Skip to main content

Structure-Function Relationships in Bacterial Light-Harvesting Complexes Investigated by Reconstitution Techniques

  • Chapter
The Purple Phototrophic Bacteria

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 28))

Summary

Exploration of conditions to achieve the reversible dissociation of the core light-harvesting complexes (LH1) of photosynthetic bacteria led to the isolation of the fundamental subunit complex, B820. Further reversible dissociation of B820 provided conditions for reconstitution of both this subunit complex and LH1 from separately isolated polypeptides and bacteriochlorophyll (BChl). Native-like LH1 complexes have also been reconstituted using BChl, isolated polypeptides from Rhodospirillum (Rsp.) rubrum or Rhodobacter (Rba.) sphaeroides and carotenoid. The reconstitution methodology has also been applied to the peripheral light-harvesting complex (LH2) of Phaeospirillum (Phs.) molischianum in which it was demonstrated that LH2 contained the same B820-type subunit structure found in LH1.

Since the interaction between B820 and its individual components could be studied under equilibrium conditions, many structure-function questions could be addressed as well as thermodynamic parameters established. The subunit structure was shown to consist of α1β1·2BChl with overlap at rings III and V of the BChls. Minimal requirements for B820 formation include (1) a polypeptide of at least 26 amino acids, 18 of which constitute an α-helix with hydrophobic side chains, (2) a His residue for coordination and hydrogen bonding to BChl and (3) a Trp residue for hydrogen bonding to the C31 carbonyl of BChl. The His interaction accounted for over half of the stabilization energy of the B820 complex. Hydrogen bonds involving the Trp residues provide a second major stabilization of approximately 3.5 kcal/Trp. Finally, some stabilization is provided by specific interactions between the α and β polypeptides in their N-terminal regions, most likely exhibiting the same structural motif as found in the crystal structure of Phs. molischianum LH2.

Reconstitution methodology has also been used to study formation of the reaction center-LH1 (RC-LH1) core complex, which exhibited physical properties analogous to the native complex, and to study the interaction and function of PufX. Currently, the isolation and reconstitution methodology is being applied to reconstitute the RC from its fundamental components.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

BChl:

bacteriochlorophyll; BChl a is implied unless BChl b is indicated

CD:

circular dichroism

EM:

electron microscopy

HPLC:

high performance liquid chromatography

K A :

association constant for binding

K D :

dissociation constant for binding

LH1:

core light-harvesting complex, also called B875, B890, etc. depending on the far-red absorption maximum

LH2:

peripheral light-harvesting complex, also called B800-850, for example

NMR:

nuclear magnetic resonance

PAGE:

polyacrylamide gel electrophoresis

Phs. :

Phaeospirillum

PRC:

photoreceptor complex which contains LH1 and RC

QB :

quinone on the B-side of the reaction center

Rba. :

Rhodobacter

RC:

reaction center

Rps. :

Rhodopseudomonas

RR:

resonance Raman

Rsp. :

Rhodospirillum

SDS:

sodium dodecyl sulfate

UQ:

ubiquinone

β-OG:

n-octyl β-D-glucopyranoside

λmax :

wavelength of maximum absorption

References

  • Arluison V, Seguin J, Le Caer J-P, Sturgis JN and Robert B (2004) Hydrophobic pockets at the membrane interface: An original mechanism for membrane protein interactions. Biochemistry 43: 1276–1282

    Article  PubMed  CAS  Google Scholar 

  • Bahatyrova S, Frese RN, van der Werf KO, Otto C, Hunter CN and Olsen JD (2004) Flexibility and size heterogeneity of the LH1 light harvesting complex revealed by atomic force microscopy — functional significance for bacterial photosynthesis. J Biol Chem 279: 21327–21333

    Article  PubMed  CAS  Google Scholar 

  • Brunisholz RA, Cuendet PA, Theiler R and Zuber H (1981) The complete amino acid sequence of the single light harvesting protein from chromatophores of Rhodospirillum rubrum G-9+. FEBS Lett 129: 150–154

