Skip to main content

Fossil Microorganisms at Methane Seeps: An Astrobiological Perspective

Astrobiology of Methane Seeps

  • Chapter
From Fossils to Astrobiology

Part of the book series: Cellular Origin, Life in Extreme Habitats and Astrobiology ((COLE,volume 12))

Abstract

The recent detection of methane in the martian atmosphere has stimulated a debate on its source, including speculations on a possible biological origin as in the Earth’s atmosphere, where methane is present as a trace gas and is mostly produced by life. Large amounts of methane seepage flows from the subsurface are documented on Earth since the lower Paleozoic by the formation of authigenic carbonate deposits. Methane-derived carbonates also precipitate in the modern continental slopes throughout the world with a great variety in size and shape, and document a still active methane advection from deep sources. The interest of seep carbonates in an astrobiological perspective relies on their relationship with microbiological communities that inhabit the methane seep ecosystems and establish the base of their food chain. They also might represent terrestrial analogues for martian environments and possible models for microbial life on other planets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aharon, P. (2000). Microbial processes and products fueled by hydrocarbons at submarine seeps. In: R.E. Riding and S.M. Awramik (eds.) Microbial Sediments. Springer, New York, pp. 270–281.

    Google Scholar 

  • Aiello, I.W., Garrison, R.E., Moore, J.C., Kastner, M. and Stakes, D.S. (2001). Anatomy and origin of carbonate structures in a Miocene cold-seep field. Geology 29: 1111–1114.

    Article  ADS  Google Scholar 

  • Aloisi, V., Wallmann, K., Bollwerk, S.M., Derkachev, A., Bohrmann, G. and Suess, E. (2004). The effect dissolved barium on biogeochemical processes at cold seeps. Geochimica et Cosmochimica Acta 68: 1735–1748.

    Article  ADS  Google Scholar 

  • Altermann, W., Kazmierczak, J., Oren, A. and Wright, D. T. (2006). Cyanobacterial calcification and its rockbuilding potential during 3.5 billion years of Earth history. Geobiology 4: 147–166.

    Article  Google Scholar 

  • Baker, V.R. (2006). Water and the evolutionary geological history of Mars. Bollettino della Società Geologica Italiana 125: 357–369.

    Google Scholar 

  • Bandfield, J.L., Glotch, D. and Christensen, P.R. (2003). Spectroscopic identification of carbonate minerals in the Martian dust. Science 301: 1084–1087.

    Article  ADS  Google Scholar 

  • Barbieri, R. and Cavalazzi, B. (2005). Microbial fabrics from Neogene cold seep carbonates, Northern Apennine, Italy. Palaeogeography, Palaeoclimatology, Palaeoecology 227: 143–155.

    Article  Google Scholar 

  • Barbieri, R., Ori, G.G. and Taviani, M. (2001). Phanerozoic submarine cold vent biota and its exobiological potential. European Space Agency SP-496: 295–298.

    ADS  Google Scholar 

  • Barbieri, R., Ori, G.G. and Cavalazzi, B. (2004). A Silurian cold-seep ecosystem from Middle Atlas, Morocco. PALAIOS 19: 527–542.

    Article  Google Scholar 

  • Bauld, J., D’Amelio, E. and Farmer, J.D. (1993). Modern microbial mats. In: J.W Schopf and C. Klein (eds.) The Proterozoic Biosphere. A Multidisciplinary Study. Cambridge University Press, Cambridge, pp. 261–269.

    Google Scholar 

  • Bibring, J.-P., Langevin, Y., Gendrin, A., Gondet, B., Poulet, F., Berthé, M., Soufflot, A., Arvidson, R., Mangold, N., Mustard, J., Drossart, P. and the OMEGA team (2005). Mars surface diversity as revealed by the OMEGA/Mars Express observations. Science 307: 1576–1581.

    Article  ADS  Google Scholar 

  • Boston, P.J., Ivanov, M.V. and McKay, C.P. (1992). On the possibility of chemosynthetic ecosystems in subsurface habitats on Mars. Icarus 95: 300–308.

    Article  ADS  Google Scholar 

  • Bottjer, D.J. (2005). Geobiology and the fossil record: eukayotes, microbes, and their interactions. Palaeogeography, Palaeoclimatology, Palaeoecology 219: 5–21.

