Skip to main content

Low Dose Hyper-Radiosensitivity: A Historical Perspective

  • Chapter
Targeted Radionuclide Tumor Therapy

Summary

This chapter discusses the biology of low-dose hyper-radiosensitivity (HRS) with reference to radiation-induced DNA damage and cellular repair processes. Particular attention is paid to the significance of G2-phase cell cycle check-points in overcoming low-dose hyper-radiosensitivity and the impact of HRS on low-dose rate radiobiology. The history of HRS from the original in vivo discovery to the most recent in vitro and clinical data are examined to present a unifying hypothesis concerning the molecular control and regulation of this important low-dose radiation response. Finally, pre-clinical and clinical data are discussed, from a molecular viewpoint, to provide theoretical approaches to exploit HRS biology for clinical gain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Huang L, Kim PM, Nickoloff JA, et al. Targeted and nontargeted effects of low-dose ionizing radiation on delayed genomic instability in human cells. Cancer Res 2007; 67:1099-1104.

    PubMed  Google Scholar 

  2. Day TK, Zeng G, Hooker AM, et al. Adaptive response for chromosomal inversions in pKZ1 mouse prostate induced by low doses of X radiation delivered after a high dose. Radiat Res 2007; 167:682-692.

    PubMed  Google Scholar 

  3. Matsumoto H, Hamada N, Takahashi A, et al. Vanguards of paradigm shift in radiation biol- ogy: radiation-induced adaptive and bystander responses. J Radiat Res (Tokyo) 2007; 48:97-106.

    Google Scholar 

  4. Mothersill C, Seymour CB. Radiation-induced bystander effects and the DNA paradigm: an “out of field” perspective. Mutat Res 2006; 597:5-10.

    PubMed  Google Scholar 

  5. Marples B. Is low-dose hyper-radiosensitivity a measure of G2-phase cell radiosensitivity? Can Met Reviews 2004; 23:197-207.

    Google Scholar 

  6. Schwartz JL. Variability: the common factor linking low dose-induced genomic instability, adaptation and bystander effects. Mutat Res 2007; 616:196-200.

    PubMed  Google Scholar 

  7. Puck TT, Marcus PI, Cieciura SJ. Clonal growth of mammalian cells in vitro; growth characteristics of colonies from single HeLa cells with and without a feeder layer. J Exp Med 1956; 103:273-283.

    PubMed  Google Scholar 

  8. Puck TT, Marcus PI. Action of x-rays on mammalian cells. J Exp Med 1956; 103:653-666.

    PubMed  Google Scholar 

  9. Boag JW. The statistical treatment of cell survival data. In: Alper T, editor. Cell Survival After Low Doses of Radiation: Theoretical and Clinical Implications. London: Institute of Physics/Wiley; 1975. pp. 40-53.

    Google Scholar 

  10. Bedford JS, Griggs HG. The estimation of survival at low doses and the limits of resolution of the single-cell-plating technique. In: Alper T, editor. Cell Survival After Low Doses of Radiation: Theoretical and Clinical Implications. London: Wiley; 1975. pp. 34-39.

    Google Scholar 

  11. Durand RE. Use of a cell sorter for assays of cell clonogenicity. Cancer Res 1986; 46:2775-2778.

    PubMed  Google Scholar 

  12. Spadinger I, Poon SS, Palcic B. Automated detection and recognition of live cells in tissue culture using image cytometry. Cytometry 1989; 10:375-381.

    PubMed  Google Scholar 

  13. Marples B, Joiner MC. The response of Chinese hamster V79 cells to low radiation doses: evidence of enhanced sensitivity of the whole cell population. Radiat Res 1993; 133:41-51.

    PubMed  Google Scholar 

  14. Enns L, Bogen KT, Wizniak J, et al. Low-dose radiation hypersensitivity is associated with p53-dependent apoptosis. Mol Cancer Res 2004; 2:557-566.

    PubMed  Google Scholar 

  15. Marples B, Wouters BG, Collis SJ, et al. Low-dose hyper-radiosensitivity: a consequence of ineffective cell cycle arrest of radiation-damaged G(2)-phase cells. Radiat Res 2004; 161:247-255.