    Article  CAS  Google Scholar 

  • Brunisholz RA, Suter F and Zuber H (1984)The light-harvesting polypeptides of Rhodospirillum rubrum. 1. The amino-acid-sequence of the second light-harvesting polypeptide B880-β (B-870-β) of Rhodospirillum rubrum S-1 and the carotenoidless mutant G-9+. Aspects of the molecular structure of the two light-harvesting polypeptides B880-α(B870-α) and B880-β (B870-β) and of the antenna complex B880 (B870) from Rhodospirillum rubrum. Hoppe-Seyler’s Z Physiol Chem 365: 675–688

    PubMed  CAS  Google Scholar 

  • Bustamante PL and Loach PA (1994) Reconstitution of a functional photoreceptor complex with isolated subunits of core light-harvesting complex and reaction centers. Biochemistry 33: 13329–13339

    Article  PubMed  CAS  Google Scholar 

  • Bylina E J, Robles S J, and Youvan DC (1988) Directed mutations affecting the putative bacteriochlorophyll-binding sites in light-harvesting I antenna of Rhodobacter capsulatus. Israel J Chem 28: 73–78

    CAS  Google Scholar 

  • Chang MC, Callahan PC, Parkes-Loach PS, Cotton TM and Loach PA (1990a) Spectroscopic characterization of the light-harvesting complex of Rhodospirillum rubrum and its structural subunit. Biochemistry 29: 421–429

    Article  PubMed  CAS  Google Scholar 

  • Chang MC, Meyer L and Loach PA (1990b) Isolation and characterization of a structural subunit from the core light-harvesting complex of Rhodobacter sphaeroides 2.4.1 and puc705-BA. Photochem Photobiol 52: 873–881

    Article  PubMed  CAS  Google Scholar 

  • Cotton TM (1976) Spectroscopic investigations of chlorophyll a as donor and acceptor: A basis for chlorophyll a interaction in vivo. PhD Thesis, Northwestern University, Evanston, Illinois

    Google Scholar 

  • Cotton TM and van Duyne RP (1981) Characterization of bacteriochlorophyll interactions in vitro by resonance Raman spectroscopy. J Am Chem Soc 103: 6020–6024

    Article  CAS  Google Scholar 

  • Davis CM, Bustamante PL and Loach PA (1995) Reconstitution of the bacterial core light-harvesting complexes of Rhodobacter sphaeroides and Rhodospirillum rubrum with isolated α- and β-polypeptides, bacteriochlorophyll and carotenoid. J Biol Chem 270: 5793–5804

    Article  PubMed  CAS  Google Scholar 

  • Davis CM, Parkes-Loach PS, Cook CK, Meadows KA, Bandilla M, Scheer H and Loach PA (1996) Comparison of the structural requirements for bacteriochlorophyll binding in the core light-harvesting complexes of Rhodospirillum rubrum and Rhodobacter sphaeroides using reconstitution methodology with bacteriochlorophyll analogs. Biochemistry 35: 3072–3084

    Article  PubMed  CAS  Google Scholar 

  • Davis CM, Bustamante PL, Todd JB, Parkes-Loach PS, McGlynn P, Olsen JD, McMaster L, Hunter CN and Loach PA (1997) Evaluation of structure-function relationships in the core light-harvesting complex (LH1) of photosynthetic bacteria by reconstitution with mutant polypeptides. Biochemistry 36: 3671–3679

    Article  PubMed  CAS  Google Scholar 

  • Dewa T, Yamada T, Ogawa M, Sugimoto M, Mizuno T, Yoshida K, Nakao Y, Kondo M, Iida K, Yamashita K, Tanaka T and Nango M (2005) Design and expression of cysteine-bearing hydrophobic polypeptides and their self-assembling properties with bacteriochlorophyll a derivatives as a mimic of bacterial photosynthetic antenna complexes. Effect of steric confinement and orientation of the polypeptides on the pigment/polypeptide assembly process. Biochemistry 44: 5129–5139

    Article  PubMed  CAS  Google Scholar 

  • Farchaus JW, Gruenberg H, Gray KA, Wachveitl J, DeHoff B, Kaplan S and Oesterhelt D (1990a) The puf L, M, X deletion strain. In: Drews G and Dawes EA (eds) Molecular Biology of Membrane-Bound Complexes in Phototropic Bacteria, pp 65–76. Plenum Press, New York

