Skip to main content

Numerical methods for The Modelling Of Debonding In Composites

  • Chapter
Lecture Notes on Composite Materials

Part of the book series: Solid Mechanics And Its Applications ((SMIA,volume 154))

  • 1567 Accesses

This monograph starts with a discussion of various phenomena in laminated composite structures that can lead to failure: matrix cracking, delamination between plies, and debonding and subsequent pull-out between fibres and the matrix material. Next, the different scales are discussed at which the effect of these nonlinearities can be analysed and the ways to couple analyses at these different length scales. From these scales—the macro, meso and micro-levels — the meso-level is normally used for the analysis of delamination, which is the focus of this monograph. At this level, the plies are modelled as continua and interface elements between them conventionally serve as the framework to model delami-nation and debonding. After a brief discussion of the cohesive—zone concept and its importance for the analysis of delamination, a particular finite element model for the plies is elaborated: the solid—like shell. This is followed by a derivation of interface elements. In the second part of this monograph more recent methods to numerically model delamination are discussed: meshfree methods, methods that exploits the partition—of—unity property of finite element shape functions, and discontinuous Galerkin methods. These approaches offer advantages over the more traditional approach that uses interface elements, as will be discussed in detail. From these more modern discretisation concepts the partition-of-unity approach seems the most promising for modelling debonding in composite structures, one advantage being that it can rather straightforwardly be incorporated in solid-like shell elements, thus enabling large-scale analyses of layered composite structures that take into account the possibility of debonding.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alfano, G. and Crisfield, M.A. (2001). Finite element interface models for the delamination analysis of laminated composites: mechanical and computational issues. International Journal for Numerical Methods in Engineering 50: 1701–1736

    Article  Google Scholar 

  • Allix, O. and Ladevèze, P. (1992). Interlaminar interface modelling for the prediction of delamination. Composite Structures 22: 235–242

    Article  Google Scholar 

  • Allix, O. and Corigliano, A. (1999). Geometrical and interfacial non-linearities in the analysis of delamination in composites. International Journal of Solids and Structures 36: 2189–2216

    Article  Google Scholar 

  • Askes, H., Pamin, J. and de Borst, R. (2000). Dispersion analysis and element— free Galerkin solutions of second and fourth—order gradient—enhanced damage models. International Journal for Numerical Methods in Engineering 49: 811–832

    Article  Google Scholar 

  • Babuška, I. and Melenk, J.M. (1997). The partition of unity method. International Journal for Numerical Methods in Engineering 40: 727–758

    Article  MathSciNet  Google Scholar 

  • Barenblatt, G.I. (1962). The mathematical theory of equilibrium cracks in brittle fracture. Advances in Applied Mechanics 7: 55–129

    Article  Google Scholar 

  • Baumann, C.E. and Oden, J.T. (1999). A discontinuous hp finite element method for the Euler and Navier—Stokes problems. International Journal for Numerical Methods in Fluids 31: 79–95

    Article  MathSciNet  Google Scholar 

  • Belytschko, T. and Black, T. (1999). Elastic crack growth in finite elements with minimal remeshing. International Journal for Numerical Methods in Engineering 45: 601–620

    Article  Google Scholar 

  • Belytschko, T., Lu, Y.Y. and Gu, L. (1994). Element—free Galerkin methods. International Journal for Numerical Methods in Engineering 37: 229–256

    Article  MathSciNet  Google Scholar 

  • Cockburn, B. (2004). Discontinuous Galerkin methods for computational fluid dynamics. In E. Stein, R. de Borst and T.J.R. Hughes (editors). The Encyclopedia of Computational MechanicsVolume III, Chapter 4. Wiley, Chich-ester

    Google Scholar 

  • Corigliano, A. (1993). Formulation, identification and use of interface models in the numerical analysis of composite delamination. International Journal of Solids and Structures 30: 2779–2811

    Article  Google Scholar 

  • de Borst, R. (2004). Damage, material instabilities, and failure. In E. Stein, R. de Borst, and T.J.R. Hughes (editors). Encyclopedia of Computational MechanicsVolume 2, Chapter 10. Wiley, Chichester

    Google Scholar 

  • de Borst, R. and Gutiérrez, M.A. (1999). A unified framework for concrete damage and fracture models with a view to size effects. International Journal of Fracture 95: 261–277

    Article  Google Scholar 

  • Dugdale, D.S. (1960). Yielding of steel sheets containing slits. Journal of the Mechanics and Physics of Solids 8: 100–108

    Article  Google Scholar 

  • Feyel, F. and Chaboche, J.L. (2000). FE2 multiscale approach for modelling the elastoviscoplastic behaviour of long fibre SiC/Ti composite materials. Computer Methods in Applied Mechanics and Engineering 183: 309–330

    Article  Google Scholar 

  • Fleming, M., Chu, Y.A., Moran, B. and Belytschko, T. (1997). Enriched element-free Galerkin methods for crack tip fields. International Journal for Numerical Methods in Engineering 40: 1483–1504

