chem. Phys. Lett. 344, 18–22

    Article  CAS  Google Scholar 

  34. Chattopadhyay, D., Galeska, L, and Papadimitrakopoulos, F. (2002), Carbon 40, 985–988

    Article  CAS  Google Scholar 

  35. Bettinger, H. (2003), Chem. Phys. Chem. 4, 1283–1289

    CAS  Google Scholar 

  36. Tagmatarchis, N., and Prato, M. (2004), J. Mater. Chem. 14, 437–439

    Article  CAS  Google Scholar 

  37. Khabashesku, V., Billuops, W., and Margrave, J. (2002), Acc. Chem. Res. 35, 1087–1095

    Article  CAS  Google Scholar 

  38. Islam, M., Rojas, E., Bergey, D., et al. (2003), Nano Lett. 3, 269–273

    Article  CAS  Google Scholar 

  39. Correa-Duarte, M., and Liz-Marzán, L. (2006), J. Mater. Chem. 16, 22–25

    Article  CAS  Google Scholar 

  40. Dieckmann, G., Dalton, A., Johnson, P., et al. (2003), J. Am. Chem. Soc. 125, 1770

    Article  CAS  Google Scholar 

  41. Qiao, R., and Ke, P. (2006), J. Am. Chem. Soc. 128, 13656–13657

    Article  CAS  Google Scholar 

  42. Heller, D., Jeng, E., Yeung, T., et al. (2006), Science 311, 508–511

    Article  CAS  Google Scholar 

  43. Panhuis, M., Maiti, A., Dalton, A., et al. (2003), J. Phys. Chem. B 107, 478–482

    Article  Google Scholar 

  44. Star, A., Stoddart, J., Steuermann, D., et al. (2001), Angew. Chem., Int. Ed. 40, 1721–1725

    Article  CAS  Google Scholar 

  45. Sainz, R., Benito, A., Martínez, M, et al. (2005), Adv. Mater. 17, 278–281

    Article  CAS  Google Scholar 

  46. Badaire, S., Poulin, P., Maugey, M, and Zakri, C. (2004), Langmuir 20, 10367–10370

    Article  CAS  Google Scholar 

  47. Tans, S., Verschueren, A., and Dekker, C. (1998), Nature 393(6680), 49–52

    Article  CAS  Google Scholar 

  48. Avouris, P. (2004), MRS Bull. 29, 403–410

    CAS  Google Scholar 

  49. Kong, J., Franklin, N., Zhou, C., et al. (2000), Science 287, 622–625

    Article  CAS  Google Scholar 

  50. Star, A., Gabriel, J., Bradley, K., et al. (2003), Nano Lett. 3, 459–463

    Article  CAS  Google Scholar 

  51. Bourlon, B., Glattli, D., Miko, C, Forró, L., and Bachtold, A. (2004), Nano Lett. 4, 709–712

    Article  CAS  Google Scholar 

  52. Duesberg, G., Graham, A., Liebau, M, et al. (2003), Nano Lett 3, 257–259

    Article  CAS  Google Scholar 

  53. Choi, Y., Cho, Y., Kang, J., et al. (2003), Appl. Phys. Lett. 82, 3565–3567

    Article  CAS  Google Scholar 

  54. de Jonge, N., and van Druten, N. (2003), Ultramicroscopy 95, 85–91

    Article  Google Scholar 

  55. Srivastava, A., et al. (2004), Nat. Mater. 3, 610

    Article  CAS  Google Scholar 

  56. Wu, X., Chen, Z., Du, X., et al. (2004), Science 305, 1273–1276

    Article  CAS  Google Scholar 

  57. Cao, Q., Hur, S.-H., Zhu, Z.-T., et al. (2006), Adv. Mater 18, 304–309

    Article  CAS  Google Scholar 

  58. Sippel-Oakley, J., Wang, H., Kang, B., et al. (2005), Nanotechnology 16, 2218–2221

    Article  CAS  Google Scholar 

  59. Sayago, I., Terrado, E., Lafuente, E., et al. (2005), Synth. Met. 148, 15–19

    Article  CAS  Google Scholar 

  60. Liu, G., and Lin, Y. (2006), J. Nanosci. Nanotechnol. 6, 948–953

    Article  CAS  Google Scholar 

  61. Zanello, L., Zhao, B., Hu, H., and Haddon, R. (2006), Nano Lett. 6, 562–567

    Article  CAS  Google Scholar 

  62. Dalton, A., Collins, S., Muñoz, E., et al. (2003), Nature 423, 703

    Article  CAS  Google Scholar 

  63. Bauhgman, R., Zakhidov, A., and de Heer, W. (2002), Science 297, 787–792

    Article  Google Scholar 

  64. Sandler, J., Broza, G., Nolte, M, et al. (2003), J. Macromol. Sci.-Phys. B 42, 479–488

    Article  Google Scholar 

  65. Chen, W., and Tao, X. (2005), Macromol. Rapid Commun. 26, 1763–1767

    Article  CAS  Google Scholar 

  66. Castell, P., Maser, W., Benito, A., et al. (2007), Polymer (submitted)

    Google Scholar 

  67. Qian, D., Dickey, E., Andrews, R., et al. (2000), Appl. Phys. Lett. 76, 2868–2870

    Article  CAS  Google Scholar 

  68. Biercuk, M., Llaguno, M., Radosavljecvic, M., et al. (2002), Appl. Phys. Lett. 80, 2767–2769

    Article  CAS  Google Scholar 

  69. Sandler, J., Kirk, J., Kinloch, L, et al. (2003), Polymer 44, 5893–5899

    Article  CAS  Google Scholar 

  70. Curran, S., Ajayan, P., Blau, W., et al. (1998), Adv. Mater. 10, 1091–1093

    Article  CAS  Google Scholar 

  71. Coleman, J., Curran, S., Dalton, A., et al. (1998), Phys. Rev. B 58, R7492–R7495

    Article  CAS  Google Scholar 

  72. Star, A., Stoddart, J., Steurman, D., et al. (2001), Angew. Chem. Int. Ed. 40, 1721–1725

    Article  CAS  Google Scholar 

  73. Woo, H., Czerw, R., Webster, S., et al. (2001), Synth. Met. 116, 369–372

    Article  CAS  Google Scholar 

  74. Blanchet, G., Fincher, C., and Gao, F. (2003), Appl. Phys. Lett. 82, 1290–1292

    Article  CAS  Google Scholar 

  75. Sainz, R., Small, W., Young, N., et al. (2006), Macromolecules 39, 7324–7332

    Article  CAS  Google Scholar 

  76. Picó, F., Rojo, J., Sanjuán, M., et al. (2004), J. Electrochem. Soc. 151, A831–A837

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Maser .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science + Business Media B.V.

About this paper

Cite this paper

Maser, W., Benito, A.M., Muñoz, E., Martínez, M.T. (2008). Carbon Nanotubes: From Fundamental Nanoscale Objects Towards Functional Nanocomposites and Applications. In: Vaseashta, A., Mihailescu, I.N. (eds) Functionalized Nanoscale Materials, Devices and Systems. NATO Science for Peace and Security Series B: Physics and Biophysics. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8903-9_7

Download citation

Publish with us

Policies and ethics