Skip to main content

Novel Alternative Scaffolds and Their Potential Use for Tumor Targeted Radionuclide Therapy

  • Chapter
Targeted Radionuclide Tumor Therapy

Summary

The class of macromolecules referred to as “Alternative Scaffolds” is reviewed in this chapter. A general introduction to alternative scaffolds is presented, and groups of alternative scaffolds are described according to structural folds. The properties of these biomolecules as molecular recognition tools are presented, scaffolds of special interest for targeted radionuclide therapy are highlighted and tumor targeting data is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Behr TM, Gotthardt M, Barth A, Behe M (2001) Imaging tumors with peptide-based radioligands. Q J Nucl Med 45:189-200

    PubMed  Google Scholar 

  2. Britz-Cunningham SH, Adelstein SJ (2003) Molecular targeting with radionuclides: state of the science. J Nucl Med 44:1945-61

    PubMed  Google Scholar 

  3. Russeva MG, Adams GP (2004) Radioimmunotherapy with engineered antibodies Expert Opin Biol Ther 4:217-31

    Google Scholar 

  4. Batra SK, Jain M, Wittel UA (2002) Pharmacokinetics and biodistribution of genetically engineered antibodies. Curr Opin Biotechnol 13:603-8. Review

    PubMed  Google Scholar 

  5. Heppeler A, Froidevaux S, Eberle AN, Maecke HR (2000) Receptor targeting for tumour localisation and therapy with radiopeptides. Curr Med Chem 7:971-94

    PubMed  Google Scholar 

  6. Tolmachev V, Orlova A, Pehrson R, et al. (2007) Radionuclide therapy of HER2-positive microxenografts using a 177Lu-labeled HER2-specific Affibody molecule. Cancer Res 67:2773-82

    PubMed  Google Scholar 

  7. Milenic DE, Brady ED, Brechbiel MW (2004) Antibody-targeted radiation cancer therapy. Nat Rev Drug Discov 6:488-99. Review

    Google Scholar 

  8. Kohler G, Milstein C (1975) Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 256:495-7

    PubMed  Google Scholar 

  9. Holliger P, Hudson PJ (2005) Engineered antibody fragments and the rise of single domains. Nat Biotechnol 9:1126-36. Review

    Google Scholar 

  10. Robinson MK, Doss M, Shaller C (2005) Quantitative immuno-positron emission tomography imaging of HER2-positive tumor xenografts with an iodine-124 labeled anti-HER2 diabody. Cancer Res 65:1471-8

    PubMed  Google Scholar 

  11. Adams GP, Tai MS, McCartney JE (2006) Avidity-mediated enhancement of in vivo tumor targeting by single-chain Fv dimers. Clin Cancer Res 12:1599-605

    PubMed  Google Scholar 

  12. Olafsen, T et al. (2004) Characterization of engineered anti-p185HER-2 (scFv-CH3)2 antibody fragments (minibodies) for tumor targeting. Protein Eng Des Sel 17:315-23

    PubMed  Google Scholar 

  13. Tijink BM, Neri D, Leemans CR, et al. (2006) Radioimmunotherapy of head and neck cancer xenografts using 131I-labeled antibody L19-SIP for selective targeting of tumor vasculature. J Nucl Med 47:1127-35

    PubMed  Google Scholar 

  14. Olafsen T, Kenanova VE, Wu AM (2006) Tunable pharmacokinetics: modifying the in vivo half-life of antibodies by directed mutagenesis of the Fc fragment. Nat Protoc 1:2048-60

    PubMed  Google Scholar 

  15. De Jong M, Valkema R, Jamar F (2002) Somatostatin receptor-targeted radionuclide therapy of tumors: preclinical and clinical findings. Semin Nucl Med Apr; 32(2):133-40. Review

    Google Scholar 

  16. Reubi JC, Mäcke HR, Krenning EP (2005) Candidates for peptide receptor radiotherapy today and in the future. J Nucl Med 46 (Suppl 1):67-75. Review

    Google Scholar 

  17. Sharkey RM, Cardillo TM, Rossi EA, et al. (2005) Signal amplification in molecular imaging by pretargeting a multivalent, bispecific antibody. Nat Med 11:1250-5

