Skip to main content

Towards a Coherent Model for Macro, Submicro and Symbolic Representations in Chemical Education

  • Chapter
Multiple Representations in Chemical Education

Part of the book series: Models and Modeling in Science Education ((MMSE,volume 4))

Abstract

The case is made that, whilst all school-age students should appreciate the nature of and relationship between the macro and submicro types of representation (what we call the Group A Curriculum), only those students intended to study chemistry at an advanced level need to know about the quantitative aspects of symbolic representations (what we call the Group B Curriculum). The chapters in this book, together with a framework for effective curriculum change, are used to outline what needs to be done if a revised education in respect of a representational triplet is to be provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature About Students’ Conceptions

  • Aikenhead, G. S. (2006). Science education for everyday life. New York: Teachers College Press.

    Google Scholar 

  • Anderson, R. D. (1995). Curriculum reform: dilemmas and promise. Phi Delta Kappan, 77(1), 33–36.

    Google Scholar 

  • Black, P., & Atkin, J. M. (Eds.). (1996). Changing the subject. London: Routledge.

    Google Scholar 

  • Bucat, B., & Mocerino, M. (2008). Learning at the sub-micro level: Structural representations. In J. K. Gilbert, & D. F. Treagust (Eds.), Multiple representations in chemical education. Dordrecht: Springer.

    Google Scholar 

  • Chandrasegaran, A., Treagust, D. F., Mocerino, M. (1997). The development of a two-tier multiple-choice diagnostic instrument for evaluating secondary school pupils’ ability to describe and explain chemical reactions using multiple levels of representation. Chemical Education Research and Practice, 8(3), 293–207.

    Article  Google Scholar 

  • Cheng, M., & Gilbert, J. K. (2008). Towards a better utilisation of diagrams in research into the use of representations in chemical education. In J. K. Gilbert & D. F. Treagust (Eds.), Multiple representations in chemical education. Dordrecht: Springer.

    Google Scholar 

  • Chiu, M.-H., & Wu, H.-K. (2008). The roles of multimedia in the teaching and learning of the triplet relationship. In J. K. Gilbert & D. F. Treagust (Eds.), Multiple representations in chemical education. Dordrecht: Springer.

    Google Scholar 

  • Davidowitz, B., & Chittleborough, G. (2008). Linking the sub-micro and symbolic levels: Diagrams. In J. K. Gilbert & D. F. Treagust (Eds.), Mutliple representations in chemical education. Dordrecht: Springer.

    Google Scholar 

  • DeBoer, G. E. (2000). Scientific literacy: Another look at its historical and contemporary meanings and its relationship to science education reform. Journal of Research in Science Teaching, 37(6), 582–601.

    Article  Google Scholar 

  • Fensham, P. J. (2000). Providing suitable content in the ‘science for all’ curriculum. In R. Millar, J. Leach, & J. Osborne (Eds.), Improving science education: The contributions of research (pp. 147–164). Buckingham, UK: Open University Press.

    Google Scholar 

  • Ferk Savec, V., Sajovic, I., & Grm, K. S. W. (2008). Action research to promote the formation of linkages by chemistry students between the macro, sub-micro, and symbolic representation levels. In J. K. Gilbert & D. F. Treagust (Eds.), Multiple representations in chemical education. Dordrecht: Springer.

    Google Scholar 

  • Gilbert, J. K. (2005). Visualization: A metacognitive skill in science and science education. In J. K. Gilbert (Ed.), Visualization in science education. Dordrecht: Springer.

    Chapter  Google Scholar 

  • Gilbert, J. K., & Treagust, D. F. (2008a). The complex relationships between the macro / sub-micro /symbolic levels of representation in chemical education: An Introduction. In J. K. Gilbert & D. F. Treagust (Eds.), Multiple representations in chemical education. Dordrecht: Springer.

    Google Scholar 

  • Goodlad, J. (1979). Curriculum enquiry: The study of curriculum practice. New York: McGraw-Hill.