    PubMed  Google Scholar 

  16. Short SC, Woodcock M, Marples B, et al. The effects of cell cycle phase on low dose hyperradiosensitivity. Int J Radiat Biol 2003; 79:99-105.

    PubMed  Google Scholar 

  17. Joiner MC, Johns H. Renal damage in the mouse: the response to very small doses per fraction. Radiat Res 1988; 114:385-398.

    PubMed  Google Scholar 

  18. Xu B, Kim ST, Lim DS, et al. Two molecularly distinct G(2)/M checkpoints are induced by ionizing irradiation. Mol Cell Biol 2002; 22:1049-1059.

    PubMed  Google Scholar 

  19. Bakkenist CJ, Kastan MB. DNA damage activates ATM through intermolecular autophosphorylation and dimer dissociation. Nature 2003; 421:499-506.

    PubMed  Google Scholar 

  20. Eriksson G. Induction of waxy mutants in maize by acute and chronic gamma irradiation. Hereditas 1963; 50:161-178.

    Google Scholar 

  21. Chadwick KH, Leenhouts HP. The effect of an asynchronous population of cells on the initial slope of dose-effect curves. In: Alper T, editor. Cell Survival After Low Doses of Radiation: Theoretical and Clinical Implications. London: Institute of Physics/Wiley; 1975. pp. 57-63.

    Google Scholar 

  22. Beam CA, Mortimer RK, Wolfe RG, et al. The relation of radioresistance to budding in Saccharomyces cerevisiae. Arch Biochem Biophys 1954; 49:110-122.

    PubMed  Google Scholar 

  23. Horsley RJ, Pujara CM. Study of the inflexion of X-radiation survival curves for synchronized cell populations of the green alga (Oedogonium cardiacum). Radiat Res 1969; 40:440-449.

    PubMed  Google Scholar 

  24. Koval TM. Multiphasic survival response of a radioresistant lepidopteran insect cell line. Radiat Res 1984; 98:642-648.

    PubMed  Google Scholar 

  25. Koval TM. Inducible repair of ionizing radiation damage in higher eukaryotic cells. Mutat Res 1986; 173:291-293.

    PubMed  Google Scholar 

  26. Hillova J, Drasil V. The inhibitory effect of iodoacetamide on recovery from sub-lethal damage in Chlamydomonas reinhardti. Int J Radiat Biol 1967; 12:201-208.

    Google Scholar 

  27. Hendry JH. Radioresistance induced in fern spores by prior irradiation. Radiat Res 1986; 106:396-400.

    Google Scholar 

  28. Boreham DR, Mitchel RE. DNA lesions that signal the induction of radioresistance and DNA repair in yeast. Radiat Res 1991; 128:19-28.

    PubMed  Google Scholar 

  29. Marples B, Joiner MC, Skov KA. An X-ray inducible repair response: evidence from high resolution survival measurements in air and hypoxia. In: Sugahara T, Sagan LA, Aoyama T, editors. Low Dose Irradiation and Biological Defense Mechanisms. Amsterdam: Elsevier; 1992. pp. 295-298.

    Google Scholar 

  30. Marples B, Wouters BG, Joiner MC. An association between the radiation-induced arrest of G2 phase cells and low-dose hyper-radiosensitivity: A plausible underlying mechanism? Radiat Res 2003; 160:38-45.

    PubMed  Google Scholar 

  31. Collis SJ, Schwaninger JM, Ntambi AJ, et al. Evasion of early cellular response mechanisms following low level radiation-induced DNA damage. J Biol Chem 2004; 279:49624-49632.

    PubMed  Google Scholar 

  32. Redpath JL, Short SC, Woodcock M, et al. Low-dose reduction in transformation frequency compared to unirradiated controls: the role of hyper-radiosensitivity to cell death. Radiat Res 2003; 159:433-436.

    PubMed  Google Scholar 

  33. Dey S, Spring PM, Arnold S, et al. Low-dose fractionated radiation potentiates the effects of Paclitaxel in wild-type and mutant p53 head and neck tumor cell lines. Clin Cancer Res 2003; 9:1557-1565.