    Article  Google Scholar 

  • Campbell, K.A. (2006). Hydrocarbon seep and hydrothermal vent paleoenvironments and paleontology: past developments and future research directions. Palaeogeography, Palaeoclimatology, Palaeoecology 232: 362–407.

    Article  Google Scholar 

  • Campbell, K.A. and Bottjer, D.J. (1995). Peregrinella: an Early Cretaceous cold-seep-restricted brachiopod. Paleobiology 21: 461–478.

    Google Scholar 

  • Campbell, K.A., Farmer, J.D. and Des Marais, D. (2002). Ancient hydrocarbon seeps from the Mesozoic convergent margin of California: carbonate geochemistry, fluids and palaeoenvironments. Geofluids 2: 63–94.

    Article  Google Scholar 

  • Cavagna, S., Clari, P. and Martire, L. (1999). The role of bacteria in the formation of cold seep carbonates: geological evidence from Monferrato (Tertiary NW Italy). Sedimentary Geology 126: 253–270.

    Article  ADS  Google Scholar 

  • Cavalazzi, B. (2007). Chemotrophic filamentous microfossils from the Hollard Mound (Devonian, Morocco) as investigated by focused ion beam. Astrobiology 7: 402–415.

    Article  ADS  Google Scholar 

  • Cavalazzi, B. and Barbieri, R. (2006). Prokaryote-derived fossils from cold-seep carbonates. In: F. Briand (ed.) Fluid Seepages/Mud Volcanism in the Mediterranean and Adjacent Domains. CIESM Workshop Monographs 29, pp. 123–132.

    Google Scholar 

  • Cavalazzi, B., Barbieri, R. and Ori, G.G. (2007). Chemosynthetic microbialites in Devonian carbonate mounds of the Hamar Laghdad (Anti-Atlas, Morocco). Sedimentary Geology 200 : 73–88.

    Article  ADS  Google Scholar 

  • Chafetz, H.S., Rush, P.F. and Schoderbek, D. (1993). Occult aragonitic fabrics and structures within microbialites, Pennsylvanian Panther Seep Formation, San Andres Mountains, New Mexico, U.S.A. Carbonates and Evaporites 8 : 123–134.

    Article  Google Scholar 

  • Chen, D.F., Feng, D., Su, Z., Song, Z.G., Chen, G.Q. and Cathles III, L.M. (2006). Pyrite crystallization in seep carbonates at gas vent and hydrate site. Materials Science and Engineering: C 26: 602–605.

    Article  Google Scholar 

  • Childress, J.J., Fischer, C.R., Brooks, J.M., Kennicutt, M.C., Bidigare, R. and Anderson, A.E. (1986). A methanotrophic marine molluscan (Bivalvia, Mytilidae) symbiosis: mussels fueled by gas. Science 233 : 1306–1308.

    Article  ADS  Google Scholar 

  • Christensen, P.R., Ruff, S.W., Fergason, R. L., Knudson, A.T., Arvidson, R.E., Bandfield, J.L., Blaney, D.L., Budney, C., Calvin, W.M., Glotch, T.D., Golombek, M.P., Graff, T.G., Hamilton, V.E., Hayes, A., Johnson, J.R., McSween, H.Y., Mehall, G.L., Jr., Mehall, L.K., Moersch, J.E., Morris, R.V., Rogers, A.D., Smith, M.D., Squyres, S.W., Wolff, M.J. and Wyatt, M.B. (2004a). Initial results from the Miniature Thermal Emission Spectrometer experiment at the Spirit landing site at Gusev Crater. Science 305 : 837–842.

    Article  ADS  Google Scholar 

  • Christensen, P.R., Wyatt, M.B., Glotch, T.D., Rogers, A.D., Anwar, S., Arvidson, R.E., Bandfield, J.L., Blaney, D.L., Budney, C., Calvin, W.M., Fallacaro, A., Fergason, R.L., Gorelick, N., Graff, T.G., Hamilton, V.E., Hayes, A.G., Johnson, J.R., Knudson, A.T., McSween, H.Y., Mehall, G.L., Jr., Mehall, L.K., Moersch, J.E., Morris, R.V., Smith, M.D., Squyres, S.W., Ruff, S.W and Wolff, M.J. (2004b). Mineralogy at Meridiani Planum from the Mini-TES Experiment on the Opportunity Rover. Science 306 : 1733–1739.

    Article  ADS  Google Scholar 

  • Dickens, G.R. (1999). The blast in the past. Nature 401: 752–755.