    Google Scholar 

  • Farchaus JW, Gruenberg H and Oesterhelt D (1990b) Complementation of a reaction center-deficient Rhodobacter sphaeroides pufLMX deletion strain in trans with pufBALM does not restore the photosynthesis-positive phenotype. J Bacteriol 172: 977–985

    PubMed  CAS  Google Scholar 

  • Fiedor L and Scheer H (2005) Trapping of an assembly intermediate of photosynthetic LH1 antenna beyond B820 subunit. J Biol Chem 280: 20921–20926

    Article  PubMed  CAS  Google Scholar 

  • Fotiadis D, Qian P, Pilippsen A, Bullough PA, Engel A and Hunter CN (2004) Structural analysis of the RC-LH1 photosynthetic core complex of Rhodospirillum rubrum using atomic force microscopy. J Biol Chem 279: 2063–2068

    Article  PubMed  CAS  Google Scholar 

  • Fowler GJS, Sockalingum GD, Robert B and Hunter CN (1994) Blue shifts in bacteriochlorophyll absorbance correlate with changed hydrogen bonding patterns in light-harvesting 2 mutants of Rhodobacter sphaeroides with alterations at α-Tyr-44 and α-Tyr-45. Biochem J 299: 695–700

    PubMed  CAS  Google Scholar 

  • Francia F, Wang J, Venturoli G, Melandri BA, Barz WP and Oesterhelt D (1999) The reaction center-LH1 antenna complex of Rhodobacter sphaeroides contains one PufX molecule which is involved in dimerization of this complex. Biochemistry 38: 6834–6845

    Article  PubMed  CAS  Google Scholar 

  • Francia F, Wang J, Venturoli G and Oesterhelt D (2002) Role of the N- and C-terminal regions of the PufX protein in the structural organization of the photosynthetic core complex of Rhodobacter sphaeroides. Eur J Biochem 269: 1877–1885

    Article  PubMed  CAS  Google Scholar 

  • Francke C and Amesz J (1995) The size of the photosynthetic unit in purple bacteria. Photosynth Res 46: 347–352

    Article  CAS  Google Scholar 

  • Frank HA and Cogdell RJ (1995) Carotenoids in photosynthesis. Photochem Photobiol 63: 257–264

    Article  Google Scholar 

  • Georgakopoulou S, Frese RN, Johnson E, Koolhaas C, Cogdell R, van Grondelle R and van der Zwan G (2002) Absorption and CD spectroscopy and modeling of various LH2 complexes from purple bacteria. Biophys J 82: 2184–2197

    Article  PubMed  CAS  Google Scholar 

  • Georgakopoulou S, van Grondelle R and van der Zwan G (2006) Explaining the visible and near-infrared circular dichroism spectra of light-harvesting 1 complexes from purple bacteria: A modeling study. J Phys Chem B 110: 3344–3353

    Article  PubMed  CAS  Google Scholar 

  • Germeroth L, Lottspeich F, Robert B and Michel H (1993) Unexpected similarities of the B800–850 light-harvesting complex from Rhodospirillum molischianum to the B870 light-harvesting complexes from other purple photosynthetic bacteria. Biochemistry 32: 5615–5621

    Article  PubMed  CAS  Google Scholar 

  • Heller BA and Loach PA (1990) Isolation and characterization of a subunit form of the B875 light-harvesting complex from Rhodobacter capsulatus. Photochem Photobiol 51: 621–627

    Article  PubMed  CAS  Google Scholar 

  • Hu X and Schulten K (1998) Model for the light-harvesting complex I B875 of Rhodobacter sphaeroides. Biophys J 75: 683–694

    Article  PubMed  CAS  Google Scholar 

  • Jamieson SJ, Wang P, Qian P, Kirkland JY, Conroy M, Hunter CN and Bullough PA (2002) Projection structure of the photosynthetic reaction centre-antenna complex of Rhodospirillum rubrum at 8.5 Å resolution. EMBO J 21: 3927–3935

    Article  PubMed  CAS  Google Scholar 

  • Jirsakova V and Reiss-Husson F (1993) Isolation and characterization of the core light-harvesting complex B875 and its subunit form, B820, from Rhodocyclus gelatinosus. Biochim Biophys Acta 1138: 301–308