    PubMed  Google Scholar 

  34. Arnold SM, Regine WF, Ahmed MM, et al. Low-dose fractionated radiation as a chemopotentiator of neoadjuvant paclitaxel and carboplatin for locally advanced squamous cell carcinoma of the head and neck: results of a new treatment paradigm. Int J Radiat Oncol Biol Phys 2004; 58:1411-1417.

    PubMed  Google Scholar 

  35. Spring PM, Arnold SM, Shajahan S, et al. Low dose fractionated radiation potentiates the effects of taxotere in nude mice xenografts of squamous cell carcinoma of head and neck. Cell Cycle 2004; 3:479-485.

    PubMed  Google Scholar 

  36. Caney C, Singh G, Lukka H, et al. Combined gamma-irradiation and subsequent cisplatin treatment in human squamous carcinoma cell lines sensitive and resistant to cisplatin. Int J Radiat Biol 2004; 80:291-299.

    PubMed  Google Scholar 

  37. Prise KM, Belyakov OV, Newman HC, et al. Non-targeted effects of radiation: bystander responses in cell and tissue models. Radiat Prot Dosimetry 2002; 99:223-226.

    PubMed  Google Scholar 

  38. Schettino G, Folkard M, Prise KM, et al. Low-dose hypersensitivity in Chinese hamster V79 cells targeted with counted protons using a charged-particle microbeam. Radiat Res 2001; 156:526-534.

    PubMed  Google Scholar 

  39. Schettino G, Folkard M, Prise KM, et al. Low-dose studies of bystander cell killing with targeted soft X rays. Radiat Res 2003; 160:505-511.

    PubMed  Google Scholar 

  40. Vral A, Louagie H, Thierens H, et al. Micronucleus frequencies in cytokinesis-blocked human B lymphocytes after low dose gamma-irradiation. Int J Radiat Biol 1998; 73:549-555.

    PubMed  Google Scholar 

  41. Tsoulou E, Baggio L, Cherubini R, et al. Radiosensitivity of V79 cells after alpha particle radiation at low doses. Radiat Prot Dosimetry 2002; 99:237-240.

    PubMed  Google Scholar 

  42. Tsoulou E, Baggio L, Cherubini R, et al. Low-dose hypersensitivity of V79 cells under exposure to gamma-rays and 4He ions of different energies: survival and chromosome aberrations. Int J Radiat Biol 2001; 77:1133-1139.

    PubMed  Google Scholar 

  43. Bartkowiak D, Hogner S, Nothdurft W, et al. Cell cycle and growth response of CHO cells to X-irradiation: threshold-free repair at low doses. Int J Radiat Oncol Biol Phys 2001; 50:221-227.

    PubMed  Google Scholar 

  44. Carlsson J, Hakansson E, Eriksson V, et al. Early effects of low dose-rate radiation on cultured tumor cells. Cancer Biother Radiopharm 2003; 18:663-670.

    PubMed  Google Scholar 

  45. Chandna S, Dwarakanath BS, Khaitan D, et al. Low-dose radiation hypersensitivity in human tumor cell lines: effects of cell-cell contact and nutritional deprivation. Radiat Res 2002; 157:516-525.

    PubMed  Google Scholar 

  46. Marples B, Lam GK, Zhou H, et al. The response of Chinese hamster V79-379A cells exposed to negative pi-mesons: evidence that increased radioresistance is dependent on linear energy transfer. Radiat Res 1994; 138:S81-S84.

    PubMed  Google Scholar 

  47. Marples B, Skov KA. Small doses of high-linear energy transfer radiation increase the radioresistance of Chinese hamster V79 cells to subsequent X irradiation. Radiat Res 1996; 146:382-387.

    PubMed  Google Scholar 

  48. Marples B, Adomat H, Koch CJ, et al. Response of V79 cells to low doses of X-rays and negative pi-mesons: clonogenic survival and DNA strand breaks. Int J Radiat Biol 1996; 70:429-436.

    PubMed  Google Scholar 

  49. Dionet C, Tchirkov A, Alard JP, et al. Effects of low-dose neutrons applied at reduced dose rate on human melanoma cells. Radiat Res 2000; 154:406-411.

