Skip to main content

Composition And Chemistry Of Tropospheric Secondary Organic Aerosols: State Of The Art

  • Conference paper
Simulation and Assessment of Chemical Processes in a Multiphase Environment
  • 1359 Accesses

Secondary organic aerosol (SOA) is formed in the atmosphere when volatile organic compounds (VOCs) are oxidized to condensable products. The VOCs are emitted from biogenic and anthropogenic sources, with the major precursors to atmospheric SOA formation being alkenes, aromatics, and possibly alkanes. The chemical reactions can be complex, involving initiation by OH radicals, NO3 radicals or O3 followed by reactions with species such as O2, NO, and peroxy radicals, as well as isomerization and decomposition. The low volatility products, which usually have multiple functional groups, can then partition to the particle phase where they can react further to form oligomers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. U. Poschl, Atmospheric aerosols: composition, transformation, climate and health effects,Angew. Chem. Int. Edit. 44, 7520–7540 (2005).

    Article  CAS  Google Scholar 

  2. M. O. Andreae and P. J. Crutzen, Atmospheric aerosols: biogeochemical sources and role in atmospheric chemistry,Science 276, 1052–1058 (1997).

    Article  CAS  Google Scholar 

  3. V. Ramanathan, P. J. Crutzen, J. T. Kiehl, and D. Rosenfeld, Atmosphere — aerosols, climate, and the hydrological cycle,Science 294, 2119–2124 (2001).

    Article  CAS  Google Scholar 

  4. W. White, Contributions to Light Extinction, Section 4 ofVisibility: Existing and Historic Conditions-Causes and Effects, edited by J. C. Trijonis, Report 24 in Acid Deposition: State of Science and Technol., edited by P. M. Irving, U.S. National Acid Precipitation Assessment Program, Washington, DC (1990), pp. 24–85 — 24–102.

    Google Scholar 

  5. A. R. Ravishankara, Heterogeneous and multiphase chemistry in the troposphere,Science 276, 1058–1065 (1997).

    Article  CAS  Google Scholar 

  6. N. Englert, Fine particles and human health — a review of epidemiological studies,Toxicol. Lett. 149, 235–242 (2004).

    Article  CAS  Google Scholar 

  7. J. H. Seinfeld, S. N. and Pandis,Atmospheric Chemistry and Physics (Wiley, New York, 1998).

    Google Scholar 

  8. J. H. Seinfeld and J. F. Pankow, Organic atmospheric particulate material,Ann. Rev. Phys. Chem. 54, 121–140 (2003).

    Article  CAS  Google Scholar 

  9. Q. Zhang et al. (31 co-authors), Ubiquity and dominance of oxygenated species in organic aerosols in anthropogenically—influenced Northern hemisphere mid-latitudes,Geophys. Res. Lett. 34, L13801, doi:10.1029/2007GL029979 (2007).

    Google Scholar 

  10. R. Atkinson and J. Arey, Atmospheric degradation of volatile organic compounds,Chem. Rev. 103, 4605–4638 (2003).

    Article  CAS  Google Scholar 

  11. A. Guenther, C. N. Hewitt, D. Erickson, R. Fall, C. Geron, T. Graedel, P. Harley, L. Klinger, M. Lerdau, W. A. McKay, T. Pierce, B. Scholes, R. Steinbrecher, R. Tallamraju, J. Taylor, and P. Zimmermann, A global model of natural volatile organic-compound emissions,J. Geophys. Res. 100, 8873–8892 (1995).

    Article  CAS  Google Scholar 

  12. J. G. Calvert, R. Atkinson, K. H. Becker, R. M. Kamens, J. H. Seinfeld, T. J. Wallington, and G. Yarwood,The Mechanisms of Atmospheric Oxidation of Aromatic Hydrocarbons (Oxford University Press, New York, 2002).

    Google Scholar 

  13. J. G. Calvert, R. Atkinson, J. A. Kerr, S. Madronich, G. K. Moortgat, T. J. Wallington, and G. Yarwood,The Mechanisms of Atmospheric Oxidation of Alkenes (Oxford University Press, New York, 2000).

    Google Scholar 

  14. K. Tsigaridis and M. Kanakidou, Global modelling of secondary organic aerosol in the troposphere: a sensitivity analysis,Atmos. Chem. Phys. 3, 1849–1869 (2003).

    CAS  Google Scholar 

  15. M. Kanakidou et al. (21 co-authors), Organic aerosol and global climate modelling: a review,Atmos. Chem. Phys. 5, 1053–1123 (2005).

    Article  CAS  Google Scholar 

  16. J. F. Pankow, An absorption model of the gas/aerosol partitioning involved in the formation of secondary organic aerosol,Atmos. Environ. 28, 189–193 (1994).