    PubMed  Google Scholar 

  18. Hey T, Fiedler E, Rudolph R, Fiedler M (2005) Artificial, non-antibody binding proteins for pharmaceutical and industrial applications. Trends Biotechnol 23:514-22

    PubMed  Google Scholar 

  19. Hosse RJ, Rothe A, Power BE (2006) A new generation of protein display scaffolds for molecular recognition. Protein Sci 15:14-27. Review

    PubMed  Google Scholar 

  20. Binz HK, Amstutz P, Pluckthun A (2005) Engineering novel binding proteins from nonimmunoglobulin domains. Nat Biotechnol 23:1257-68. Review

    PubMed  Google Scholar 

  21. Binz HK, Pluckthun A (2005) Engineered proteins as specific binding reagents. Curr Opin Biotechnol 16:459-69. Review

    PubMed  Google Scholar 

  22. Nygren PA, Skerra A (2004) Binding proteins from alternative scaffolds. J Immunol Methods 290:3-28. Review

    PubMed  Google Scholar 

  23. Nygren PA, Uhlen M (1997) Scaffolds for engineering novel binding sites in proteins. Curr Opin Struct Biol7:463-9. Review

    PubMed  Google Scholar 

  24. Hoogenboom HR (2005) Selecting and screening recombinant antibody libraries. Nat Biotechnol 23:1105-16. Review

    PubMed  Google Scholar 

  25. Hoogenboom HR (2002) Overview of antibody phage-display technology and its applications. Methods Mol Biol 178:1-37. Review

    PubMed  Google Scholar 

  26. Lipovsek D, Plückthun A (2004) In-vitro protein evolution by ribosome display and mRNA display. J Immunol Methods 290:51-67

    PubMed  Google Scholar 

  27. Boder ET, Wittrup KD (1997) Yeast surface display for screening combinatorial polypeptide libraries. Nat Biotechnol 15:553-7

    PubMed  Google Scholar 

  28. Samuelson P, Gunneriusson E, Nygren PA, Stahl S (2002) Display of proteins on bacteria. J Biotechnol 96(2):129-54. Review

    PubMed  Google Scholar 

  29. Chen G, Hayhurst A, Thomas JG (2001) Isolation of high-affinity ligand-binding proteins by periplasmic expression with cytometric screening (PECS). Nat Biotechnol 19:537-42

    PubMed  Google Scholar 

  30. Bertschinger J, Neri D (2004) Covalent DNA display as a novel tool for directed evolution of proteins in vitro. Protein Eng Des Sel 17:699-707

    PubMed  Google Scholar 

  31. Sepp A, Tawfik DS, Griffiths AD (2002) Microbead display by in vitro compartmentalisation: selection for binding using flow cytometry FEBS Lett 532:455-8

    Google Scholar 

  32. Hamers-Casterman C, Atarhouch T, Muyldermans S (1993) Naturally occurring antibodies devoid of light chains. Nature 363:446-8

    PubMed  Google Scholar 

  33. Greenberg AS, Avila D, Hughes M et al. (1995) A new antigen receptor gene family that undergoes rearrangement and extensive somatic diversification in sharks. Nature 374 (6518):168-73

    PubMed  Google Scholar 

  34. Nuttall SD, Krishnan UV, Hattarki M, De Gori R, Irving RA, Hudson PJ (2001) Isolation of the new antigen receptor from wobbegong sharks, and use as a scaffold for the display of protein loop libraries. Mol Immunol 38:313-26

    PubMed  Google Scholar 

  35. Coppieters K, Dreier T, Silence K, et al. (2006) Formatted anti-tumor necrosis factor alpha VHH proteins derived from camelids show superior potency and targeting to inflamed joints in a murine model of collagen-induced arthritis. Arthritis Rheum 54:1856-66

    PubMed  Google Scholar 

  36. Holt LJ, Herring C, Jespers LS, et al. (2003) Domain antibodies: proteins for therapy. Trends Biotechnol 11:484-90. Review

    Google Scholar 

  37. Revets H, De Baetselier P, Muyldermans S (2005) Nanobodies as novel agents for cancer therapy. Expert Opin Biol Ther 5:111-24. Review

    PubMed  Google Scholar 

  38. Cortez-Retamozo V, Backmann N, Senter PD, et al. (2004) Efficient cancer therapy with a nanobody-based conjugate. Cancer Res 64:2853-7