    Google Scholar 

  • Jungas C, Ranck J-L, Rigaud J-L, Joliot P and Verméglio A (1999) Supramolecular organization of the photosynthetic apparatus of Rhodobacter sphaeroides. EMBO J 18: 534–542

    Article  PubMed  CAS  Google Scholar 

  • Kashiwada A, Watanabe H, Mizuno T, Iida K Miyatake T, Tamiaki H, Kobayashi M and Nango M (2000a) Structural requirements of zinc porphyrin derivatives on the complex-forming with light-harvesting polypeptides. Chem Lett 29: 158–159

    Article  Google Scholar 

  • Kashiwada A, Watanabe H, Tanaka T and Nango M (2000b) Molecular assembly of zinc bacteriochlorophyll a by synthetic hydrophobic 1α-helix polypeptides. Chem Lett 29: 24–25

    Article  Google Scholar 

  • Kehoe JW, Meadows, KA, Parkes-Loach PS and Loach PA (1998) Reconstitution of light-harvesting complexes of photosynthetic bacteria using chemically synthesized polypeptides: II. Determination of structural features that stabilize complex formation and implications on the structure of the subunit complex. Biochemistry 37: 3418–3428

    Article  PubMed  CAS  Google Scholar 

  • Kerfeld CA, Yeates TO and Thornber JP (1994) Biochemical and spectroscopic characterization of the reaction center-LHI complex and the carotenoid-containing B820 subunit of Chromatium purpuratum. Biochim Biophys Acta 1185: 193–202

    Article  PubMed  CAS  Google Scholar 

  • Klug G and Cohen SN (1988) Pleiotropic effects of localized Rhodobacter capsulatus puf operon deletions on production of light-absorbing pigment-protein complexes. J Bacteriol 170: 5814–5821

    PubMed  CAS  Google Scholar 

  • Koepke J, Hu X, Muenke C, Schulten K and Michel H (1996) The crystal structure of the light-harvesting complex II (B800–850) from Rhodospirillum molischianum. Structure 4: 581–597

    Article  PubMed  CAS  Google Scholar 

  • Law CJ, Chen J, Parkes-Loach PS and Loach PA (2003) Interaction of bacteriochlorophyll with the LH1 and PufX polypeptides of photosynthetic bacteria: Use of chemically synthesized analogs and covalently attached fluorescent probes. Photosynth Res 75: 193–210

    Article  PubMed  CAS  Google Scholar 

  • Loach PA and Parkes-Loach PS (1995) Structure-function relationships in core light-harvesting complexes (LHI) as determined by characterization of the structural subunit and by reconstitution experiments. In: Blankenship RE, Madigan MT and Bauer CD (eds) Anoxygenic Photosynthetic Bacteria (Advances in Photosynthesis and Respiration, Vol 2), pp 437–471. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Loach PA and Sekura DL (1968) Primary photochemistry and electron transport in Rhodospirillum rubrum. Biochemistry 7: 2642–2649

    Article  PubMed  CAS  Google Scholar 

  • Loach PA, Parkes-Loach PS, Davis CM and Heller BA (1994) Probing protein structural requirements for formation of the core light-harvesting complex of photosynthetic bacteria using hybrid reconstitution methodology. Photosynth Res 40: 235–246

    Article  Google Scholar 

  • McDermott G, Prince SM., Freer AA., Hawthornthwaite-Lawless AM, Papiz MZ, Cogdell RJ and Isaacs NW (1995) Crystal structure of an integral membrane light-harvesting complex from photosynthetic bacteria. Nature 374: 517–521

    Article  CAS  Google Scholar 

  • McGlynn P, Westerhuis WHJ, Jones MR and Hunter CN (1996) Consequences for the organization of reaction center-light harvesting antenna 1 (LH 1) core complexes of Rhodobacter sphaeroides arising from deletion of amino acid residues from the C terminus of the LH1 α polypeptide. J Biol Chem 271: 3285–3292

    Article  PubMed  CAS  Google Scholar 

  • Meadows KA, Iida K, Kazuichi T, Recchia PA, Heller BA, Antonio B, Nango M and Loach P (1995) Enzymatic and chemical cleavage of the core light-harvesting polypeptides of photosynthetic bacteria: Determination of the minimal polypeptide size and structure required for subunit and light-harvesting complex formation. Biochemistry 34: 1559–1574