    PubMed  Google Scholar 

  50. Smith LG, Miller RC, Richards M, et al. Investigation of hypersensitivity to fractionated lowdose radiation exposure. Int J Radiat Oncol Biol Phys 1999; 45:187-191.

    PubMed  Google Scholar 

  51. Joiner MC, Denekamp J, Maughan RL. The use of ‘top-up’ experiments to investigate the effect of very small doses per fraction in mouse skin. Int J Radiat Biol 1986; 49:565-580.

    Google Scholar 

  52. Parkins CS, Fowler JF. The linear quadratic fit for lung function after irradiation with X-rays at smaller doses per fraction than 2 Gy. Br J Cancer Suppl 1986; 7:320-323.

    PubMed  Google Scholar 

  53. Brenner DJ, Doll R, Goodhead DT, et al. Cancer risks attributable to low doses of ionizing radiation: assessing what we really know. Proc Natl Acad Sci USA 2003; 100:13761-13766.

    PubMed  Google Scholar 

  54. Turesson I, Joiner MC. Clinical evidence of hypersensitivity to low doses in radiotherapy. Radiother Oncol 1996; 40:1-3.

    PubMed  Google Scholar 

  55. Hamilton CS, Denham JW, O’Brien M, et al. Underprediction of human skin erythema at low doses per fraction by the linear quadratic model. Radiother Oncol 1996; 40:23-30.

    PubMed  Google Scholar 

  56. Harney J, Shah N, Short S, et al. The evaluation of low dose hyper-radiosensitivity in normal human skin. Radiother Oncol 2004; 70:319-329.

    PubMed  Google Scholar 

  57. Wilson GD. Radiation and the cell cycle, revisited. Cancer Metastasis Rev 2004; 23:209-225.

    PubMed  Google Scholar 

  58. Sinclair WK. Cyclic X ray responses in mammalian cells in vitro. Radiat Res 1968; 33:620-643.

    PubMed  Google Scholar 

  59. Krempler A, Deckbar D, Jeggo PA, et al. An imperfect G2M checkpoint contributes to chromosome instability following irradiation of S and G2 phase cells. Cell Cycle 2007; 6:1682-1686.

    PubMed  Google Scholar 

  60. Krueger SA, Collis SJ, Joiner MC, et al. Transition in survival from Low-dose hyper-radiosensitivity to increased radioresistance is independent of activation of ATM Ser1981 activity. Int J Radiat Oncol Biol Phys 2007; 69:1262-1271.

    PubMed  Google Scholar 

  61. Marples B, Joiner MC. The elimination of low-dose hypersensitivity in Chinese hamster V79-379A cells by pretreatment with X rays or hydrogen peroxide. Radiat Res 1995; 141:160-169.

    PubMed  Google Scholar 

  62. Marples B, Joiner MC. Modification of survival by DNA repair modifiers: a probable explanation for the phenomenon of increased radioresistance. Int J Radiat Biol 2000; 76:305-312.

    PubMed  Google Scholar 

  63. Slonina D, Biesaga B, Urbanski K, et al. Evidence of low-dose hyper-radiosensitivity in normal cells of cervix cancer patients? Radiat Prot Dosimetry 2006; 122:282-284.

    PubMed  Google Scholar 

  64. Nasonova EA, Shmakova NL, Komova OV, et al. Cytogenetic effects of low-dose radiation with different LET in human peripheral blood lymphocytes. Radiat Environ Biophys 2006; 45:307-312.

    PubMed  Google Scholar 

  65. Skov KA. Radioresponsiveness at low doses: hyper-radiosensitivity and increased radioresistance in mammalian cells. Mutat Res 1999; 430:241-253.

    PubMed  Google Scholar 

  66. Jackson SP. Sensing and repairing DNA double-strand breaks. Carcinogenesis 2002; 23:687-696.

    PubMed  Google Scholar 

  67. Petrini JH, Stracker TH. The cellular response to DNA double-strand breaks: defining the sensors and mediators. Trends Cell Biol 2003; 13:458-462.

    PubMed  Google Scholar 

  68. Bekker-Jensen S, Lukas C, Kitagawa R, et al. Spatial organization of the mammalian genome surveillance machinery in response to DNA strand breaks. J Cell Biol 2006; 173:195-206.