    PubMed  Google Scholar 

  39. Cortez-Retamozo V, Lauwereys M, Hassanzadeh Gh G, et al. (2002) Efficient tumor targeting by single-domain antibody fragments of camels. Int J Cancer 98:456-62

    PubMed  Google Scholar 

  40. Huang L, Gainkam LO, Caveliers V, et al. (2008) SPECT imaging with (99 m)Tc-labeled EGFR-specific nanobody for in vivo monitoring of EGFR expression. Mol Imaging Biol Feb 23; 1:31-41

    Google Scholar 

  41. Li R, Hoess RH, Bennett JS, DeGrado WF (2003) Use of phage display to probe the evolution of binding specificity and affinity in integrins. Protein Eng 16:65-72

    PubMed  Google Scholar 

  42. Xu L, Aha P, Gu K (2002) Directed evolution of high-affinity antibody mimics using mRNA display. Chem Biol 9:933-42

    PubMed  Google Scholar 

  43. Parker MH, Chen Y, Danehy F (2005) Antibody mimics based on human fibronectin type three domain engineered for thermostability and high-affinity binding to vascular endothelial growth factor receptor two. Protein Eng Des Sel 18:435-44

    PubMed  Google Scholar 

  44. Koide A, Koide S (2007) Monobodies: antibody mimics based on the scaffold of the fibronectin type III domain. Methods Mol Biol 352:95-109

    PubMed  Google Scholar 

  45. Karatan E, Merguerian M, Han Z, et al. (2004) Molecular recognition properties of FN3 monobodies that bind the Src SH3 domain. Chem Biol June; 11:835-44

    Google Scholar 

  46. Hufton SE, van Neer N, van den Beuken T (2000) Development and application of cytotoxic T lymphocyte-associated antigen 4 as a protein scaffold for the generation of novel binding ligands. FEBS Lett 475:225-31

    PubMed  Google Scholar 

  47. Li Y, Moysey R, Molloy PE (2005) Directed evolution of human T-cell receptors with picomolar affinities by phage display. Nat Biotechnol 23:349-54

    PubMed  Google Scholar 

  48. Heyd B, Pecorari F, Collinet B (2003) In vitro evolution of the binding specificity of neocarzinostatin, an enediyne-binding chromoprotein. Biochemistry 42:5674-83

    PubMed  Google Scholar 

  49. Lipovsek D, Lippow SM, Hackel BJ (2007) Evolution of an interloop disulfide bond in highaffinity antibody mimics based on fibronectin type III domain and selected by yeast surface display: molecular convergence with single-domain camelid and shark antibodies. J Mol Biol 368:1024-41

    PubMed  Google Scholar 

  50. Beste G, Schmidt FS, Stibora T, Skerra A (1999) Small antibody-like proteins with prescribed ligand specificities derived from the lipocalin fold. Proc Natl Acad Sci USA 96:1898-903

    PubMed  Google Scholar 

  51. Schlehuber S, Skerra A (2005a) Anticalins as an alternative to antibody technology. Expert Opin Biol Ther 5:1453-62. Review

    PubMed  Google Scholar 

  52. Schlehuber S, Skerra A (2005b) Lipocalins in drug discovery: from natural ligand-binding proteins to “anticalins”. Drug Discov Today 10:23-33. Review

    PubMed  Google Scholar 

  53. Juraja SM, Mulhern TD, Hudson PJ, et al. (2006) Engineering of the Escherichia coli Im7 immunity protein as a loop display scaffold. Protein Eng Des Sel 19:231-44.

    PubMed  Google Scholar 

  54. Bernath K, Magdassi S, Tawfik DS (2005) Directed evolution of protein inhibitors of DNAnucleases by in vitro compartmentalization (IVC) and nano-droplet delivery. J Mol Biol 345:1015-26

    PubMed  Google Scholar 

  55. Nilsson B, Moks T, Jansson B, et al. (1987) A synthetic IgG-binding domain based on staphylococcal protein A. Protein Eng 1(2):107-13

    PubMed  Google Scholar 

  56. Nord K, Gunneriusson E, Ringdahl J (1997) Binding proteins selected from combinatorial libraries of an alpha-helical bacterial receptor domain. Nat Biotechnol 15:772-7

