Skip to main content

Organization and Assembly of Light-Harvesting Complexes in the Purple Bacterial Membrane

  • Chapter
The Purple Phototrophic Bacteria

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 28))

Summary

Recent in situ surface images of the intracytoplasmic membrane (ICM) of purple photosynthetic bacteria obtained at submolecular resolution by atomic force microscopy (AFM), have revealed multiple, species-dependent patterns of supramolecular organizations for their light-harvesting (LH) antennas, suggested earlier from spectroscopic studies. These have varied from highly ordered linear arrays of dimeric reaction center-light-harvesting 1-PufX (RC-LH1-PufX) core complexes in Rhodobacter (Rba.) sphaeroides, with the peripheral LH2 antenna either interspersed between them or arranged in larger clusters, to a less orderly arrangement found in several other purple bacteria, in which randomly organized, monomeric RC-LH1-enriched domains co-exist with large, paracrystalline hexagonally packed LH2 domains. In addition, regions with apparently crystalline core complexes were observed in Rhodopseudomonas (Rps.) palustris, along with a protein-free lipid bilayer. Likely bases for the absence of the ATP synthase and cytochrome bc 1 complex from the AFM topographs are discussed, including the possibility that they localize at the poles of ICM vesicles either out of view of flat regions imaged by AFM, or are removed during membrane preparation. We also discuss how the observed arrangements of LH2 and core complexes may specifically control quinol escape from the RC, emphasizing the importance of short-range diffusion within the disordered regions of the membrane in promoting the passage of quinone, and how this process may be augmented by quinone exclusion from large, ordered fields of the LH2 antenna. Possible forces that drive in vitro autoassembly of LH complexes are assessed along with the roles that complex-specific and general membrane assembly factors may play in driving the assembly and organization of photosynthetic units within the cell. Finally, we address likely perspectives for further studies on the organization and assembly of bacterial antenna complexes over the next decade.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

2-D:

2-dimensional

AFM:

atomic force microscopy

bc1 complex:

ubiquinol-cytochrome c 2oxidoreductase

BChl:

bacteriochlorophyll a

Blc. :

Blastochloris

BP:

bacteriophytochrome

CM:

cytoplasmic membrane

E. :

Eschericha

ICM:

intracytoplasmic membrane

LD:

linear dichroism

LH:

light-harvesting

LH1:

core light-harvesting complex

LH2:

peripheral light-harvesting complex

Phs. :

Phaeospirillum

PS II:

Photosystem II

PSU:

photosynthetic unit consisting of LH1-reaction center core structures with LH2 arranged at their peripheries

Rba. :

Rhodobacter

RC:

reaction center

Rps. :

Rhodopseudomonas

Rsp. :

Rhodospirillum

References

  • Agarwal R, Rizvi AH, Prall BS, Olsen JD, Hunter CN and Fleming GR (2002) The nature of disorder and inter-complex energy transfer in LH2 at room temperature: A three pulse photon echo peak shift study. J Phys Chem A 106: 7573–7578

    Article  CAS  Google Scholar 

  • Aird A Wrachtrup J, Schulten K and Tietz C (2007) Possible pathway for ubiquinone shuttling in Rhodospirillum rubrum revealed by molecular dynamics simulation. Biophys J 92: 23–33

    Article  PubMed  CAS  Google Scholar 

  • Aklujkar M, Prince RC and Beatty JT (2005) The puhE gene of Rhodobacter capsulatus is needed for optimal transition from aerobic to photosynthetic growth and encodes a putative negative modulator of bacteriochlorophyll production. Arch Biochem Biophys 437: 186–198

    Article  PubMed  CAS  Google Scholar 

  • Aklujkar M, Prince RC and Beatty JT (2006) The photosynthetic deficiency due to puhC gene deletion in Rhodobacter capsulatus suggests a PuhC protein-dependent process of RC/LH1/PufX complex reorganization. Arch Biochem Biophys 454: 59–71