    PubMed  Google Scholar 

  69. Harrison JC, Haber JE. Surviving the breakup: the DNA damage checkpoint. Annu Rev Genet 2006; 40:209-235.

    PubMed  Google Scholar 

  70. Hoeijmakers JH. Genome maintenance mechanisms for preventing cancer. Nature 2001; 411:366-374.

    PubMed  Google Scholar 

  71. O’Driscoll M, Jeggo PA. The role of double-strand break repair - insights from human genetics. Nat Rev Genet 2006; 7:45-54.

    PubMed  Google Scholar 

  72. Shiloh Y. ATM and related protein kinases: safeguarding genome integrity. Nat Rev Cancer 2003; 3:155-168.

    PubMed  Google Scholar 

  73. Lee JH, Paull TT. ATM activation by DNA double-strand breaks through the Mre11-Rad50- Nbs1 complex. Science 2005; 308:551-554.

    PubMed  Google Scholar 

  74. Williams RS, Williams JS, Tainer JA. Mre11-Rad50-Nbs1 is a keystone complex connecting DNA repair machinery, double-strand break signaling, and the chromatin template. Biochem Cell Biol 2007; 85:509-520.

    PubMed  Google Scholar 

  75. Lavin MF, Kozlov S. DNA damage-induced signalling in ataxia-telangiectasia and related syndromes. Radiother Oncol 2007; 83:231-237.

    PubMed  Google Scholar 

  76. Hirano Y, Sugimoto K. ATR homolog Mec1 controls association of DNA polymerase zetaRev1 complex with regions near a double-strand break. Curr Biol 2006; 16:586-590.

    PubMed  Google Scholar 

  77. Horejsi Z, Falck J, Bakkenist CJ, et al. Distinct functional domains of Nbs1 modulate the timing and magnitude of ATM activation after low doses of ionizing radiation. Oncogene 2004; 23:3122-3127.

    PubMed  Google Scholar 

  78. Lavin MF, Kozlov S. ATM activation and DNA damage response. Cell Cycle 2007; 6:931-942.

    PubMed  Google Scholar 

  79. Berkovich E, Monnat RJ, Jr., Kastan MB. Roles of ATM and NBS1 in chromatin structure modulation and DNA double-strand break repair. Nat Cell Biol 2007; 9:683-690.

    PubMed  Google Scholar 

  80. Abraham RT. Cell cycle checkpoint signaling through the ATM and ATR kinases. Genes Dev 2001; 15:2177-2196.

    PubMed  Google Scholar 

  81. Shiloh Y. ATM: ready, set, go. Cell Cycle 2003; 2:116-117.

    PubMed  Google Scholar 

  82. Bartek J, Lukas J. DNA damage checkpoints: from initiation to recovery or adaptation. Curr Opin Cell Biol 2007; 19:238-245.

    PubMed  Google Scholar 

  83. Cuadrado M, Martinez-Pastor B, Murga M, et al. ATM regulates ATR chromatin loading in response to DNA double-strand breaks. J Exp Med 2006; 203:297-303.

    PubMed  Google Scholar 

  84. Garcia-Muse T, Boulton SJ. Distinct modes of ATR activation after replication stress and DNA double-strand breaks in Caenorhabditis elegans. EMBO J 2005; 24:4345-4355.

    PubMed  Google Scholar 

  85. Hurley PJ, Wilsker D, Bunz F. Human cancer cells require ATR for cell cycle progression following exposure to ionizing radiation. Oncogene 2007; 26:2535-2542.

    PubMed  Google Scholar 

  86. Jazayeri A, Falck J, Lukas C, et al. ATM- and cell cycle-dependent regulation of ATR in response to DNA double-strand breaks. Nat Cell Biol 2006; 8:37-45.

    PubMed  Google Scholar 

  87. Larocque JR, Jaklevic BR, Su TT, et al. Drosophila ATR in double-strand break repair. Genetics 2007; 175:1023-1033.

    PubMed  Google Scholar 

  88. Myers JS, Cortez D. Rapid activation of ATR by ionizing radiation requires ATM and Mre11. J Biol Chem 2006; 281:9346-9350.