    PubMed  Google Scholar 

  57. Nilsson FY, Tolmachev V (2007) Affibody molecules: new protein domains for molecular imaging and targeted tumor therapy. Curr Opin Drug Discov Devel 10:167-75. Review

    PubMed  Google Scholar 

  58. Orlova A, Magnusson M, Eriksson TL, et al. (2006) Tumor imaging using a picomolar affinity HER2 binding affibody molecule. Cancer Res 66:4339-48

    PubMed  Google Scholar 

  59. Tolmachev V, Orlova A, Nilsson FY, et al. (2007) Affibody molecules: potential for in vivo imaging of molecular targets for cancer therapy. Expert Opin Biol Ther 7:555-68

    PubMed  Google Scholar 

  60. Tolmachev V, Nilsson FY, Widstrom C, et al. (2006) 111In-benzyl-DTPA-ZHER2:342, an affibody-based conjugate for in vivo imaging of HER2 expression in malignant tumors. J Nucl Med May; 47(5):846-53

    Google Scholar 

  61. Engfeldt T, Tran T, Orlova A, et al. (2007a) (99 m)Tc-chelator engineering to improve tumour targeting properties of a HER2-specific Affibody molecule. Eur J Nucl Med Mol Imaging 34:1843-53

    PubMed  Google Scholar 

  62. Engfeldt T, Orlova A, Tran T, et al. (2007b) Imaging of HER2-expressing tumours using a synthetic Affibody molecule containing the (99 m)Tc-chelating mercaptoacetyl-glycyl-glycylglycyl (MAG3) sequence. Eur J Nucl Med Mol Imaging 34:722-33

    PubMed  Google Scholar 

  63. Orlova A, Tolmachev V, Pehrson R, et al. (2007) Synthetic affibody molecules: a novel class of affinity ligands for molecular imaging of HER2-expressing malignant tumors. Cancer Res 67:2178-86

    PubMed  Google Scholar 

  64. Feldwisch J, Orlova A, Tolmachev V, Baum RP (2006) Clinical and pre-clinical application of HER2-specific Affibody molecules for diagnosis of recurrent HER2 positive breast cancer by SPECT or PET/CT. Mol Imaging 5(ID045):215

    Google Scholar 

  65. Makrides SC, Nygren PA, Andrews B, et al. (1996) Extended in vivo half-life of human soluble complement receptor type 1 fused to a serum albumin-binding receptor. J Pharmacol Exp Ther 277:534-42

    PubMed  Google Scholar 

  66. Silverman J, Liu Q, Bakker A (2005) Multivalent avimer proteins evolved by exon shuffling of a family of human receptor domains. Nat Biotechnol 23(12):1556-61

    PubMed  Google Scholar 

  67. Forrer P, Stumpp MT, Binz HK, Pluckthun A (2003) A novel strategy to design binding molecules harnessing the modular nature of repeat proteins. FEBS Lett 539:2-6

    PubMed  Google Scholar 

  68. Stumpp MT, Amstutz P (2007) DARPins: a true alternative to antibodies. Curr Opin Drug Discov Devel 10:153-9. Review

    PubMed  Google Scholar 

  69. Binz HK, Amstutz P, Kohl A, et al. (2004) High-affinity binders selected from designed ankyrin repeat protein libraries. Nat Biotechnol 22:575-82

    PubMed  Google Scholar 

  70. Schweizer A, Roschitzki-Voser H, Amstutz P, et al. (2007) Inhibition of caspase-2 by a designed ankyrin repeat protein: specificity, structure, and inhibition mechanism. Structure 15:625-36

    PubMed  Google Scholar 

  71. Sennhauser G, Amstutz P, Briand C, et al. (2006) Drug export pathway of multidrug exporter AcrB revealed by DARPin inhibitors. PLoS Biol 5:106-13

    Google Scholar 

  72. Zahnd C, Wyler E, Schwenk JM (2007) A designed ankyrin repeat protein evolved to picomolar affinity to her2. J Mol Biol 369:1015-28

    PubMed  Google Scholar 

  73. Stumpp, MT (2006) Oral presentation at IBC’s 2nd Annual International conference on Protein Engineering, December 12-14