    Article  ADS  Google Scholar 

  • Dickens, G.R. (2003). Rethinking the global carbon cycle with a large, dynamic and microbially mediated gas hydrate capacitor. Earth and Planetary Science Letters 213: 169–183.

    Article  ADS  Google Scholar 

  • Domack, E., Ishman, S., Leventer, A., Sylva, S., Willmott, V. and Huber, H. (2005a). A chemotrophic ecosystem found beneath Antarctic Ice Shelf. Eos, Transactions of the American Geophysical Union 86: 271–272.

    Article  ADS  Google Scholar 

  • Domack, E., Duran, D., Leventer, A., Ishman, S., Doane, S., McCallum, S., Amblas, D., Ring, J., Gilbert, R. and Prentice, M. (2005b). Stability of the Larsen B ice shelf on the Antarctic Peninsula during the Holocene epoch. Nature 436: 681–685.

    Article  ADS  Google Scholar 

  • Durisch-Kaiser, E., Klauser, L., Wehrli, B. and Schubert, C. (2005). Evidence of intense archaeal and bacterial methanotrophic activity in the Black Sea water column. Applied and Environmental Microbiology 71: 8099–8106.

    Article  Google Scholar 

  • Ehrlich, H.L. (1998). Geomicrobiology: its significance for geology. Earth-Science Reviews 45: 45–60.

    Article  ADS  Google Scholar 

  • Fairén, A.G., Fernández-Remolar, D., Dohm, J.M., Baker, V.R. and Amils, R. (2004). Inhibition of carbonate synthesis in acidic oceans on early Mars. Nature 431 : 423–426.

    Article  ADS  Google Scholar 

  • Fisher, C.R., MacDonald, I.R., Sasson, R., Young, C.M., Macko, S.A., Hourdez, S., Carney, R.S., Joye, S. and McMullin, E. (2000). Methane ice worms: Hesiocaeca methanolica colonizing fossil fuel reserves. Naturwissenschaften 87: 184–187.

    Article  ADS  Google Scholar 

  • Fisher, R.C. (1990). Chemoautotrophic and metanotrophic symbioses in marine invertebrates. Reviews in Aquatic Sciences 2: 399–436.

    Google Scholar 

  • Formisano, V., Atreya, S., Encrenaz, T., Ignatiev, N. and Giuranna, M. (2004). Detection of methane in the atmosphere of Mars. Science 306: 1758–1761.

    Article  ADS  Google Scholar 

  • Fujikura, K., Kojima, S., Tamaki, K., Maki, Y., Hunt, J. and Okutani, T. (1999). The deepest chemosynthesisbased community yet discovered from the hadal zone, 7326m deep, in the Japan Trench. Marine Ecology Progress Series 190: 17–26.

    Article  Google Scholar 

  • Gaidos, E.J., Nealson, K.H. and Kirschvink, J.L. (1999). Life in ice-covered oceans. Science 284: 1631–1633.

    Article  Google Scholar 

  • Gendrin, A., Mangold, N., Bibring, J.-P., Langevin, Y., Gondet, B., Poulet, F., Bonello, G., Quantin, C., Mustard, J., Arvidson, R. and LeMouélic, S. (2005). Sulfates in Martian layered terrains: the OMEGA/Mars Express view. Science 307: 1587–1591.

    Article  ADS  Google Scholar 

  • Gooding, J.L. (1992). Soil mineralogy and chemistry on Mars: possible clues from salts and clays in SNC meteorites. Icarus 99: 28–41.

    Article  ADS  Google Scholar 

  • Greinert, J., Bohrmann, G and Elvert, M. (2002). Stromatolitic fabric of authigenic carbonate crusts: result of anaerobic methane oxidation at cold seeps in 4,850m water depth. International Journal of Earth Sciences 91: 698–711.

    Article  ADS  Google Scholar 

  • Griffith, L.L. and Shock, E.L. (1995). A geochemical model for the formation of hydrothermal carbonates on Mars. Nature 377: 406–408.

    Article  ADS  Google Scholar 

  • Hansen, G., Giuranna, M., Formisano, V., Fonti, S., Grassi, D., Hirsh, H., Ignatiev, N., Maturilli, A., Orleanski, P., Piccioni, G., Rataj, M., Saggin, B. and Zasova, L. (2005). PFS-MEX observation of ices in the residual south polar cap of Mars. Planetary and Space Science 53: 1089–1095.