    Article  CAS  Google Scholar 

  17. J. R. Odum, T. Hoffmann, F. Bowman, D. Collins, R. C. Flagan, and J. H. Seinfeld, Gas/particle partitioning and secondary organic aerosol yields,Environ. Sci. Technol. 30, 2580–2585 (1996).

    Article  CAS  Google Scholar 

  18. Y. B. Lim and P. J. Ziemann, Products and mechanism of secondary organic aerosol formation from reactions of n-alkanes with OH radicals in the presence of NOx,Environ. Sci. Technol. 39, 9229– 9236 (2005).

    Article  CAS  Google Scholar 

  19. H. Gong, A. Matsunaga, and P. J. Ziemann, Products and mechanism of secondary organic aerosol formation from reactions of linear alkenes with NO3 radicals,J. Phys. Chem. A 109, 4312–4324 (2005).

    Article  CAS  Google Scholar 

  20. R. Atkinson, Rate constants for the atmospheric reactions of alkoxy radicals: An updated estimation method,Atmos. Environ. 41, 8468–8485 (2007).

    Article  CAS  Google Scholar 

  21. M. E. Jenkin, Modeling the formation and composition of secondary organic aerosol from α- and β-pinene ozonolysis using MCM v3,Atmos. Chem. Phys. 4, 1741–1757 (2004).

    CAS  Google Scholar 

  22. K. S. Docherty, W. Wu, Y. B. Lim, and P. J. Ziemann, Contributions of organic peroxides to secondary aerosol formed from reactions of monoterpenes with O3,Environ. Sci. Technol. 39, 4049– 4059 (2005).

    Article  CAS  Google Scholar 

  23. H. J. Tobias and P. J. Ziemann, Thermal desorption mass spectrometric analysis of organic aerosol formed from reactions of 1-tetradecene and O3 in the presence of alcohols and carboxylic acids,Environ. Sci. Technol. 34, 2105–2115 (2000).

    Article  CAS  Google Scholar 

  24. H. J. Tobias, K. S. Docherty, D. E. Beving, and P. J. Ziemann, Effect of relative humidity on the chemical composition of secondary organic aerosol formed from reactions of 1-tetradecene and O3,Environ. Sci. Technol. 34, 2116–2125 (2000).

    Article  CAS  Google Scholar 

  25. H. J. Tobias and P. J. Ziemann, Kinetics of the gas-phase reactions of alcohols, aldehydes, carboxylic acids, and water with the C13 stabilized Criegee intermediate formed from ozonolysis of 1-tetradecene,J. Phys. Chem. A 105, 6129–6135 (2001).

    Article  CAS  Google Scholar 

  26. P. J. Ziemann, Evidence for low-volatility diacyl peroxides as a nucleating agent and major component of aerosol formed from reactions of O3 with cyclohexene and homologous compounds,J. Phys. Chem. A 106, 4390–4402 (2002).

    Article  CAS  Google Scholar 

  27. E. O. Edney, D. J. Driscoll, W. S. Weathers, T. E. Kleindienst, T. S. Conover, C. D. McIver, and W. Li, Formation of polyketones in irradiated toluene/propylene/NOx/air mixtures,Aerosol Sci. Technol. 35, 998–1008 (2001).

    Article  CAS  Google Scholar 

  28. J. F. Hamilton, P. J. Webb, A. Lewis, and A. M. M. Reviejo, Quantifying small molecules in secondary organic aerosol formed during the photo-oxidation of toluene with hydroxyl radicals,Atmos. Environ. 39, 7263–7275 (2005).

    Article  CAS  Google Scholar 

  29. M. Jang, N. M. Czoschke, S. Lee, and R. M. Kamens, Heterogeneous atmospheric aerosol production by acid-catalyzed particle-phase reactions,Science 298, 814–817 (2002).

    Article  CAS  Google Scholar 

  30. Y. Iinuma, O. Boge, T. Gnauk, and H. Herrmann, Aerosol-chamber study of α-pinene/O3 reaction: influence of particle acidity on aerosol yields and products,Atmos. Environ. 38, 761–773 (2004).

    Article  CAS  Google Scholar 

  31. S. Gao, N. L. Ng, M. Keywood, V. Varutbangkul, R. Bahreini, A. Nenes, J. He, K. Y. Yoo, J. L. Beauchamp, R. P. Hodyss, R. C. Flagan, and J. H. Seinfeld, Particle phase acidity and oligomer formation in secondary organic aerosol,Environ. Sci. Technol. 38, 6582–6589 (2004).

    Article  CAS  Google Scholar 

  32. M. P. Tolocka, M. Jang, J. M. Ginter, F. J. Cox, R. M. Kamens, and M. V. Johnston, Formation of oligomers in secondary organic aerosol,Environ. Sci. Technol. 38, 1428–1434 (2004).