    Google Scholar 

  • Justi, R., Gilbert, J. K., & Ferreira, P. F. M. (2008). The application of a ‘model of modelling’ to illustrate the importance of metavisualization in respect of the three levels of representation. In J. K. Gilbert & D. F. Treagust (Eds.), Multiple representations in chemical education. Dordrecht: Springer.

    Google Scholar 

  • Meijer, M., Bulte, A. M., & Pilot, A. (2008). Structure-property relations between macro and sub-micro representations: Relevant meso-levels in authentic tasks. In J. Gilbert, K. & D. F. Treagust (Eds.), Multiple representations in chemical education. Dordrecht: Springer.

    Google Scholar 

  • O’Hare, M. (Ed.). (2006). Why don’ t penguins’ feet freeze? London: Profile Books.

    Google Scholar 

  • Osborne, J., & Collins, S. (2000). Pupils’ and parents views of the school science curriculum. London: King’s College London.

    Google Scholar 

  • Roberts, D. A. (2007). Scientific Literacy / Science Literacy. In S. K. Abell & N. G. Lederman (Eds.), Handbook of research in science education (pp. 729–780). Mahwah: Erlbaum.

    Google Scholar 

  • Roberts, D. A., & Ostman, L. (1998). Analysing school science courses: The concept of companion meaning. In D. A. Roberts & L. Ostman (Eds.), Problems of meaning in science curriculum (pp. 5–12). New York: Teachers College Press.

    Google Scholar 

  • Scheffel, L., Brockmeier, W., & Parchmann, I. (2008). Historical material in micro-macro thinking: Conceptual change in chemistry education and in the history of chemistry. In J. K. Gilbert & D. F. Treagust (Eds.), Multiple representations in chemical education. Dordrecht: Springer.

    Google Scholar 

  • Schwab, J. J. (1964). The structure of the natural sciences. In G. W. Ford & L. Pugno (Eds.), The structure of knowledge and the curriculum (pp. 1–31). Chicago: Rand McNally.

    Google Scholar 

  • Taber, K. (2008). Learning at the symbolic level. In J. K. Gilbert & D. F. Treagust (Eds.), Multiple representations in chemical education. Dordrecht: Springer.

    Google Scholar 

  • Tan, K. C. D., Goh, N. K., Chia, L. S., & Treagust, D. F. (2008). Linking the macroscopic, sub-microscopic and symbolic levels: The use of inorganic qualitative analysis. In J. Gilbert, K. & D. F. Treagust (Eds.), Multiple representations in chemical education. Dordrecht: Springer.

    Google Scholar 

  • Treagust, D. F., & Chandrasegaran, A. L. (2008). The efficacy of an alternative instructional program designed to enhance secondary students’ competence in the triplet relationalship. In J. K. Gilbert & D. F. Treagust (Eds.), Multiple representations in chemical education. Dordrecht: Springer.

    Google Scholar 

  • Tsaparlis, G. (2008). Learning at the macro-level: The role of practical work. In J. K. Gilbert & D. F. Treagust (Eds.), Multiple representations in chemical education. Dordrecht: Springer.

    Google Scholar 

  • Van Berkel, B., Pilot, A., & Bulte, A. M. (2008). Micro-macro thinking in chemical education: Why and how to escape. In J. K. Gilbert & D. F. Treagust (Eds.), Multiple representations in chemical education. Dordrecht: Springer.

    Google Scholar 

  • Van Den Akker, J. (1998). The science curriculum: between ideals and outcomes. In B. J. Fraser & K. G. Tobin (Eds.), International handbook of science education (Vol. 1, pp. 421–448). Dordrecht: Kluwer.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John K. Gilbert .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Gilbert, J.K., Treagust, D.F. (2009). Towards a Coherent Model for Macro, Submicro and Symbolic Representations in Chemical Education. In: Gilbert, J.K., Treagust, D. (eds) Multiple Representations in Chemical Education. Models and Modeling in Science Education, vol 4. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8872-8_15

Download citation

Publish with us

Policies and ethics