    Article  PubMed  CAS  Google Scholar 

  • Bakker JGC, van Grondelle R and den Hollander WTF (1983) Trapping, loss and annihilation of excitations in aphotosynthetic system. II. Experiments with the purple bacteria Rhodospirillum rubrum and Rhodopseudomonas capsulata. Biochim. Biophys Acta 725: 508–518

    Article  CAS  Google Scholar 

  • Bahatyrova S, Frese RN, van der Werf KO, Otto C, Hunter CN and Olsen JD (2004a) Flexibility and size heterogeneity of the LH1 light harvesting complex revealedby atomic force microscopy: Functional significance for bacterial photosynthesis. J Biol Chem 279: 21327–21333

    Article  PubMed  CAS  Google Scholar 

  • Bahatyrova S, Frese RN, Siebert, CA, van der Werf KO, van Grondelle R, Niederman RA, Bullough PA, Otto C, Olsen JD and Hunter CN (2004b) The native architecture of a photosynthetic membrane. Nature 430: 1058–1062

    Article  PubMed  CAS  Google Scholar 

  • Barz WP, Verméglio A, Francia F, Venturoli G, Melandri BA and Oesterhelt D (1995) Role of the PufX protein in photosynthetic growth of Rhodobacter sphaeroides. 2. PufX is required for efficient ubiquinone/ubiquinol exchange between the reaction center QB site and the cytochrome bc 1 complex. Biochemistry 34: 15248–15258

    Article  PubMed  CAS  Google Scholar 

  • Bergström H, Sundström V, van Grondelle R, Gillbro T and Cogdell R (1988) Energy transfer dynamics of isolated B800–850 and B800–820 pigment-protein complexes of Rhodobacter sphaeroides and Rhodopseudomonas acidophila. Biochim Biophys Acta 936: 90–98

    Article  Google Scholar 

  • Blankenship RE, Madigan MT and Bauer CE (eds) (1995) Anoxygenic Photosynthetic Bacteria (Advances in Photosynthesis and Respiration, Vol 2). Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Boekema EJ and Braun HP (2007) Supramolecular structure of the mitochondrial oxidative phosphorylation system. J Biol Chem 282: 1–4

    Article  PubMed  CAS  Google Scholar 

  • Bowyer JR, Hunter CN, Ohnishi T and Niederman RA (1985) Photosynthetic membrane development in Rhodopseudomonas sphaeroides. Spectral and kinetic characterization of redox components of light-driven electron flow in apparent photosynthetic membrane growth initiation sites. J Biol Chem 260: 3295–3304

    PubMed  CAS  Google Scholar 

  • Chen M, Xie K, Yuan J, Yi L, Facey SJ, Pradel N, Wu LF, Kuhn A and Dalbey RE (2005) Involvement of SecDF and YidC in the membrane insertion of M13 procoat mutants. Biochemistry 44: 10741–10749

    Article  PubMed  CAS  Google Scholar 

  • Chory J, Donohue TJ, Varga AR, Staehelin LA and Kaplan S (1984) Induction of the photosynthetic membranes of Rhodopseudomonas sphaeroides: Biochermcal and morphological studies. J Bacteriol 159: 540–554

    PubMed  CAS  Google Scholar 

  • Cline K (2003) Biogenesis of green plant thylakoid membranes. In: Green BR and Parson WW (eds) Light-Harvesting Antennas in Photosynthesis (Advances in Photosynthesis and Respiration, Vol 13), pp 353–372, Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Cogdell RJ, Gall A and Kohler J (2006) The architecture and function of the light-harvesting apparatus of purple bacteria: from single molecules to in vivo membranes. Q Rev Biophys 39: 227–324

    Article  PubMed  CAS  Google Scholar 

  • Cohen-Bazire G, Sistrom WR and Stanier RY (1956) Kinetic studies of pigment synthesis by non-sulfur purple bacteria. J Cell Comp Physiol 49: 25–68