    Article  MathSciNet  Google Scholar 

  • Hashagen, F. and de Borst, R. (2000). Numerical assessment of delamination in fibre metal laminates. Computer Methods in Applied Mechanics and Engineering 185: 141–159

    Article  Google Scholar 

  • Krysl, P. and Belytschko, T. (1999). The element-free Galerkin method for dynamic propagation of arbitrary 3-D cracks. International Journal for Numerical Methods in Engineering 44: 767–800

    Article  Google Scholar 

  • Ladevèze, P. and Lubineau, G. (2002). An enhanced mesomodel for laminates based on micromechanics. Composites Science and Technology 62: 533– 541

    Article  Google Scholar 

  • Mergheim, J., Kuhl, E. and P. Steinmann, P. (2004). A hybrid discontinuous Galerkin/interface method for the computational modelling of failure. Communications in Numerical Methods in Engineering 20: 511–519

    Article  MathSciNet  Google Scholar 

  • Moës, N. and Belytschko, T. (2002). Extended finite element method for cohesive crack growth. Engineering Fracture Mechanics 69: 813–833

    Article  Google Scholar 

  • Moës, N., Dolbow, J. and Belytschko, T. (1999). A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46: 131–150

    Article  Google Scholar 

  • Nayroles, B., Touzot, G. and Villon, P. (1992). Generalizing the finite element method: diffuse approximations and diffuse elements. Computational Mechanics 10: 307–318

    Article  Google Scholar 

  • Nitsche, J.A. (1970). Über ein Variationsprinzip zur Lösung Dirichlet– Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. Abhandlungen des Mathematischen Seminars Universität Hamburg 36: 9–15

    Article  Google Scholar 

  • Parisch, H. (1995). A continuum-based shell theory for non-linear applications. International Journal for Numerical Methods in Engineering 38: 1855– 1883

    Article  Google Scholar 

  • Remmers, J.J.C. and de Borst, R. (2002). Delamination buckling of Fibre-Metal Laminates under compressive and shear loadings. 43rd AIAA/ASME/ ASCE/AHS/ASC Structures, Structural Dynamics and Materials ConferenceDenver, Colorado, CD-ROM

    Google Scholar 

  • Remmers, J.J.C., Wells, G.N. and de Borst, R. (2003). A solid–like shell element allowing for arbitrary delaminations. International Journal for Numerical Methods in Engineering 58: 2013–2040

    Article  Google Scholar 

  • Schellekens, J.C.J. and de Borst, R. (1992). On the numerical integration of interface elements. International Journal for Numerical Methods in Engineering 36: 43–66

    Article  Google Scholar 

  • Schellekens, J.C.J. and de Borst, R. (1993). A non-linear finite element approach for the analysis of mode-I free edge delamination in composites. International Journal of Solids and Structures 30: 1239–1253

    Article  Google Scholar 

  • Schellekens, J.C.J. and de Borst, R. (1994a). Free edge delamination in carbon-epoxy laminates: a novel numerical/experimental approach. Composite Structures 28: 357–373

    Article  Google Scholar 

  • Schellekens, J.C.J. and de Borst, R. (1994b). The application of interface elements and enriched or rate-dependent continuum models to micro-mechanical analyses of fracture in composites. Computational Mechanics 14: 68–83

    Article  Google Scholar 

  • Schipperen, J.H.A. and Lingen, F.J. (1999). Validation of two—dimensional calculations of free edge delamination in laminated composites. Composite Structures 45: 233–240

    Article  Google Scholar 

  • Shivakumar, K. and Whitcomb, J. (1985). Buckling of a sublaminate in a quasi-isotropic composite laminate. Journal of Composite Materials 19: 2–18

    Article  Google Scholar 

  • Simone, A. (2004). Partition of unity—based discontinuous elements for interface phenomena: computational issues. Communications in Numerical Methods in Engineering 20: 465–478

    Article  Google Scholar 

  • Wells, G.N. and Sluys, L.J. (2001). A new method for modeling cohesive cracks using finite elements. International Journal for Numerical Methods in Engineering 50:2667–2682

    Article  Google Scholar 

  • Wells, G.N., de Borst, R. and Sluys, L.J. (2002). A consistent geometrically non—linear approach for delamination. International Journal for Numerical Methods in Engineering 54: 1333–1355

    Article  MathSciNet  Google Scholar 

  • Wells, G.N., Garikipati, K. and Molari, L. (2004). A discontinuous Galerkin formulation for a strain gradient—dependent damage model. Computer Methods in Applied Mechanics and Engineering 193: 3633–3645

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. de Borst .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

de Borst, R. (2009). Numerical methods for The Modelling Of Debonding In Composites. In: de Borst, R., Sadowski, T. (eds) Lecture Notes on Composite Materials. Solid Mechanics And Its Applications, vol 154. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8772-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-8772-1_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-8771-4

  • Online ISBN: 978-1-4020-8772-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics