Skip to main content

High-LET-Emitting Radionuclides for Cancer Therapy

  • Chapter
Targeted Radionuclide Tumor Therapy

Summary

During the last 15 years, alpha-particle emitting radionuclides have been investigated as a possible new class of radionuclides for targeted therapy. Alpha-particles can deposit DNA damaging energy 100 to 1,000 times greater than beta-particles. In this chapter, the background and clinical experiences of targeted alpha-particle radioimmunotherapy use are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barendsen GW, Koot CJ, van Kerson GR, Bewley DK, Field SB, Parnell CJ. The effect of oxygen on the impairment of the proliferative capacity of human cells in culture by ionizing radiations of different LET. Int J Radiat Biol. 1966; 10:317-327.

    Article  CAS  Google Scholar 

  2. Barendsen GW, Walter HMD. Effects of different ionizing radiations on human cells in tissue culture 4. Modification of radiation damage. Radiat Res. 1964; 21(2):314-329.

    Article  PubMed  CAS  Google Scholar 

  3. Barendsen GW. Modification of radiation damage by fractionation of dose anoxia + chemical protectors in relation to Let. Ann N Y Acad Sci. 1964; 114(A1):96-114.

    PubMed  CAS  Google Scholar 

  4. Barendsen GW. Impairment of the proliferative capacity of human cells in culture by alphaparticles with differing linear-energy transfer. Int J Radiat Biol Relat Stud Phys Chem Med. 1964; 8(5):453-466.

    Article  PubMed  CAS  Google Scholar 

  5. Barendsen GW, Walter HMD, Bewley DK, Fowler JF. Effects of different ionizing radiations on human cells in tissue culture. 3. Experiments with cyclotron-accelerated alpha-particles and deuterons. Radiat Res. 1963; 18(1):106-119.

    Article  PubMed  CAS  Google Scholar 

  6. Barendsen GW. Dose-survival curves of human cells in tissue culture irradiated with alpha-, beta-, 20-Kv X- and 200-Kv X-radiation. Nature. 1962; 193(4821):1153-1155.

    Article  PubMed  CAS  Google Scholar 

  7. Barendsen GW, Beusker TLJ. Effects of different ionizing radiations on human cells in tissue culture. 1. Irradiation techniques and dosimetry. Radiat Res. 1960; 13(6):832-840.

    Article  PubMed  CAS  Google Scholar 

  8. Barendsen GW, Beusker TLJ, Vergroesen AJ, Budke L. Effect of different ionizing radiations on human cells in tissue culture. 2. Biological experiments. Radiat Res. 1960; 13 (6):841-849.

    Article  PubMed  CAS  Google Scholar 

  9. Barendsen GW, Vergroesen AJ. Irradiation of human cells in tissue culture with alpha-rays, beta-rays and x-rays. Int J Radiat Biol Relat Stud Phys Chem Med. 1960; 2(4):441.

    Article  Google Scholar 

  10. Goodhead DT, Munson RJ, Thacker J, Cox R. Mutation and inactivation of cultured mammalian-cells exposed to beams of accelerated heavy-ions. 4. Biophysical interpretation. Int J Radiat Biol. 1980; 37(2):135-167.

    Article  CAS  Google Scholar 

  11. McDevitt MR, Sgouros G, Finn RD, Humm JL, Jurcic JG, Larson SM et al. Radioimmunotherapy with alpha-emitting nuclides. Eur J Nucl Med. 1998; 25(9):1341-1351.

    Article  PubMed  CAS  Google Scholar 

  12. Wicha MS. Cancer stem cells and metastasis: Lethal seeds - Commentary. Clin Cancer Res. 2006; 12(19):5606-5607.

    Article  PubMed  Google Scholar 

  13. Jurcic JG, Larson SM, Sgouros G, McDevitt MR, Finn RD, Divgi CR, et al. Targeted alpha particle immunotherapy for myeloid leukemia. Blood. 2002; 100(4):1233-1239.

    PubMed  CAS  Google Scholar 

  14. Jurcic JG, McDevitt MR, Sgouros G, Ballangrud A, Finn RD, Geerlings MW, et al. Targeted alpha-particle therapy for myeloid leukemias: A phase I trial of bismuth-213-HuM195 (antiCD33). Blood. 1997; 90(10):2245.

    Google Scholar 

  15. Geerlings MW, Kaspersen FM, Apostolidis C, van der Hout R. The feasibility of 225Ac as a source of alpha-particles in radioimmunotherapy. Nucl Med Commun. 1993; 14(2):121-125.

    Article  PubMed  CAS  Google Scholar 

  16. Zalutsky MR, Cokgor I, Akabani G, Friedman HS, Coleman RE, Friedman AH et al. Phase I trial of alpha-particle-emitting astatine-211 labeled chimeric anti-tenascin antibody in recurrent malignant glioma patients. Proc Am Assoc Cancer Res. 2000; 41:544.

    Google Scholar 

  17. Nilsson S, Larsen RH, Fossa SD, Balteskard L, Borch KW, Westlin JE, et al. First clinical experience with alpha-emitting radium-223 in the treatment of skeletal metastases. Clin Cancer Res. 2005; 11(12):4451-4459.

    Article  PubMed  CAS  Google Scholar 

  18. Hultborn R, Andersson H, Back T, Divgi C, Elgqvist J, Himmelman J, et al. Pharmacokinetics and dosimetry of (211)AT-MX35 F(AB ‘)(2) in therapy of ovarian cancer - Preliminary results from an ongoing phase I study. Cancer Biother Radiopharm. 2006; 21(4):395.