    Article  Google Scholar 

  • Comayras F, Jungas C and Lavergne J (2005a) Functional consequences of the organization of the photosynthetic apparatus in Rhodobacter sphaeroides. I. Quinone domains and excitation transfer in chromatophores and reaction center antenna complexes. J Biol Chem 280: 11203–11213

    Article  PubMed  CAS  Google Scholar 

  • Comayras F, Jungas C and Lavergne J (2005b) Functional consequences of the organization of the photosynthetic apparatus in Rhodobacter sphaeroides: II. A study of PufX- membranes. J Biol Chem. 280: 11214–11223

    Article  PubMed  CAS  Google Scholar 

  • Crofts A, Guergova-Kuras M and Hong S (1998) Chromatophore heterogeneity explains phenomena seen in Rhodobacter sphaeroides previously attributed to supercomplexes. Photosynth Res 55: 357–362

    Article  CAS  Google Scholar 

  • Dalbey RE and Kuhn A (2004) YidC family members are involved in the membrane insertion, lateral integration, folding, and assembly of membrane proteins. J Cell Biol 166: 769–774

    Article  PubMed  CAS  Google Scholar 

  • Deinum G, Aartsma TJ, van Grondelle R and Amesz J (1989) Singlet-singlet annihilation measurements on the antenna of Rhodospirillum rubrum between 300 and4 K Biochim Biophys Acta 976: 63–69

    Article  CAS  Google Scholar 

  • Deinum G, Otte SCM, Gardiner AT, Aartsma TJ, Cogdell RJ and Amesz J (1991) Antenna organization of Rhodopseudomonas acidophila: a study of the excitation migration. Biochim Biophys Acta 1060: 125–131

    Article  CAS  Google Scholar 

  • Dierstein R and Drews G (1986) Effect of uncoupler on assembly pathway for pigment-binding protein of bacterial photosynthetic membranes. J Bacteriol 168: 167–172

    PubMed  CAS  Google Scholar 

  • Drews G (1996) Formation of the light-harvesting complex I (B870) of anoxygenic phototrophic purple bacteria. Arch Microbiol 166: 151–159

    Article  PubMed  CAS  Google Scholar 

  • Drews G and Golecki JR (1995) Structure, molecular organization, and biosynthesis of membranes of purple bacteria. In: Blankenship RE, Madigan MT, Bauer CE (ed) Anoxygenic Photosynthetic Bacteria (Advances in Photosynthesis and Respiration, Vol 2), pp 231–257. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Evans K, Fordham-Skelton AP, Mistry H, Reynolds CD, Lawless AM and Papiz MZ (2005) A bacteriophytochrome regulates the synthesis of LH4 complexes in Rhodopseudomonas palustris. Photosynth Res 85: 169–180

    Article  PubMed  CAS  Google Scholar 

  • Evans K, Grossmann JG, Fordham-Skelton AP and Papiz MZ. (2006) Small-angle X-ray scattering reveals the solution structure of a bacteriophytochrome in the catalytically active Pr state. J Mol Biol 364: 655–666

    Article  PubMed  CAS  Google Scholar 

  • Facey SJ and Kuhn A (2004) Membrane integration of E. coli model membrane proteins. Biochim Biophys Acta 1694: 55–66

    Article  PubMed  CAS  Google Scholar 

  • Fejes AP, Yi EC, Goodlett DR and Beatty JT (2003) Shotgun proteomic analysis of a chromatophore-enriched preparation from the purple phototrophic bacterium Rhodopseudomonas palustris. Photosynth Res 78: 195–203

    Article  PubMed  CAS  Google Scholar 

  • Fotiadis D, Qian P, Philippsen A, Bullough PA, Engel A and Hunter CN (2004) Structural analysis of the reaction center light-harvesting complex I photosynthetic core complex of Rhodospirillum rubrum using atomic force microscopy. J Biol Chem 279: 2063–2068

    Article  PubMed  CAS  Google Scholar 

  • Francia F, Wang J, Venturoli G, Melandri BA, Barz WP and Oesterhelt D. (1999) The reaction center-LH1 antenna complex of Rhodobacter sphaeroides contains one PufX molecule which is involved in dimerization of this complex. Biochemistry 38: 6834–6845