    Article  ADS  Google Scholar 

  • Hickman, C.S. (2003). Mollusc-microbe mutualisms extend the potential for life in hypersaline systems. Astrobiology 3: 631–644.

    Article  ADS  Google Scholar 

  • Hinrichs, K.U., Hayes, J.M., Sylva, S.P., Brewer, P.G. and DeLong, E.F. (1999). Methane-consuming archaeobacteria in marine sediments. Nature 398: 802–805.

    Article  ADS  Google Scholar 

  • Inagaki, F., Nunoura, T., Nakagawa, S., Teske, A., Lever, M., Lauer, A., Suzuki, M., Takai, K., Delwiche, M., Colwell, F.S., Nealson, K.H., Horikoshi, K., D’Hondt, S. and Jørgensen, BB. (2006). Biogeographical distribution and diversity of microbes in methane hydrate-bearing deep marine sediments on the Pacific Ocean Margin. PNAS 103: 2815–2820.

    Article  ADS  Google Scholar 

  • Jannasch, H.W., Nelson, D.C. and Wirsen CO. (1989). Massive natural occurrence of unusually large bacteria (Beggiatoa sp.) at a hydrothermal deep-sea vent site. Nature 342: 834–836.

    Article  ADS  Google Scholar 

  • Kahn, R. (1995). The evolution of CO2 on Mars. Icarus 62: 175–190.

    Article  ADS  Google Scholar 

  • Kargel, J.S. (2004). Mars — A Warmer, Wetter Planet. Springer-Praxis, Chichester.

    Google Scholar 

  • Kargel, J.S. and Lunine, J.I. (1998). Clathrate hydrates on Earth and in the solar system. In: C. de Bergh, M. Festou and B. Schmitt (eds.) Solar System Ices. Kluwer, Dordrecht, pp. 97–117.

    Google Scholar 

  • Kelley, D.S., Karson, J.A., Blackman, D.K., Früh-Green, G, Gee, J., Butterfield, D.A., Lilley, M.D., Olson, E.J., Schrenk, M.O., Roe, K.R. and Shipboard Scientific Party (2001). An off-axis hydrothermal field discovered near the Mid-Atlantic Ridge at 30°N. Nature 412: 145–149.

    Article  ADS  Google Scholar 

  • Kelley, D.S., Karson, J.A., Früh-Green, G.L., Yoerger, D.A., Butterfield, D.A., Hayes, J., Shank, T., Schrenk, M.O., Olson, E.J., Proskurowski, G., Jakuba, M., Bradleey, A., Larson, B., Ludwig, K., Glickson, D., Buckman, K., Bradley, A.S., Brazelton, W.J., Roe, K., Elend, M.J., Delacour, A., Bernasconi, S. M., Lilley, M.D., Baross, J.A., Summons, R.E. and Sylva, S.P. (2005). A serpentinite-hosted submarine ecosystem: the Lost City Hydrothermal Field. Science 307: 1428–1434.

    Article  ADS  Google Scholar 

  • Kelly, S.R.A., Ditchfield, P.W., Doubleday, P.A. and Marshall, J.D. (1995). An Upper Jurassic methane-seep limestone from the Fossil Bluff Group forearc basin of Alexander Island, Antarctica. Journal of Sedimentary Research 65: 274–282.

    Google Scholar 

  • Kennett, J.P., Cannariato, K.G., Hendy, I.L. and Behl, R.J. (2003). Methane hydrates in quaternary climate change. The Clathrate Gun hypothesis. American Geophysical Union, Special Publication 54: 1–216.

    Google Scholar 

  • Kiel, S. and Little, C.T.S. (2006). Cold seep mollusks are older than the general marine mollusk fauna. Science 313: 1429–1431.

    Article  ADS  Google Scholar 

  • Koski, R.A. and Hein, J.R. (2003). Stratiform barite deposits in the Roberts Mountains Allochthon, Nevada: a review of potential analogs in modern sea-floor environments. In: J.D. Bliss, P.R. Moyle, and K.R. Long (eds.) Contributions to Industrial-Minerals Research. U.S. Geological Survey Bulletin 2209-H, pp. 1–17.

    Google Scholar 

  • Krasnopolsky, V.A., Maillard, J.P and Owen, T.C. (2004). Detection of methane in the martian atmosphere: evidence for life? Icarus 172: 537–547.