    Article  CAS  Google Scholar 

  33. L. Müller, M.-C. Reinnig, J. Warnke, and T. Hoffmann, Unambiguous identification of esters as oligomers in secondary organic aerosol formed from cyclohexene and cyclohexene/α-pinene ozonolysis,Atmos. Chem. Phys. Discuss. 7, 13883–13913 (2007).

    Google Scholar 

  34. J. D. Surratt, S. M. Murphy, J. H. Kroll, N. L. Ng, L. Hildebrandt, A. Sorooshian, R. Szmigielski, R. Vermeylen, W. Maenhaut, M. Claeys, R. C. Flagan, and J. H. Seinfeld, Chemical composition of secondary organic aerosol formed from the photooxidation of isoprene,J. Phys. Chem. A 110, 9665– 9690 (2006).

    Article  CAS  Google Scholar 

  35. M. Kalberer, D. Paulsen, M. Sax, M. Steinbacher, J. Dommen, A. S. H. Prevot, R. Fisseha, E. Weingartner, V. Frankevich, R. Zenobi, and U. Baltensperger, Identification of polymers as major components of atmospheric organic aerosols,Science 303, 1659–1662 (2004).

    Article  CAS  Google Scholar 

  36. R. J. Griffin, D. R. Cocker, III, R. C. Flagan, and J. H. Seinfeld, Organic aerosol formation from the oxidation of biogenic hydrocarbons,J. Geophys. Res. 104, 3555–3567 (1999).

    Article  CAS  Google Scholar 

  37. J. R. Odum, T. P. W. Jungkamp, R. J. Griffin, H. J. L. Forstner, R. C. Flagan, and J. H. Seinfeld, Aromatics, reformulated gasoline, and atmospheric aerosol organic aerosol formation,Environ. Sci. Technol. 31, 1890–1897 (1997).

    Article  CAS  Google Scholar 

  38. H. Takekawa, H. Minoura, and S. Yamazaki, Temperature dependence of secondary organic aerosol formation by photo-oxidation of hydrocarbons,Atmos. Environ. 37, 3413–3424 (2003).

    Article  CAS  Google Scholar 

  39. D. R. Cocker, III, S. L. Clegg, R. C. Flagan, and J. H. Seinfeld, The effect of water on gas-particle partitioning of secondary organic aerosol. Part I: α-pinene/ozone system,Atmos. Environ. 35, 6049– 6072 (2001).

    Article  CAS  Google Scholar 

  40. D. R. Cocker, III, B. T. Mader, M. Kalberer, R. C. Flagan, and J. H. Seinfeld, The effect of water on gas-particle partitioning of secondary organic aerosol. Part II:m-xylene and 1,3,5-trimethylbenxene photooxidation systems,Atmos. Environ. 35, 6073–6085 (2001).

    Article  CAS  Google Scholar 

  41. A. M. Jonsson, M. Hallquist, and E. Ljungstrom, Impact of humidity on the ozone initiated oxidation of limonene, ▵3carene, and α-pinene,Environ. Sci. Technol. 40, 188–194 (2006).

    Article  CAS  Google Scholar 

  42. D. Johnson, M. E. Jenkin, K. Wirtz, and M. Martin-Reviejo, Simulating the formation of secondary organic aerosol from the photooxidation of toluene,Environ. Chem. 1, 150–165 (2004).

    Article  CAS  Google Scholar 

  43. N. L. Ng, J. H. Kroll, A. W. H. Chan, P. S. Chhabra, R. C. Flagan, and J. H. Seinfeld, Secondary organic aerosol formation from m-xylene, toluene, and benzeneAtmos. Chem. Phys. 7, 3909–3922 (2007).

    CAS  Google Scholar 

  44. A. A. Presto, K. E. HuffHartz, and N. M. Donahue, Secondary organic aerosol production from terpene ozonolysis. 2. Effect of NOx concentration,Environ. Sci. Technol. 39, 7046–7054 (2005).

    Article  CAS  Google Scholar 

  45. R. Volkamer, J. L. Jimenez, F. San Martini, K. Dzepina, Q. Zhang, D. Salacedo, L. T. Molina, D. R. Worsnop, and M. J. Molina, Secondary organic aerosol formation from anthropogenic air pollution: rapid and higher than expected,Geophys. Res. Lett. 33, L17811, doi:10.1029/ 2006GL026899 (2006).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science + Business Media B.V

About this paper

Cite this paper

Ziemann, P.J. (2008). Composition And Chemistry Of Tropospheric Secondary Organic Aerosols: State Of The Art. In: Barnes, I., Kharytonov, M.M. (eds) Simulation and Assessment of Chemical Processes in a Multiphase Environment. NATO Science for Peace and Security Series C: Environmental Security. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8846-9_11

Download citation

Publish with us

Policies and ethics