    Article  PubMed  CAS  Google Scholar 

  • Frese RN, Olsen JD, Branvall R, Westerhuis WH, Hunter CN and van Grondelle R (2000) The long-range supraorganization of the bacterial photosynthetic unit: A key role for PufX. Proc Natl Acad Sci USA 97: 5197–5202

    Article  PubMed  CAS  Google Scholar 

  • Frese RN, Siebert CA, Niederman RA, Hunter CN, Otto C and van Grondelle R (2004) The long-range organization of a native photosynthetic membrane. Proc Natl Acad Sci USA 101: 17994–17999

    Article  PubMed  CAS  Google Scholar 

  • Geyer T and Helms V (2006a) Reconstruction of a kinetic model of the chromatophore vesicles from Rhodobacter sphaeroides. Biophys J 91: 927–937

    Article  PubMed  CAS  Google Scholar 

  • Geyer T and Helms V (2006b) A spatial model of the chromatophore vesicles of Rhodobacter sphaeroides and the position of the cytochrome bc 1 complex. Biophys J 91: 921–926

    Article  PubMed  CAS  Google Scholar 

  • Giraud E, Fardoux J, Fourrier N, Hannibal L, Genty B, Bouyer P, Dreyfus B and Verméglio A (2002) Bacteriophytochrome controls photosystem synthesis in anoxygenic bacteria. Nature 417: 202–205

    Article  PubMed  CAS  Google Scholar 

  • Giraud E, Zappa S, Vuillet L, Adriano JM, Hannibal L, Fardoux J, Berthomieu C, Bouyer P, Pignol D and Verméglio A (2005) A new type of bacteriophytochrome acts in tandem with a classical bacteriophytochrome to control the antennae synthesis in Rhodopseudomonas palustris. J Biol Chem 280: 32389–32397

    Article  PubMed  CAS  Google Scholar 

  • Gonçalves RP, Bernadac A, Sturgis JN and Scheuring S (2005) Architecture of the native photosynthetic apparatus of Phaeospirillum molischianum. J Struct Biol 152: 221–228

    Article  PubMed  CAS  Google Scholar 

  • Gubellini F, Francia F, Busselez J, Venturoli G and Levy D (2006) Functional and structural analysis of the photosynthetic apparatus of Rhodobacter veldkampii. Biochemistry 45: 10512–10520

    Article  PubMed  CAS  Google Scholar 

  • Hartigan N, Tharia HA, Sweeney F, Lawless AM and Papiz MZ (2002) The 7.5-Å electron density and spectroscopic properties of a novel low-light B800 LH2 from Rhodopseudomonas palustris. Biophys J 82: 963–977

    Article  PubMed  CAS  Google Scholar 

  • Heide R, Wiesler B, Wachter E, Neubuser A, Hoffschulte HK, Hengelage T, Schimz KL, Stuart RA and Müller M. (1997) Comparative characterization of SecA from the alpha-subclass purple bacterium Rhodobacter capsulatus and Escherichia coli reveals differences in membrane and precursor specificity. J Bacteriol 179: 4003–4012

    Google Scholar 

  • Hu X, Ritz T, Damjanovic A, Autenrieth F and Schulten K (2002) Photosynthetic apparatus of purple bacteria Q Rev Biophys 35: 1–62

    CAS  Google Scholar 

  • Hunter CN, Kramer HJM and van Grondelle R (1985) Linear dichroism and fluorescence emission of antenna complexes during photosynthetic unit assembly in Rhodopseudomonas sphaeroides. Biochim Biophys Acta 807: 44–51

    Article  CAS  Google Scholar 

  • Hunter CN, Pennoyer JD, Sturgis JN, Farrelly D and Niederman RA (1988) Oligomerization states and associations of lightharvesting pigment-protein complexes of Rhodobacter sphaeroides as analyzed by lithium dodecyl sulfate-polyacrylamide gel electrophoresis. Biochemistry 27: 3459–3467