    Article  PubMed  CAS  Google Scholar 

  • Meadows KA, Parkes-Loach PS, Kehoe JW and Loach PA (1998) Reconstitution of light-harvesting complexes of photosynthetic bacteria using chemically synthesized polypeptides: I. Minimal requirements for subunit formation. Biochemistry 37: 3411–3417

    Article  PubMed  CAS  Google Scholar 

  • Meckenstock RU, Brunisholz RA and Zuber H (1992) The light-harvesting core-complex and the B820-subunit from Rhodopseudomonas marina. Part 1. Purification and characterization. FEBS Lett 311: 128–134

    Article  PubMed  CAS  Google Scholar 

  • Miller JF, Hinchigeri SB, Parkes-Loach PS, Callahan PM, Sprinkle JR, Riccobono JR and Loach PA (1987) Isolation and characterization of a subunit form of the light-harvesting complex of Rhodospirillum rubrum. Biochemistry 26: 5055–5062

    Article  PubMed  CAS  Google Scholar 

  • Nagata M, Nango M, Kashiwada A, Yamada S, Ito S, Sawa N, Ogawa M, Iida K, Kurono Y and Ohtsuka T (2003a) Construction of photosynthetic antenna complex using light-harvesting polypeptide-α from photosynthetic bacteria, R. rubrum with zinc substituted bacteriochlorophyll α. Chem Lett 32: 216–217

    Article  CAS  Google Scholar 

  • Nagata M, Yoshimura Y, Inagaki J, Suemori Y, Iida K, Ohtsuka T and Nango M (2003b) Construction and photocurrent of light-harvesting polypeptides/zinc bacteriochlorophyll a complex in lipid bilayers. Chem Lett 32: 852–853

    Article  CAS  Google Scholar 

  • Nango M, Kashiwada A, Watanabe H, Yamada S, Yamada T, Ogawa M, Tanaka T and Iida K (2002) Molecular assembly of bacteriochlorophyll a using light-harvesting model 1α-helix polypeptides and 2α-helix polypeptide with disulfide-linkage. Chem Lett 2002: 312–314

    Article  Google Scholar 

  • Noy D and Dutton PL (2006) Design of a minimal polypeptide unit for bacteriochlorophyll binding and self-assembly based on photosynthetic bacterial light-harvesting proteins. Biochemistry 45: 2103–2113

    Article  PubMed  CAS  Google Scholar 

  • Okamura MY and Feher G (1992) Proton transfer in reaction centers from photosynthetic bacteria. Annu Rev Biochem 61: 861–896

    Article  PubMed  CAS  Google Scholar 

  • Olsen JD (1994) The role of highly conserved amino-acidresidues in the light-harvesting 1 complex of Rhodobacter sphaeroides. PhD Thesis, University of Sheffield

    Google Scholar 

  • Olsen JD, Sockalingum GD, Robert B and Hunter CN (1994) Modification of a hydrogen bond to a bacteriochlorophyll a molecule in the light-harvesting 1 antenna of Rhodobacter sphaeroides. Proc Natl Acad Sci USA 91: 7124–7128

    Article  PubMed  CAS  Google Scholar 

  • Olsen JD, Sturgis JN, Westerhuis WHJ, Fowler GJS, Hunter CN and Robert B (1997) Site-directed modification of the ligands to the bacteriochlorophylls of the light-harvesting LH1 and LH2 complexes of Rhodobacter sphaeroides. Biochemistry 36: 12625–12632

    Article  PubMed  CAS  Google Scholar 

  • Pandit A, Visschers RW, van Stokkum IHM, Krayenhof R and van Grondelle R (2001) Oligomerization of light-harvesting I antenna peptides of Rhodospirillum rubrum. Biochemistry 40: 12913–12924

    Article  PubMed  CAS  Google Scholar 

  • Pandit A, van Stokkum IHM, Georgakopoulou S, van der Zwan G and van Grondelle R (2003) Investigations of intermediates appearing in the reassociation of the light-harvesting 1 complex of Rhodospirillum rubrum. Photosynth Res 75: 235–248