    Article  ADS  Google Scholar 

  • Kvenvolden, K.A. (1993) A primer on gas hydrates. The future of energy gases. U.S. Geological Survey Professional Paper 1570: 279–291.

    Google Scholar 

  • Kvenvolden, K.A. and Rogers, B.W. (2005). Gaia’s breath — global methane exhalations. Marine and Petroleum Geology 22: 579–590.

    Article  Google Scholar 

  • Levin, L.A. (2005). Ecology of cold seep sediments: interactions of fauna with flow, chemistry and microbes. In: R.N. Gibson, R.J.A. Atkinson and J.D.M. Gordon (eds.) Oceanography andMarine Biology. An Annual Review 43, pp. 1–46.

    Google Scholar 

  • Lichtschlag, A., Roey, H., Niemann, H., Boetius, A., Klages, M. and deBeer, D. (2006). Microbial turnover of sulfide in combination with iron precipitation at the HMosby Mud Volcano. Geophysical Research Abstracts 8: 07069.

    Google Scholar 

  • Liljedahl, L. (1992). The Silurian Ilionia prisca, oldest known deep-burrowing suspension feeding bivalve. Journal of Paleontology 66: 206–210.

    Google Scholar 

  • Little, C.T.S., Campbell, K.A. and Herrington, R.J. (2002). Why did ancient chemosynthetic seep and vent assemblages occur in shallower water than they do today? Comment. International Journal of Earth Sciences 91: 149–153.

    Article  ADS  Google Scholar 

  • Lowenstam, H.A. (1981). Minerals formed by organisms. Science 211: 1126–1131.

    Article  ADS  Google Scholar 

  • Max, M.D. and Clifford, S.M. (2005). Crustal sources of the atmospheric methane on Mars: the association with ground ice and the potential role of local thermal anomalies. Lunar and Planetary Science Conference XXXVI, Vol. Abstracts: #2303.

    Google Scholar 

  • McCollom, T.M. (1999). Methanogenesis as a potential source of chemical energy for primary biomass production by autotrophic organisms in hydrothermal systems on Europa. Journal of Geophysical Research 104: 30729–30742.

    Article  ADS  Google Scholar 

  • McKay, D.S., Gibson, E.K., Jr., Thomas-Keprta, K.L., Vali, H., Romanek, C.S., Clemett, S.J., Chillier, X.D.F., Maechling, C.R. and Zare, R.N. (1996). Search for past life on Mars: possible relic biogenic activity in Martian meteorite ALH84001. Science 273: 924–930.

    Article  ADS  Google Scholar 

  • Meyerdierks, A., Kube, M., Lombardot, T., Knittel, K., Bauer, M., Glöckner, F.O., Reinhardt, R. and Amann, R. (2005). Insight into the genomes of archaea mediating the anaerobic oxidation of methane. Environmental Microbiology 7: 1937–1951.

    Article  Google Scholar 

  • Mumma, M.J., Novak, R.E., Hewagama, T., Villanueva, G.L., Bonev, B.P., Di Santi, M.A., Smith, M.D. and Dello Russo, N (2005). Absolute abundance of methane and water on Mars. Bulletin of the American Astronomical Society 37: Abstract 27.04.

    Google Scholar 

  • Olu-Le Roy, K., Sibuet, M., Fiala-Médioni, A., Gofas, S., Salas, C., Mariotti, A., Foucher, J.-P. and Woodside, J. (2004). Cold seep communities in the deep eastern Mediterranean Sea: composition, symbiosis and spatial distribution on mud volcanoes. Deep Sea Research I 51: 1915–1936.

    Google Scholar 

  • Orphan, V.J., Hinrichs, K.U., Ussier III, W., Paull, C.K., Taylor, L.T., Sylva, S.P., Hayes, J.M. and DeLong, E.F. (2001). Comparative analysis of methane-Oxidizing archaea and sulfate-reducing bacteria in anoxic marine sediments. Applied and Environmental Microbiology 67: 1922–1934.

    Article  Google Scholar 

  • Oze, C. and Sharma, M. (2005). Have olivine, will gas: serpentinization and the abiogenic production of methane on Mars. Geophysical Research Letters 32: L10203.

    Article  ADS  Google Scholar 

  • Parnell, J., Mazzini, A. and Honghan, C. (2002). Fluid inclusion studies of chemosynthetic carbonates: strategy for seeking life on Mars. Astrobiology 2: 43–57.