    Google Scholar 

  19. Kennel SJ, Mirzadeh S, Eckelman WC, Waldmann TA, Garmestani K, Yordanov AT, et al. Vascular-targeted radioimmunotherapy with the alpha-particle emitter 211At. Radiat Res. 2002; 157(6):633-641.

    Article  PubMed  CAS  Google Scholar 

  20. Kennel SJ, Mirzadeh S. Vascular targeted radioimmunotherapy with 213Bi-an alpha-particle emitter. Nucl Med Biol. 1998; 25(3):241-246.

    Article  PubMed  CAS  Google Scholar 

  21. Akabani G, McLendon RE, Bigner DD, Zalutsky MR. Vascular targeted endoradiotherapy of tumors using alpha-particle-emitting compounds: Theoretical analysis. Int J Radiat Oncol Biol Phys. 2002; 54(4):1259-1275.

    Article  PubMed  Google Scholar 

  22. Singh JJ, Henke E, Seshan SV, Kappel BJ, Chattopadhyay D, May C, et al. Selective alphaparticle mediated depletion of tumor vasculature with vascular normalization. PLoS ONE. 2007; 2:e267.

    Article  CAS  Google Scholar 

  23. McDevitt MR, Ma D, Simon J, Frank RK, Scheinberg DA. Design and synthesis of 225Ac radioimmunopharmaceuticals. Appl Radiat Isot. 2002; 57(6):841-847.

    Article  PubMed  CAS  Google Scholar 

  24. Jurcic JG, McDevitt MR, Pandit-Taskar N, Divgi CR, Finn RD, Sgouros G, et al. Alpha-particle immunotherapy for acute myeloid leukemia (AML) with bismuth-213 and actinium-225. Cancer Biother Radiopharm. 2006; 21(4):396.

    Google Scholar 

  25. Zalutsky MR, Akabani G, Friedman HS, Cokgor I, Coleman RE, Friedman AH et al. Radioimmunotherapy of recurrent glioma patients using alpha-particle emitting astatine-211 labeled chimeric anti-tenascin monoclonal antibody. J Nucl Med. 2001; 42(5):121P-122P.

    Google Scholar 

  26. Kneifel S, Cordier D, Good S, Ionescu MCS, Ghaffari A, Hofer S, et al. Local targeting of malignant gliomas by the diffusible peptidic vector 1,4,7,10-tetraazacyclododecane-1-glutaric acid-4,7,10-triacetic acid-substance P. Clin Cancer Res. 2006; 12(12):3843-3850.

    Article  PubMed  CAS  Google Scholar 

  27. Heeger S, Moldenhauer G, Egerer G, Wesch H, Martin S, Nikula T, et al. Alpha-radioimmunotherapy of B-lineage non-Hodgkin’s lymphoma using 213Bi-labelled anti-CD19-and antiCD20-CHX-A ″-DTPA conjugates. Abstr Pap Am Chem Soc. 2003; 225:U261.

    Google Scholar 

  28. Allen BJ, Raja C, Rizvi S, Li Y, Tsui W, Graham P, et al. Intralesional targeted alpha therapy for metastatic melanoma. Cancer Biol Ther. 2005; 4(12):1318-1324.

    Article  PubMed  CAS  Google Scholar 

  29. Bruland OS, Nilsson S, Fisher DR, Larsen RH. High-linear energy transfer irradiation targeted to skeletal metastases by the alpha-emitter Ra-223: Adjuvant or alternative to conventional modalities? Clin Cancer Res. 2006; 12(20):6250S-6257S.

    Article  PubMed  CAS  Google Scholar 

  30. Humm JL, Roeske JC, Fisher DR, Chen GTY. Microdosimetric concepts in radioimmunotherapy. Med Phys. 1993; 20(2):535-541.

    Article  PubMed  CAS  Google Scholar 

  31. Feinendegen LE, McClure JJ. Meeting report, Alpha-emitters for medical therapy, Workshop of the United States Department of Energy, Denver, Colorado, May 30-31, 1996. Radiat Res. 1997; 148(2):195-201.

    Article  Google Scholar 

  32. Loevinger R, Budinger TF, Watson EE. MIRD Primer for Absorbed Dose Calculations, Revised Edition. New York: Society of Nuclear Medicine,1991.

    Google Scholar 

  33. Sgouros G, Ballangrud AM, Jurcic JG, McDevitt MR, Humm JL, Erdi YE, et al. Pharmacokinetics and dosimetry of an alpha-particle emitter labeled antibody: 213Bi- HuM195 (anti-CD33) in patients with leukemia. J Nucl Med. 1999; 40(11):1935-1946.

    PubMed  CAS  Google Scholar 

  34. Goddu SM, Howell RL, Bouchet LG, Bolch WE, Rao DV. MIRD Cellular S Values. Reston, VA: Society of Nuclear Medicine, 1997.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science + Business Media B.V

About this chapter

Cite this chapter

Sgouros, G. (2008). High-LET-Emitting Radionuclides for Cancer Therapy. In: Stigbrand, T., Carlsson, J., Adams, G.P. (eds) Targeted Radionuclide Tumor Therapy. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8696-0_9

Download citation

Publish with us

Policies and ethics