    Article  PubMed  CAS  Google Scholar 

  • Parkes-Loach PS, Sprinkle JR and Loach PA (1988) Reconstitution of the B873 light-harvesting complex of Rhodospirillum rubrum from the separately-isolated α- and β-polypeptides and bacteriochlorophyll a. Biochemistry 27: 2718–2727

    Article  PubMed  CAS  Google Scholar 

  • Parkes-Loach PS, Michalski TJ, Bass WJ, Smith U and Loach PA (1990) Probing the bacteriochlorophyll binding site by reconstitution of the light-harvesting complex of Rhodospirillum rubrum with bacteriochlorophyll a analogues. Biochemistry 29: 2951–2960

    Article  PubMed  CAS  Google Scholar 

  • Parkes-Loach PS, Jones SM and Loach PA (1994) Probing the structure of the core light-harvesting complex (LHI) of Rhodopseudomonas viridis by dissociation and reconstitution methodology. Photosynth Res 40: 247–261

    Article  CAS  Google Scholar 

  • Parkes-Loach PS, Law CJ, Recchia PA, Kehoe J, Nehrlich S, Chen J and Loach PA (2001) Role of the core region of the PufX protein in inhibition of reconstitution of the core light-harvesting complexes of Rhodobacter sphaeroides and Rhodobacter capsulatus. Biochemistry 40: 5593–5601

    Article  PubMed  CAS  Google Scholar 

  • Parkes-Loach PS, Majeed AP, Law CJ and Loach PA (2004) Interactions stabilizing the structure of the core light-harvesting complex (LH1) of photosynthetic bacteria and its subunit (B820). Biochemistry 43: 7003–7016

    Article  PubMed  CAS  Google Scholar 

  • Parson WW (1991) Reaction centers. In: Scheer H (ed) Chlorophylls, pp 1153–1180. CRC Press, Boca Raton

    Google Scholar 

  • Prince SM, Papiz MZ, Freer AA, McDermott G, Hawthornthwaite-Lawless AM, Cogdell RJ and Isaacs NW (1997) Apoprotein structure in the LH2 complex from Rhodopseudomonas acidophila strain 10050: Modular assembly and protein pigment interactions. J Mol Biol 268: 412–423

    Article  PubMed  CAS  Google Scholar 

  • Pugh RJ, McGlynn P, Jones MR and Hunter CN (1998) The LH 1-RC core complex of Rhodobacter sphaeroides: Interaction between components, time-dependent assembly, and topology of the PufX protein. Biochim Biophys Acta 1366: 301–316

    Article  PubMed  CAS  Google Scholar 

  • Qian P, Hunter CN and Bullough PA (2005) The 8.5 Å projection structure of the core RC-LH1-PufX dimer of Rhodobacter sphaeroides. J Mol Biol 349: 948–960

    Article  PubMed  CAS  Google Scholar 

  • Recchia PA, Davis CM, LilburnTG, Beatty JT, Parkes-Loach PS, Hunter CN and Loach PA (1998) Isolation of the PufX protein from Rhodobacter capsulatus and Rhodobacter sphaeroides: Evidence for its interaction with the α-polypeptide of the core light harvesting complex. Biochemistry 37: 11055–11063

    Article  PubMed  CAS  Google Scholar 

  • Robert B and Lutz M (1985) Structure of antenna complexes of several Rhodospirillales from their resonance Raman spectra. Biochim Biophys Acta 807: 10–23

    Article  CAS  Google Scholar 

  • Scheuring S, Busselez J and Levy D (2005) Structure of the dimeric PufX-containing core complex of Rhodobacter blasticus by in situ atomic force microscopy. J Biol Chem 280: 1426–1431

    Article  PubMed  CAS  Google Scholar 

  • Srivatsan N and Norris JR (2001) Electron paramagnetic resonance study of oxidized B820 complexes. J Phys Chem B 105: 12391–12398

    Article  CAS  Google Scholar 

  • Sturgis J and Robert B (1994) Thermodynamics of membrane polypeptide oligomerization in light-harvesting complexes and associated structural changes. J Mol Biol 238: 445–454

    Article  PubMed  CAS  Google Scholar 

  • Sturgis JN, Olsen JD, Robert B and Hunter CN (1997) Functions of conserved tryptophan residues of the core light-harvesting complex of Rhodobacter sphaeroides. Biochemistry 36: 2772–2778