    Article  CAS  Google Scholar 

  • Hunter CN, McGlynn P, Ashby MK, Burgess JG and Olsen JD (1991) DNA sequencing and complementation/deletion analysis of the bchA-puf operon region of Rhodobacter sphaeroides: In vivo mapping of the oxygen-regulated puf promoter. Molecular Microbiology 5: 2649–2661

    Article  PubMed  CAS  Google Scholar 

  • Hunter CN, Tucker JD and Niederman RA (2005) The assembly and organisation of photosynthetic membranes in Rhodobacter sphaeroides. Photochem Photobiol Sci 4: 1023–1027

    Article  PubMed  CAS  Google Scholar 

  • Jamieson SJ, Wang P, Qian P, Kirkland JY, Conroy MJ, Hunter CN and Bullough PA. (2002) Projection structure of the photosynthetic reaction centre-antenna complex of Rhodospirillum rubrum at 8.5 Å resolution. EMBO J 21: 3927–3935

    Article  PubMed  CAS  Google Scholar 

  • Janosi L, Kosztin I and Damjanovic A (2006) Theoretical prediction of spectral and optical properties of bacteriochlorophylls in thermally disordered LH2 antenna complexes. J Chem Phys 125: 014903

    Article  PubMed  CAS  Google Scholar 

  • Joliot P, Joliot A and Verméglio (2005) Fast oxidation of the primary electron acceptor under anaerobic conditions requires the organization of the photosynthetic chain of Rhodobacter sphaeroides in supercomplexes. Biochim Biophys Acta 1706: 204–214

    Article  PubMed  CAS  Google Scholar 

  • Jones MR (2007) Lipids in photosynthetic reaction centres: Structural roles and functional holes. Prog Lipid Res 46: 56–87

    Article  PubMed  CAS  Google Scholar 

  • Jungas C, Ranck JL, Rigaud JL Joliot P and Verméglio A (1999) Supramolecular organization of the photosynthetic apparatus of Rhodobacter sphaeroides. EMBO J 18: 534–542

    Article  PubMed  CAS  Google Scholar 

  • Karrasch S, Bullough PA and Ghosh R (1995) The 8.5 Å projection map of the light-harvesting complex I from Rhodospirillum rubrum reveals a ring composed of 16 subunits. EMBO J 14: 631–638

    PubMed  CAS  Google Scholar 

  • Kassies R, van der Werf KO, Lenferink A, Hunter CN, Olsen JD, Subramaniam V and Otto C (2005) Combined AFM and confocal fluorescence microscope for applications in bionanotechnology. J Microsc 217: 109–116

    Article  PubMed  CAS  Google Scholar 

  • Koblizek M, Shih JD, Breitbart SI, Ratcliffe EC, Kolber ZS, Hunter CN and Niederman RA. (2005) Sequential assembly of photosynthetic units in Rhodobacter sphaeroides as revealed by fast repetition rate analysis of variable bacteriochlorophyll a fluorescence. Biochim Biophys Acta 1706: 220–231

    Article  PubMed  CAS  Google Scholar 

  • Koepke J, Hu X, Muenke C, Schulten K and Michel H (1996) The crystal structure of the light-harvesting complex II (B800–850) from Rhodospirillum molischianum. Structure 4: 581–597

    Article  PubMed  CAS  Google Scholar 

  • Koyama, Y and Fujii R (1999) Cis-trans carotenoids in photosynthesis: Configurations, excited state properties and physiological functions. In: Frank HA, Young AJ, Britton G and Cogdell RJ (eds) The Photochemistry of Carotenoids (Advances in Photosynthesis and Respiration, Vol 8), pp 161–188. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Kramer H, Deinum G, Gardiner AT, Cogdell RJ, Francke C, Aartsma TJ and Amesz J (1995) Energy transfer in the photosynthetic antenna system of the purple-non-sulfur bacterium Rhodopseudomonas cryptolactis. Biochim Biophys Acta 1231: 33–40

    Article  Google Scholar 

  • Loll B, Kern J, Saenger W, Zouni A and Biesiadka J (2005) Towards complete cofactor arrangement in the 3.0 Å resolution structure of photosystem II. Nature 438: 1040–1044

    Article  PubMed  CAS  Google Scholar 

  • Luirink J and Sinning I (2004) SRP-mediated protein targeting: structure and function revisited. Biochim Biophys Acta 1694: 17–35

    PubMed  CAS  Google Scholar 

  • McDermott G, Prince SM, Freer AA, Hawthornthwaite-Lawless AM, Papiz MZ, Cogdell RJ and Isaacs NW (1995) Crystal structure of an integral membrane light-harvesting complex from photosynthetic bacteria. Nature 374: 517–521

    Article  CAS  Google Scholar 

  • Monger TG and Parson WW (1977) Singlet-triplet fusion in Rhodopseudomonas spheroides chromatophores. A probe of the organization of the photosynthetic apparatus. Biochim Biophys Acta 460: 393–407

    Article  PubMed  CAS  Google Scholar 

  • Mouritsen OG and Bloom M (1984) Mattress model of lipidprotein interactions in membranes. Biophys J 46: 141–153

    Article  PubMed  CAS  Google Scholar 

  • Niederman RA (2006) Structure, function and formation of bacterial intracytoplasmic membranes. In: Shively JM (ed) Complex Intracellular Structures in Prokaryotes, Microbiology Monographs, Vol 2, pp 193–227. Springer-Verlag, Berlin, Heidelberg

    Chapter  Google Scholar 

  • Niederman RA, Mallon DE and Parks LC (1979) Membranes of Rhodopseudomonas sphaeroides. VI. Isolation of a fraction enriched in newly synthesized bacteriochlorophyll a-protein complexes. Biochim Biophys Acta 555: 210–220

    Article  PubMed  CAS  Google Scholar 

  • Noro MG and Frenkel D (2001) Phase behavior of a simple model for membrane proteins. J Chem Phys 114: 2477–2483

    Article  CAS  Google Scholar 

  • Olsen JD and Hunter CN (1994) Protein structure modelling of the bacterial light harvesting complex. Photochem Photobiol 60: 521–535

    Article  PubMed  CAS  Google Scholar 

  • Parks LC and Niederman RA (1978) Membranes of Rhodopseudomonas sphaeroides. V. Identification of bacteriochlorophyll a-depleted cytoplasmic membrane in phototrophically grown cells. Biochim Biophys Acta 511: 70–80

    Article  PubMed  CAS  Google Scholar 

  • Parson WW and Nagarajan V (2003) Optical spectroscopy in photosynthetic antennas. In: Green BR and Parson WW (eds) Light-Harvesting Antennas in Photosynthesis (Advances in Photosynthesis and Respiration, Vol 13), pp 83–127. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Qian P, Hunter CN and Bullough PA (2005) The 8.5Å projection structure of the core RC-LH1-PufX dimer of Rhodobacter sphaeroides. J Mol Biol 349: 948–960

    Article  PubMed  CAS  Google Scholar 

  • Roszak AW, Howard TD, Southall J, Gardiner AT, Law CJ, Isaacs, NW and Cogdell RJ (2003) Crystal structure of the RC-LH1 core complex from Rhodopseudomonas palustris. Science 302: 1969–1972

    Article  PubMed  CAS  Google Scholar 

  • Scheuring S and Sturgis JN (2005) Chromatic adaptation of photosynthetic membranes. Science 309: 484–487

    Article  PubMed  CAS  Google Scholar 

  • Scheuring S and Sturgis JN (2006) Dynamics and diffusion in photosynthetic membranes from Rhodospirillum photometricum. Biophys J 91: 3707–3717

    Article  PubMed  CAS  Google Scholar 

  • Scheuring S, Reiss-Husson F, Engel A, Rigaud JL and Ranck JL (2001) High-resolution AFM topographs of Rubrivivax gelatinosus light-harvesting complex LH2. EMBO J 20: 3029–3035

    Article  PubMed  CAS  Google Scholar 

  • Scheuring S, Seguin J, Marco S, Lévy D, Robert B and Rigaud JL (2003) Nanodissection and high-resolution imaging of the Rhodopseudomonas viridis photosynthetic core complex in native membranes by AFM. Proc Natl Acad Sci USA 100: 1690–1693

    Article  PubMed  CAS  Google Scholar 

  • Scheuring S, Rigaud JL and Sturgis JN (2004a) Variable LH2 stoichiometry and core clustering in native membranes of Rhodospirillum photometricum. EMBO J 23: 4127–413

    Article  PubMed  CAS  Google Scholar 

  • Scheuring S, Sturgis JN, Prima V, Bernadac A, Lévy D and Rigaud JL (2004b) Watching the photosynthetic apparatus in native membranes. Proc Natl Acad Sci USA. 101: 11293–11297

    Article  PubMed  CAS  Google Scholar 

  • Scheuring S, Francia F, Busselez J, Melandri BA, Rigaud J-L and Lévy D (2004c) Structural role of PufX in the dimerization of the photosynthetic core complex of Rhodobacter sphaeroides. J Biol Chem 279: 3620–3626

    Article  PubMed  CAS  Google Scholar 

  • Scheuring S, Busselez J and Lévy D (2005a) Structure of the dimeric PufX-containing core complex of Rhodobacter blasticus by in situ atomic force microscopy. J Biol Chem 280: 1426–1431

    Article  PubMed  CAS  Google Scholar 

  • Scheuring S, Lévy D and Rigaud JL (2005b) Watching the components of photosynthetic bacterial membranes and their in situ organisation by atomic force microscopy. Biochim Biophys Acta 1712: 109–127

    Article  PubMed  CAS  Google Scholar 

  • Scheuring S, Gonçalves RP, Prima V and Sturgis JN (2006) The photosynthetic apparatus of Rhodopseudomonas palustris: Structures and organization. J Mol Biol 358: 83–96

    Article  PubMed  CAS  Google Scholar 

  • Scheuring S, Boudier T and Sturgis JN (2007) From high-resolution AFM topographs to atomic models of supramolecular assemblies. J Struct Biol 159: 268–276

    Article  PubMed  CAS  Google Scholar 

  • Siebert CA, Qian P, Fotiadis D, Engel A, Hunter CN and Bullough P (2004) The role of PufX in the molecular architecture of photosynthetic membranes in Rhodobacter sphaeroides. EMBO J 23: 690–700

    Article  PubMed  CAS  Google Scholar 

  • Stroh A, Anderka O, Pfeiffer K, Yagi T, Finel M, Ludwig B and Schägger H (2004) Assembly of respiratory complexes I, III, and IV into NADH oxidase supercomplex stabilizes complex I in Paracoccus denitrificans. J Biol Chem 279: 5000–5007

    Article  PubMed  CAS  Google Scholar 

  • Sturgis JN and Niederman RA (1996) The effect of different levels of the B800–850 light-harvesting complex on intracytoplasmic membrane development in Rhodobacter sphaeroides. Arch Microbiol 165: 235–242

    Article  PubMed  CAS  Google Scholar 

  • Takemoto J and Lascelles J (1973) Coupling between bacteriochlorophyll and membrane protein synthesis in Rhodopseudomonas sphaeroides. Proc Natl Acad Sci USA 70: 799–803

    Article  PubMed  CAS  Google Scholar 

  • Tunnicliffe RB, Ratcliffe EC, Hunter CN and Williamson MP (2006) The solution structure of the PufX polypeptide from Rhodobacter sphaeroides. FEBS Lett. 580: 6967–6971

    Article  PubMed  CAS  Google Scholar 

  • Van den Berg B, Clemons WM, Collinson I, ModisY, Hartmann E, Harrison SC and Rapoport TA (2004) X-ray structure of a protein-conducting channel. Nature 427: 36–44