    Article  ADS  Google Scholar 

  • Peckmann, J. and Thiel, V (2004). Carbon cycling at ancient methane-seeps. Chemical Geology 205: 443–467.

    Article  Google Scholar 

  • Peckmann, J., Walliser, O.H., Riegel, W. and Reitner, J. (1999). Signatures of hydrocarbon venting in a Middle Devonian carbonate mound (Hollard Mound) at the Hamar Laghdad (Antiatlas Morocco). Facies 40: 281–296.

    Article  Google Scholar 

  • Peckmann, J., Reimer, A., Luth, U., Luth, C., Hansen, B.T., Heinicke, C., Hoefs, J. and Reitner, J. (2001). Methane-derived carbonates and authigenic pyrite from the northwestern Black Sea. Marine Geology 177: 129–150.

    Article  Google Scholar 

  • Peckmann, J., Thiel, V., Reitner, J., Taviani, M., Aharon, P. and Michaelis, W. (2004). A microbial mat of a large sulfur bacterium preserved in a Miocene methane-seep limestone. Geomicrobiology Journal 21: 247–255.

    Article  Google Scholar 

  • Pellenbarg, R.E., Max, M.D. and Clifford, S.M. (2003). Methane and carbon dioxide hydrates on Mars: potential origins, distribution, detection, and implications for future in situ resource utilization. Journal of Geophysical Research 108E4: 8042.

    Article  ADS  Google Scholar 

  • Prince, R.C., Stokley, K.E., Haith, C.E. and Jannasch, H.W. (1988). The cytochromes of a marine Beggiatoa. Archives of Microbiology 150: 193–196.

    Article  Google Scholar 

  • Reitner, J., Peckmann, J., Reimer, A., Schumann, G. and Thiel, V. (2005). Methane-derived carbonate build-ups and associated microbial communities at cold seeps on the lower Crimean shelf (Black Sea). Facies 51: 66–79.

    Article  Google Scholar 

  • Ritger, S., Carson, B. and Suess, E. (1987). Methane-derived authigenic carbonates formed by subductioninduced pore-water expulsion along the Oregon/Washington margin. Geological Society of America Bulletin 98: 147–156.

    Article  Google Scholar 

  • Robinson, C.A., Bernhard, J.M., Levin, L.A., Mendoza, G.F. and Blanks, J.K. (2004). Surficial hydrocarbon seep infauna from the Blake Ridge (Atlantic Ocean, 2150 m) and the Gulf of Mexico (690–2240m). P.S.Z.N. Marine Ecology 25: 313–336.

    Article  Google Scholar 

  • Sassen, R., Roberts, H.H., Aharon, P., Larkin, J., Chinn, E.W. and Carney, R. (1993). Chemosynthetic bacterial mats at cold hydrocarbon seeps, Gulf of Mexico continental slope. Organic Geochemistry 20: 77–89.

    Article  Google Scholar 

  • Sassen, R., Roberts, H.H., Carney, R., Milkov, A.V., DeFreitas, D.A., Lanoil, B. and Zhang, C. (2004). Free hydrocarbon gas, gas hydrate, and authigenic minerals in chemosynthetic communities of the northern Gulf of Mexico continental slope: relation to microbial processes. Chemical Geology 205: 195–217.

    Article  Google Scholar 

  • Savard, M.M., Beauchamp, B. and Veizer, J. (1996). Significance of aragonite cements around Cretaceous marine methane seeps. Journal of Sedimentary Research 66: 430–438.

    Google Scholar 

  • Schoell, M. (1988). Multiple origins of methane in the earth. Chemical Geology 71: 1–10.

    Article  Google Scholar 

  • Schweimanns, M. and Felbeck, H. (1985). Significance of the occurrence of chemoautotrophic bacterial endosymbionts in lucinid clams from Bermuda. Marine Ecology Progress Series 24: 113–120.

    Article  Google Scholar 

  • Scott, E.R.D. (1999). Origin of carbonate-magnetite-sulfide assemblages in Martian meteorite ALH84001. Journal of Geophysical Research 104E: 3803–3814.

    Article  ADS  Google Scholar 

  • Shapiro, R.S. (2004). Recognition of fossil prokaryotes in Cretaceous methane seep carbonates: relevance to astrobiology. Astrobiology 4: 438–449.