    Google Scholar 

  74. Otlewski J, Krowarsch D (1996) Squash inhibitor family of serine proteinases. Acta Biochim Pol 43:431-44

    PubMed  Google Scholar 

  75. Gelly JC, Gracy J, Kaas Q, et al. (2004) The KNOTTIN website and database: a new information system dedicated to the knottin scaffold. Nucleic Acids Res 32:D156-9

    PubMed  Google Scholar 

  76. Baggio R, Burgstaller P, Hale SP, et al. (2002) Identification of epitope-like consensus motifs using mRNA display. J Mol Recognit 15(3):126-34

    PubMed  Google Scholar 

  77. Souriau C, Chiche L, Irving R, Hudson P (2005) New binding specificities derived from Min-23, a small cystine-stabilized peptidic scaffold. Biochemistry 44:7143-55

    PubMed  Google Scholar 

  78. Smith GP, Patel SU, Windass JD (1998) Small binding proteins selected from a combinatorial repertoire of knottins displayed on phage. J Mol Biol Mar 27; 277(2):317-32

    Google Scholar 

  79. Lehtiö J, Teeri TT, Nygren PA (2000) Alpha-amylase inhibitors selected from a combinatorial library of a cellulose binding domain scaffold. Proteins 41:316-22.

    PubMed  Google Scholar 

  80. Li C, Dowd CS, Zhang W, Chaiken IM (2001) Phage randomization in a charybdotoxin scaffold leads to CD4-mimetic recognition motifs that bind HIV-1 envelope through non-aromatic sequences. J Pept Res 57:507-18.

    PubMed  Google Scholar 

  81. Dennis MS, Lazarus RA (1994) Kunitz domain inhibitors of tissue factor-factor VIIa. I. Potent inhibitors selected from libraries by phage display. J Biol Chem 269:22129-36

    PubMed  Google Scholar 

  82. Rottgen P, Collins J (1995) A human pancreatic secretory trypsin inhibitor presenting a hypervariable highly constrained epitope via monovalent phagemid display. Gene 164:243-50

    PubMed  Google Scholar 

  83. Williams A, Baird LG (2003) DX-88 and HAE: a developmental perspective. Transfus Apher Sci 29:255-8

    PubMed  Google Scholar 

  84. Legendre D, Vucic B, Hougardy V, et al. (2002) TEM-1 beta-lactamase as a scaffold for protein recognition and assay. Protein Sci 11:1506-18

    PubMed  Google Scholar 

  85. Malabarba MG, Milia E, Faretta M (2001) A repertoire library that allows the selection of synthetic SH2s with altered binding specificities. Oncogene 20(37):5186-94

    PubMed  Google Scholar 

  86. Panni S, Dente L, Cesareni G (2002) In vitro evolution of recognition specificity mediated by SH3 domains reveals target recognition rules. J Biol Chem 277:21666-74

    PubMed  Google Scholar 

  87. Hiipakka M, Saksela K (2007) Versatile retargeting of SH3 domain binding by modification of non-conserved loop residues. FEBS Lett 581:1735-41

    PubMed  Google Scholar 

  88. Schneider S, Buchert M, Georgiev O, et al. (1999) Mutagenesis and selection of PDZ domains that bind new protein targets. Nat Biotechnol 17:170-5

    PubMed  Google Scholar 

  89. Grabulovski D, Kaspar M, Neri D (2007) A novel, non-immunogenic Fyn SH3-derived binding protein with tumor vascular targeting properties. J Biol Chem 282:3196-204

    PubMed  Google Scholar 

  90. Castellani P, Viale G, Dorcaratto A, et al. (1994) The fibronectin isoform containing the ED-B oncofetal domain: a marker of angiogenesis. Int J Cancer 59:612-8

    PubMed  Google Scholar 

  91. Bertschinger J, Grabulovski D, Neri D (2007) Selection of single domain binding proteins by covalent DNA display. Protein Eng Des Sel 20:57-68

    PubMed  Google Scholar 

  92. Brody EN, Gold L (2000) Aptamers as therapeutic and diagnostic agents. Rev Mol Biotechnol 74:5-13. Review

    Google Scholar 

  93. Hoppe-Seyler F, Crnkovic-Mertens I, Tomai E, Butz K (2004) Peptide aptamers: specific inhibitors of protein function. Curr Mol Med 4:529-38. Review