    Article  PubMed  CAS  Google Scholar 

  • Varga AR and Staehelin LA. (1983) Spatial differentiation in photosynthetic andnon-photosynthetic membranes of Rhodopseudomonas palustris. J Bacteriol 154: 1414–1430

    PubMed  CAS  Google Scholar 

  • VerBerkmoes NC, Shah MB, Lankford PK, Pelletier DA, Strader MB, Tabb DL, McDonald WH, Barton JW, Hurst GB, Hauser L, Davison BH, Beatty JT, Harwood CS, Tabita FR, Hettich RL and Larimer FW (2006) Determination and comparison of the baseline proteomes of the versatile microbe Rhodopseudomonas palustris under its major metabolic states. J. Proteome Res. 5: 287–298

    Article  PubMed  CAS  Google Scholar 

  • Vos M, van Grondelle R, van der Kooij FW, van de Poll D, Amesz J and Duysens LMN (1986) Singlet-singlet annihilation at low temperatures in the antenna of purple bacteria. Biochim Biophys Acta 850: 501–512

    Article  CAS  Google Scholar 

  • Vos MH, van Dorssen RJ, Amesz J, van Grondelle R and Hunter CN (1988) The organisation of the photosynthetic apparatus of Rhodobacter sphaeroides: Studies of antenna mutants using singlet-singlet quenching. Biochim Biophys Acta 933: 132–140

    Article  CAS  Google Scholar 

  • Walz T, Jamieson SJ, Bowers CM, Bullough PA and Hunter CN (1998) Projection structures of three photosynthetic complexes from Rhodobacter sphaeroides: LH2 at 6Å, LH1 and LH1-RC at 25Å. J Mol Biol 282: 833–845

    Article  PubMed  CAS  Google Scholar 

  • Wang ZY, Suzuki H, Kobayashi M and Nozawa T (2007) Solution structure of the Rhodobacter sphaeroides PufX membrane protein: Implications for the quinone exchange and proteinprotein Interactions. Biochemistry 46: 3635–3642

    Article  PubMed  CAS  Google Scholar 

  • Westerhuis WHJ, Xiao Z and Niederman RA (1992) Oligomerization-state dependent spectroscopic properties of the B850 light-harvesting complex of Rhodobacter sphaeroides R-26.1. In Murata N (ed) Research in Photosynthesis, Vol. 1, pp 93–96. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Westerhuis WHJ, Vos M, van Grondelle R, Amesz J and Niederman RA (1998) Altered organization of light-harvesting complexes in phospholipid-enriched Rhodobacter sphaeroides chromatophores as determined by fluorescence yield and singlet-singlet annihilation measurements. Biochim Biophys Acta 1366: 317–329

    Article  CAS  Google Scholar 

  • Westerhuis WHJ, Sturgis JN, Ratcliffe EC, Hunter CN and Niederman RA (2002) Isolation, size estimates, and spectral heterogeneity of an oligomeric series of light-harvesting 1 complexes from Rhodobacter sphaeroides. Biochemistry 41: 8698–8707

    Article  PubMed  CAS  Google Scholar 

  • Young CS and Beatty JT (2003) Multi-level regulation of purple bacterial light-harvesting complexes. In: Green BR and Parson WW (ed) Light-harvesting antennas in photosynthesis (Advances in Photosynthesis and Respiration, Vol 13), pp 449–470. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert A. Niederman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science + Business Media B.V

About this chapter

Cite this chapter

Sturgis, J.N., Niederman, R.A. (2009). Organization and Assembly of Light-Harvesting Complexes in the Purple Bacterial Membrane. In: Hunter, C.N., Daldal, F., Thurnauer, M.C., Beatty, J.T. (eds) The Purple Phototrophic Bacteria. Advances in Photosynthesis and Respiration, vol 28. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8815-5_14

Download citation

Publish with us

Policies and ethics