    Article  ADS  Google Scholar 

  • Sibuet, M. and Olu, K. (1998). Biogeography, biodiversity and fluid dependence of deep-sea cold-seep communities at active and passive margins. Deep-Sea Research II 45: 517–567.

    Google Scholar 

  • Sprachta, S., Camoin, G., Golubic, S. and Le Campion, T. (2001). Microbialites in a modern lagoonal environment: nature and distribution, Tikehau atoll (French Polynesia). Palaeogeography, Palaeoclimatology, Palaeoecology 175: 103–124.

    Article  Google Scholar 

  • Teichert, B.M.A., Bohrmann, G. and Suess, E. (2005). Chemoherms on Hydrate Ridge — unique microbially mediated carbonate build-ups growing into the water column. Palaeogeography, Palaeoclimatology, Palaeoecology 227: 67–85.

    Article  Google Scholar 

  • Terzi, C., Aharon, P., Ricci Lucchi, F. and Vai, G.B. (1994). Petrographic and stable isotopes aspects of coldvent activity imprinted on Miocene-age “calcari a Lucina” from Tuscan and Romagna Apennines, Italy. Geo-Marine Letters 14: 177–184.

    Article  ADS  Google Scholar 

  • Treude, T., Knittel, K., Blumenberg, M., Seifert, R. and Boetius, A. (2005). Subsurface microbial methanotrophic mats in the Black Sea. Applied and Environmental Microbiology 71: 6375–6378.

    Article  Google Scholar 

  • Tunnicliffe, V. (1992). The nature and origin of the modern hydrothermal vent fauna. PALAIOS 7: 338–350.

    Article  Google Scholar 

  • Ueno, Y., Yamada, K., Yoshida, N., Maruyama, S. and Isozaki, Y (2006). Evidence from fluid inclusions for microbial methanogenesis in the early Archaean era. Nature 440: 516–519.

    Article  ADS  Google Scholar 

  • Van Dover, C.L., German, C.R., Speer, K.G., Parson, L.M. and Vrijenhoek, R.C. (2006). Evolution and biogeography of deep-sea vent and seep invertebrates. Science 295: 1253–1257.

    Article  Google Scholar 

  • Wagner, D., Spieck, E., Bock, E. and Pfeiffer, E.-M. (2002). Microbial life in terrestrial permafrost: methanogenesis and nitrification in gelisols as potentials for exobiological processes, In: G. Horneck and C. Baumstark-Khan (eds.) Astrobiology. The Quest for the Conditions of Life. Springer, Berlin/Heidelberg, pp. 143–159.

    Google Scholar 

  • Walter, M.R. and Des Marais, D.J. (1993). Preservation of biological information in thermal spring deposits: developing a strategy for the search for fossil life on Mars. Icarus 101: 129–143.

    Article  ADS  Google Scholar 

  • Williams, L.A. (1984). Subtidal stromatolites in Monterey Formation and other organic-rich rocks as suggested source contributors to petroleum formation. American Association of Petroleum Geologists Bulletin 68: 1879–1893.

    ADS  Google Scholar 

  • Williams, L.A. and Reimers, C. (1983). Role of bacterial mats in oxygen-deficient marine basins and coastal upwelling regimes: preliminary report. Geology 11: 267–279.

    Article  ADS  Google Scholar 

  • Wong, A.S., Atreya, S.K. and Encrenaz, T. (2003). Chemical markers of possible hot spots on Mars. Journal of Geophysical Research 108E4: 5026.

    Article  ADS  Google Scholar 

  • Zhang, C.L., Huang, Z., Cantu, J., Pancost, R.D., Brigmon, R.L., Lyons, T.W and Sassen, R. (2005). Lipid biomarkers and carbon isotope signatures of a microbial (Beggiatoa) mat associated with gas hydrates in the Gulf of Mexico. Applied and Environmental Microbiology 71: 2106–2112.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Roberto Barbieri or Barbara Cavalazzi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science + Business Media B.V

About this chapter

Cite this chapter

Barbieri, R., Cavalazzi, B. (2009). Fossil Microorganisms at Methane Seeps: An Astrobiological Perspective. In: Seckbach, J., Walsh, M. (eds) From Fossils to Astrobiology. Cellular Origin, Life in Extreme Habitats and Astrobiology, vol 12. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8837-7_14

Download citation

Publish with us

Policies and ethics