    Article  PubMed  CAS  Google Scholar 

  • Sutton MR., Rosen D, Feher G and Steiner LA (1982) Aminoterminal sequences of the L, M, and H subunits of reaction centers from the photosynthetic bacterium Rhodopseudomonas sphaeroides R-26. Biochemistry 21: 3842–3849

    Article  PubMed  CAS  Google Scholar 

  • Todd JB, Parkes-Loach PS, Leykam JF and Loach PA (1998) In vitro reconstitution of the core and peripheral light-harvesting complexes of Rhodospirillum molischianum from separately isolated components. Biochemistry 37: 17458–17468

    Article  PubMed  CAS  Google Scholar 

  • Todd JB, Recchia PA, Parkes-Loach PS, Olsen JD, Fowler GJS, McGlynn P, Hunter CN and Loach PA (1999) Minimal requirements for in vitro reconstitution of the structural subunit of light-harvesting complexes of photosynthetic bacteria. Photosynth Res 62: 85–98

    Article  CAS  Google Scholar 

  • Tonn SJ, Gogel GE and Loach PA (1977) Isolation and characterization of an organic solvent soluble polypeptide component from photoreceptor complexes of Rhodospirillum rubrum. Biochemistry 16: 877–885

    Article  PubMed  CAS  Google Scholar 

  • van Mourik F, van der Ord JR, Visscher KJ, Parkes-Loach PA, Loach PA, Visschers, RW, and van Grondelle R (1991) Exciton interactions in the light-harvesting antenna of photosynthetic bacteria studied with triplet-singlet spectroscopy and singlettriplet annihilation on the B820 subunit form of Rhodospirillum rubrum. Biochim Biophys Acta 1059: 111–119

    Article  Google Scholar 

  • van Mourik F, Corten EPM, van Stokkum IHM, Visschers RW, Loach PA, Kraayenhof R and van Grondelle R (1992) Self assembly of the LH-1 antenna of Rhodospirillum rubrum, a time-resolved study of the aggregation of the B820 subunit form. In: Murata N (ed) Research in Photosynthesis, pp 101–104. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Visschers RW, Chang MC, van Mourik F, Parkes-Loach PS, Heller BA, Loach PA and van Grondelle (1991) Fluorescence polarization and low-temperature absorption spectroscopy of a subunit form of light-harvesting complex I from purple photosynthetic bacteria. Biochemistry 30: 5734–5742

    Article  PubMed  CAS  Google Scholar 

  • Visschers RW, van Grondelle R and Robert B (1993) Resonance Raman spectroscopy of the B820 subunit of the core antenna from Rhodospirillum rubrem G9. Biochim Biophys Acta 1183: 369–373

    Article  CAS  Google Scholar 

  • Wang Z, Muraoka Y, Shimonaga M, Kobayashi M and Nozawa T (2002) Selective detection and assignment of the solution NMR signals of bacteriochlorophyll a in a reconstituted subunit of a light-harvesting complex. J Am Chem Soc 124: 1072–1078

    Article  PubMed  CAS  Google Scholar 

  • Wendling M, Lapouge K, van Mourik F, Novoderezhkin V, Robert B and van Grondelle R (2002) Steady-state spectroscopy of zinc-bacteriopheophytin containing LH1—an in vitro and in silico study. Chem Physics 275: 31–45

    Article  CAS  Google Scholar 

  • Zuber H, & Brunisholz RA (1991) Structure and function of antenna polypeptides and chlorophyll-protein complexes: Principles and variability. In: Scheer H (ed) Chlorophylls, pp 627–703. CRC Press, Boca Raton

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul A. Loach .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science + Business Media B.V

About this chapter

Cite this chapter

Loach, P.A., Parkes-Loach, P.S. (2009). Structure-Function Relationships in Bacterial Light-Harvesting Complexes Investigated by Reconstitution Techniques. In: Hunter, C.N., Daldal, F., Thurnauer, M.C., Beatty, J.T. (eds) The Purple Phototrophic Bacteria. Advances in Photosynthesis and Respiration, vol 28. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8815-5_10

Download citation

Publish with us

Policies and ethics