    PubMed  Google Scholar 

  94. Ng EW, Shima DT, Calias P, et al. (2006) Pegaptanib, a targeted anti-VEGF aptamer for ocular vascular disease. Nat Rev Drug Discov 5:123-32. Review

    PubMed  Google Scholar 

  95. Ireson CR, Kelland LR (2006) Discovery and development of anticancer aptamers. Mol Cancer Ther 5:2957-62. Review

    PubMed  Google Scholar 

  96. Pietras K, Rubin K, Sjöblom T (2002) Inhibition of PDGF receptor signaling in tumor stroma enhances antitumor effect of chemotherapy. Cancer Res 62:5476-84

    PubMed  Google Scholar 

  97. Pestourie C, Tavitian B, Duconge F (2005) Aptamers against extracellular targets for in vivo applications. Biochimie 87:921-30. Review

    PubMed  Google Scholar 

  98. Charlton J, Sennello J, Smith (1997) In vivo imaging of inflammation using an aptamer inhibitor of human neutrophil elastase D. Chem Biol 4:809-16

    PubMed  Google Scholar 

  99. Zhang YM, Liu N, Zhu ZH, Rusckowski M, Hnatowich DJ (2000) Influence of different chelators (HYNIC, MAG3 and DTPA) on tumor cell accumulation and mouse biodistribution of technetium-99 m labeled to antisense DNA. Eur J Nucl Med 27:1700-7

    PubMed  Google Scholar 

  100. Tavitian B, Terrazzino S, Kuhnast B, et al. (1998) In vivo imaging of oligonucleotides with positron emission tomography. Nat Med 4:467-71

    PubMed  Google Scholar 

  101. Hicke BJ, Marion C, Chang YF, et al. (2001) Tenascin-C aptamers are generated using tumor cells and purified protein. J Biol Chem 276:48644-54

    PubMed  Google Scholar 

  102. Hicke BJ, Stephens AW, Gould T (2006) Tumor targeting by an aptamer. J Nucl Med 47:668-78

    PubMed  Google Scholar 

  103. Matthews SJ, McCoy C (2004) Peginterferon alfa-2a: a review of approved and investigational uses. Clin Ther 26:991-1025. Review

    PubMed  Google Scholar 

  104. Veronese FM, Pasut G (2005) PEGylation, successful approach to drug delivery. Drug Discov Today 10:1451-8. Review

    PubMed  Google Scholar 

  105. Nguyen A, Reyes AE 2nd, Zhang M (2006) The pharmacokinetics of an albumin-binding Fab (AB.Fab) can be modulated as a function of affinity for albumin. Protein Eng Des Sel 19:291-7

    PubMed  Google Scholar 

  106. Dennis MS, Jin H, Dugger D, et al. (2007) Imaging tumors with an albumin-binding Fab, a novel tumor-targeting agent. Cancer Res 67:254-61

    PubMed  Google Scholar 

  107. Nygren PA, Uhlén M, Flodby P, et al. (1991) In vivo stabilization of a human recombinant CD4 derivative by fusion to a serum-albumin-binding receptor. Vaccines 91:363-8

    Google Scholar 

  108. Vogt M, Skerra A (2004) Construction of an artificial receptor protein (“anticalin”) based on the human apolipoprotein D. Chembiochem Feb 6; 5(2):191-9.

    Google Scholar 

  109. Nordberg E, Friedman M, Nilsson F, et al. (2006) Biological characterization in vitro and in vivo of a new EGFR binding Affibody molecule. Eur J Nucl Med Mol Imaging 33 (Suppl 14):S284.

    Google Scholar 

  110. Friedman M, Orlova A, Johansson E, et al. (2008) Directed evolution to low nanomolar affinity of a tumor-targeting epidermal growth factor receptor-binding affibody molecule. J Mol Biol Mar 7; 376:1388-402

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science + Business Media B.V

About this chapter

Cite this chapter

Frejd, F.Y. (2008). Novel Alternative Scaffolds and Their Potential Use for Tumor Targeted Radionuclide Therapy. In: Stigbrand, T., Carlsson, J., Adams, G.P. (eds) Targeted Radionuclide Tumor Therapy. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8696-0_6

Download citation

Publish with us

Policies and ethics