    PubMed  Google Scholar 

  89. Chalmers A, Johnston P, Woodcock M, et al. PARP-1, PARP-2, and the cellular response to low doses of ionizing radiation. Int J Radiat Oncol Biol Phys 2004; 58:410-419.

    PubMed  Google Scholar 

  90. Vaganay-Juery S, Muller C, Marangoni E, et al. Decreased DNA-PK activity in human cancer cells exhibiting hypersensitivity to low-dose irradiation. Br J Cancer 2000; 83:514-518.

    PubMed  Google Scholar 

  91. Marples B, Cann NE, Mitchell CR, et al. Evidence for the involvement of DNA-dependent protein kinase in the phenomena of low dose hyper-radiosensitivity and increased radioresistance. Radiat Res 2002; 78:1151-1159.

    Google Scholar 

  92. Featherstone C, Jackson SP. DNA double-strand break repair. Curr Biol 1999; 9:759-761.

    Google Scholar 

  93. Jeggo PA, Taccioli GE, Jackson SP. Menage a trois: double strand break repair, V(D)J recombination and DNA-PK. Bioessays 1995; 17:949-957.

    PubMed  Google Scholar 

  94. Rouse J, Jackson SP. Interfaces between the detection, signaling, and repair of DNA damage. Science 2002; 297:547-551.

    PubMed  Google Scholar 

  95. Zhou BB, Elledge SJ. The DNA damage response: putting checkpoints in perspective. Nature 2000; 408:433-439.

    PubMed  Google Scholar 

  96. Collis SJ, DeWeese TL, Jeggo PA, et al. The life and death of DNA-PK. Oncogene 2005; 24:949-961.

    PubMed  Google Scholar 

  97. Kastan MB, Bartek J. Cell-cycle checkpoints and cancer. Nature 2004; 432:316-323.

    PubMed  Google Scholar 

  98. Short SC, Bourne S, Martindale C, et al. DNA damage responses at low radiation doses. Radiat Res 2005; 164:292-302.

    PubMed  Google Scholar 

  99. Olive PL. The comet assay. An overview of techniques. Methods Mol Biol 2002; 203:179-194.

    PubMed  Google Scholar 

  100. Whitaker SJ, Powell SN, McMillan TJ. Molecular assays of radiation-induced DNA damage. Eur J Cancer 1991; 27:922-928.

    PubMed  Google Scholar 

  101. Rothkamm K, Lobrich M. Evidence for a lack of DNA double-strand break repair in human cells exposed to very low x-ray doses. Proc Natl Acad Sci USA 2003; 100:5057-5062.

    PubMed  Google Scholar 

  102. Olive PL. Detection of DNA damage in individual cells by analysis of histone H2AX phosphorylation. Methods Cell Biol 2004;75:355-373.

    PubMed  Google Scholar 

  103. Burma S, Chen BP, Murphy M, et al. ATM phosphorylates histone H2AX in response to DNA double-strand breaks. J Biol Chem 2001; 276:42462-42467.

    PubMed  Google Scholar 

  104. Wykes SM, Piasentin E, Joiner MC, et al. Low-dose hyper-radiosensitivity is not caused by a failure to recognize DNA double-strand breaks. Radiat Res 2006; 165:516-524.

    PubMed  Google Scholar 

  105. Krueger SA, Joiner MC, Weinfeld M, et al. Role of apoptosis in low-dose hyper-radiosensitivity. Radiat Res 2007; 167:260-267.

    PubMed  Google Scholar 

  106. Roos WP, Kaina B. DNA damage-induced cell death by apoptosis. Trends Mol Med 2006; 12:440-450.

    PubMed  Google Scholar 

  107. Terzoudi GI, Manola KN, Pantelias GE, et al. Checkpoint abrogation in G2 compromises repair of chromosomal breaks in ataxia telangiectasia cells. Cancer Res 2005; 65:11292-11296.

    PubMed  Google Scholar 

  108. Leonard BE. Thresholds and transitions for activation of cellular radioprotective mechanisms - correlations between HRS/IRR and the ‘inverse’ dose-rate effect. Int J Radiat Biol 2007; 83:479-489.

    PubMed  Google Scholar 

  109. Marin LA, Smith CE, Langston MY, et al. Response of glioblastoma cell lines to low dose rate irradiation. Int J Radiat Oncol Biol Phys 1991; 21:397-402.

    PubMed  Google Scholar 

  110. Mitchell CR, Folkard M, Joiner MC. Effects of exposure to low-dose-rate (60)co gamma rays on human tumor cells in vitro. Radiat Res 2002; 158:311-318.

    PubMed  Google Scholar 

  111. Knox SJ, Sutherland W, Goris ML. Correlation of tumor sensitivity to low-dose-rate irradiation with G2/M-phase block and other radiobiological parameters. Radiat Res 1993; 135:24-31.

    PubMed  Google Scholar 

  112. Mitchell JB, Bedord JS, Bailey SM. Dose-rate effects on the cell cycle and survival of S3 HeLa and V79 cells. Radiat Res 1979; 79:520-536.

    PubMed  Google Scholar 

  113. DeWeese TL, Shipman JM, Dillehay LE, et al. Sensitivity of human prostatic carcinoma cell lines to low dose rate radiation exposure. J Urol 1998; 159:591-598.

    PubMed  Google Scholar 

  114. DeWeese TL, Walsh JC, Dillehay LE, et al. Human papillomavirus E6 and E7 oncoproteins alter cell cycle progression but not radiosensitivity of carcinoma cells treated with low-doserate radiation. Int J Radiat Oncol Biol Phys 1997; 37:145-154.

    PubMed  Google Scholar 

  115. Kato TA, Nagasawa H, Weil MM, et al. gamma-H2AX foci after low-dose-rate irradiation reveal atm haploinsufficiency in mice. Radiat Res 2006; 166:47-54.

    PubMed  Google Scholar 

  116. Kato TA, Nagasawa H, Weil MM, et al. Levels of gamma-H2AX Foci after low-dose-rate irradiation reveal a DNA DSB rejoining defect in cells from human ATM heterozygotes in two at families and in another apparently normal individual. Radiat Res 2006; 166:443-453.

    PubMed  Google Scholar 

  117. Nakamura H, Yasui Y, Saito N, et al. DNA repair defect in AT cells and their hypersensitivity to low-dose-rate radiation. Radiat Res 2006; 165:277-282.

    PubMed  Google Scholar 

  118. Honore HB, Bentzen SM. A modelling study of the potential influence of low dose hypersensitivity on radiation treatment planning. Radiother Oncol 2006; 79:115-121.

    PubMed  Google Scholar 

  119. Tome WA, Howard SP. On the possible increase in local tumour control probability for gliomas exhibiting low dose hyper-radiosensitivity using a pulsed schedule. Br J Radiol 2007; 80:32-37.

    PubMed  Google Scholar 

  120. Lin PS, Wu A. Not all 2 Gray radiation prescriptions are equivalent: Cytotoxic effect depends on delivery sequences of partial fractionated doses. Int J Radiat Oncol Biol Phys 2005; 63:536-544.

    PubMed  Google Scholar 

  121. Krause M, Prager J, Wohlfarth J, et al. Ultrafractionation does not improve the results of radiotherapy in radioresistant murine DDL1 lymphoma. Strahlenther Onkol 2005; 181:540-544.

    PubMed  Google Scholar 

  122. Krause M, Hessel F, Wohlfarth J, et al. Ultrafractionation in A7 human malignant glioma in nude mice. Int J Radiat Biol 2003; 79:377-383.

    PubMed  Google Scholar 

  123. Ratnam K, Low JA. Current development of clinical inhibitors of poly(ADP-ribose) polymerase in oncology. Clin Cancer Res 2007; 13:1383-1388.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science + Business Media B.V

About this chapter

Cite this chapter

Marples, B., Krueger, S.A., Collis, S.J., Joiner, M.C. (2008). Low Dose Hyper-Radiosensitivity: A Historical Perspective. In: Stigbrand, T., Carlsson, J., Adams, G.P. (eds) Targeted Radionuclide Tumor Therapy. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8696-0_19

Download citation

Publish with us

Policies and ethics